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KEYWORDS Abstract A novel derivation of non-stationary solutions of 3D Euler equations for incompressible
Euler equations; inviscid flow is considered here. Such a solution is the product of 2 separated parts: one consisting
Riccati equations; of the spatial component and the other being related to the time dependent part.

Non-stationary solutions Spatial part of a solution could be determined if we substitute such a solution to the equations of
motion (equation of momentum) with the requirement of scale-similarity in regard to the proper
component of spatial velocity. So, the time-dependent part of equations of momentum should
depend on the time-parameter only.

The main result, which should be outlined, is that the governing (time-dependent) ODE-system
consists of 2 Riccati-type equations in regard to each other, which has no solution in general case.
But we obtain conditions when each component of time-dependent part is proved to be determined
by the proper elliptical integral in regard to the time-parameter ¢, which is a generalization of the
class of inverse periodic functions.
© 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction: the Euler system of equations o V(@ V)i=— Vp +F (12)
ot p
In accordance with (Landau and  Lifshitz, 1987; where u is the flow velocity, a vector field; p is the fluid density,
Ladyzhenskaya, 1969; Lighthill, 1986), the Euler system of  pis the pressure, F represents external force (per unit of mass in
equations for incompressible flow of inviscid fluid should be a volume) acting on the fluid; besides, we assume external force
presented in the Cartesian coordinates as below (under the F above to be the force, which has a potential ¢ represented by
proper initial conditions): = —Vo¢.
V.-i=0, (L.1)

2. The originating system of PDE for Euler equations

Peer review under responsibility of King Saud University.
Using the identity (u - V)u = (1/2)V(@*) — u x (V x u), we could
present the Euler equations in the case of incompressible flow

P& of inviscid fluid u = {u;, ur, uz} as below (Saffman, 1995;
ELSEVIER Production and hosting by Elsevier Milne-Thomson, 1950):

http://dx.doi.org/10.1016/j.jksus.2015.05.005
1018-3647 © 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2015.05.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksus.2015.05.005
http://www.sciencedirect.com/science/journal/10183647
http://dx.doi.org/10.1016/j.jksus.2015.05.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

370

S.V. Ershkov

V-ii =0,
i — 2.1
g—yzuxw—<%V(aﬂ)+%+v¢> @)

here we denote the curl field ® = V x u, a pseudovector field
(time-dependent) Kamke, 1971:

= Quy _ duy dm _ Ouy duy _ Ouy
{Cl)x, Wy, (J):} - { ((’?y B:)’ (F): (’?x)’ (i)x ('?y) }

(2.2)

also we denote Vo = {f, f,, f-} in (2.1); besides, let us choose
p = 1 for simplicity.

3. Conditions for the space-part of exact solution

Let us search for solutions {u, p} of the system (2.1) in a form
below:

w =U®) - u(x, p, z), ua = V() -v(x, y, 2),

us = W(t) - w(x, y, 2), p=P(t) - plcx, . 2) (3.1)

then we should obtain from (2.1) and expression (2.2) the
proper system of PDE:

8= (-0~ )~ L3 8+ 8) ~ B0~
%Lf:(ug,'wx*ul'wz)*%%(“ +15 +u3) — %pi‘fy’
W= (- 0y — - 0,) =3 L2+ 13 +13) —Lp — £,

(3.2)

Besides, there exists the proper restriction from continuity
equation (1.1) as below (0u/0x # 0):

v vl w2 2o, =
ox oy oz (33)
ov ou  Ow ou ’

==, {x, A} =const

By o Bz ox’
The system of equations (3.2) should be transformed under
conditions (3.1) as below:

au() _ V(t)v(x, y, z)-(V(/)Q‘\L—U(/)-@—i‘.)—W(t)~w(x, 7, 2)-(U()- 3w (1) 32)

dt u(x, y, z)

(U742 (x, y, )+ V()2 (x, ,

1 2) W2 (1)-w?
2 u(x, y, z)

(P()-Zp(x, v, 2)41:)
u(x, y, z) ’

9\@

(%, , Z)) .

av() _ Wwlxy
dr

(W)= (0)8) = Un)u(x, y, 2)-(V(1)-$—U(1)92)
v(x, ¥, 2)

%(b(r) 2 (x, y, 2)FV2(0) 2 (x, p, 2)+ W2 (1) w2 (x, y, :)) (P(t)-%p(,\", v, :)Jrfy)

_1 _
2 v(x, », 2) v(x, p, 2) ’
aw(i) U@, v, 2)- (U0 3= (055 =V (0)2(x, v, 2)- (W0 G2= V()4
d w(x, y, 2)
1 2V r DEVW R (P, 32) (PO (e, v )4
2 w(x, y, z) w(x, y, 2) ’
(3.4)

thus, from the 1-st of Eq. (3.4) we should assume ({a;} = const,

¥(x, y, 2)-28 w(x, y, 2)-3¢ w(x, y, 2)-9¢
ulx, y, 9 =, - u(x,y,z) a3, u(x,p,z) da,
_ _ 12 (V (x,7,2) 1 %(wz(x, »,2)
s, —3%upya 9% TiTumyn a9
S
Ty

(3.5)

but the 2-nd of Eq. (3.4) yields as below ({b;} = const, i = 1,
.5 9):

w(x, y, )g“‘ - “("'-}’-,h) d“
v(x,p,z) vx, p, z b47
B (x,y,2)) 2))
19y
2 v(x,y,z z b77
Py, 2) Lo
T, 2) bg, v(x, ¥, 2) bg,
(3.6)

besides, 3-rd of Eq. (3.4) yields ({¢;} = const, i =1, ..., 9):

Wy _sepdgE MR oerag
w(x, y, z) w(x, y, z 25 wx,y,z) 3 wix, p, z 4

| 0P (0. 2) _ |20 | 20 (5,0, 2)
=0 i = T g =

2 w(x,y,z2) ’ 2 wx,p,2) ) 2 wix,y,z2) ’
_dp(\ »z)

w(x, ¥, 2) €8, Cy.

(3.7)

4. The space-part of exact solution

As for the structure of space part of exact solution (3.1), the
system of equations (3.5)—(3.7) could be solved by the proper
analytical way as below:

Eq. (3.5) yields:

u 2) . v
07;‘7_(?71)§7

()
az

ox e
: 4.1
Lulx, y, 2)) = a5 do= —ar, 1)
a; = —dy, %P(% Vs Z) =dag - u(x7 Vs Z)7
/;c = —dy - u(x7 Vs Z)a
Eq. (3.6) yields:
Wy 2) G ow_ (bi) oy
ey Ty \b) o7
(X , z m X Jh (); o 6V_
u(x, y, z — | v(x, 0, 2),
( b3 al )
:>b3:a5a@:_ ﬁ '@7$ % = @ ) b5
Ay 3] Ox a b;
19} 1o}
—by, 8—y(V(X»J/» z)) = —bs, b7:*b|78—y17(x7)’, z)
=—bg-v(x,y, 2) 9 (x,»,2)
- 8 , Vs ) 6xp y Vs
bs
=—as | —F—=——= | v(x,»,2), /,
( (—b3~a1)) i
:—bt)"’(X,% Z)a (42)
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and Eq. (3.7) yields:
(u(.n, ¥, z)%) . (w(x. ¥,
w(x, y, z) u(x, y, z

SaoTaa), =g Yonb

ow_ _(a). o
ox 1 e

ow __ ow [&] v
:>(r7}— (*bl’c3)7a},_7(7)'57

4

= (f—z) = (Z_;)CS = —C1,C = 764,0—%(14)()(7, Vs Z))

= _077%1)()67 Vs Z)

= —Cg - W(X, iz Z) = —Cg - ( Z?f]}) : V(X, iz Z): fz
= —co-w(x, y, 2).
(4.3)

So, the space part of the solution should be presented as
below:

bs
- : (X, ¥, 2) = —bs - x + by - bg -
u by -an) (x, », z) 3 3:06)
+vV(=as-¢1) z, v=x—bs-y ——"> (_a3.61)~z,

bs

a
(__3> - |bs| - x
@]

y—az-z,
ay - C
(ar-b3)=—1, ay=bs, |as|-|bs| =as- b3,
ay=c;, as=by, ag-by-bs=bg,
Cg
a3 =————,p(x, y,z) =ag - (—bs - bg-x-
8 |(11|‘|C|| p( y ) 8 ( 3 6 y
b
—\/(—ag~cl)~x~z+b(,\/(—a3~c1)-y~z+?3x2
bs-(b)*\ 5, leil-las|
. - 4.4
ol Gl EEGRR ety (44)

Thus, if we choose for simplicity the proper constants as:

C]Z—l7 CZg:l (:>b8:b3'b6708:1/|b3|) (45)

the space part of the solution should be presented as below
(las| - |bs| = a3+ bs):
u=—by-x+by-bs-y+./az z

N

v=x—bey—>-z,

w=\/as - |bs| - x —be - |bs| - \Jas -y —as -
p(x, y, z)=—by-bg-x-y—\Jas-x-z

N

(4.6)

[}

2
+b6\/a;.y,z+%x2+<b3‘(;e)).y2+%_ 2

5. Time-dependent part of exact solution

As for the structure of time-dependent part of exact solution
(3.1) with space part (4.6), it could be obtained from system
of Eq. (3.4) which should be transformed as below:

dZEZ)ZV(t)'U(I)'azJFW(I)'U(t)'a3+U(l)2~ds+P(t)-a8+g9,
dZ—EI): W(t)-V(t)-by+U(t)-V(t)-bs+V?(t)-bs+ P(t) -bg+bo,
d%t(l): U()- W(t)-c+ V(1) W(1)-c3+ W2 (1) 7+ P(1) - cs +co,
(5.1)

where @y = bs, las| - |bsl = a3 bs, as= by, ag=1,

bg = bz bs, c7 = as, cg = 1/|bs|; besides, it should be accom-
plished along with the continuity equation (3.3):
Ou v ow
Ut)—+V(it)—+W(it)— =0
(1) g+ V) g+ W) G2 =0

= U(l) -bsy + V(l) - b + W(l) saz = 07
so, we have 4 equations for the obtaining of 4 functions U(r),
V(n), W), P(1).

Along with the invariant from the continuity equation
(besides, ag " b3 + by bs + ¢co-az = 0):
d(U(t) - by + V(1) - be + W(t) - a3)

dt

a system of Eq. (5.1) immediately yields the invariant for func-
tion P(r) as below:
P(l)‘(ag‘b3+bg‘b6+83'a3)
=—[V(1)- U@t) - a+ W(1) - U(t) - as + U(1)" - as] - bs

— [W(2) - V(t) - by + U(t) - V(£) - by + V2(¢) - bg) - bs

—[U@)- W) - cr+ V() W(t) - e+ WHt) - ¢7) a3, (5.2)

=0,

thus, we should exclude expression (5.2) for function P(¢) from
the analysis of equations of system (5.1) and also we should
exclude the continuity equation, which means that one of 3 func-
tions U(t), V(t), W(t) is the linear combination of two others:

(5.3)

(y+1)*((tanh(-y))-1) —

Figure 1 A  schematic plot of the function ~
(x —y + 1) * {tanh(—7) — 1}, here we designate: x € (—50, 50),
t =ye(0,25).
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-15

-25

(ey+1)*((tanh(-y))-1) —

Figure 2 A schematic plot of the function ~ (x —y + 1)*
{tanh(—7) — 1}, here we designate: x € (—1, 1), t = y € (0, 1).

(x-y-10)*((tanh(-y))-1) —

Figure 3 A schematic plot of the function ~ (x —y —10) *
{tanh(—7) — 1}, here we designate: x € (—1, 1), t = y € (0, 1).

So, analyzing the system (5.1), we finally should obtain the
system of 2 ordinary differential equations of the 1-st order for
any 2 of 3 functions U(¢), V(¢), W(t) (the last 3-rd function could
be obtained by expressing it from the continuity equation above).

These governing ODE-equations form together a system of
2 Riccati-type equations in regard to each other, which is the
system of 2 ordinary differential equations of the 1-st kind with
the right parts, consisting of polynomials of the 2-nd extent in
regard to the functions U(¢), V(¢), W(1).

Riccati type of equations has no analytical solution in gen-
eral case (Kamke, 1971). We should note also that modern
methods exist for obtaining the solution of Riccati equations
with a good approximation (Bender and Orszag, 1999; Rosu
et al., 2012; Christianto and Smarandache, 2008). But if we
choose proper constants for the system (5.1):

gy =by=0c9=0, (as-by+bg-bs+cs-ay)=1,=

54
(bs+bs- (bs)* +as/|bs]) = 1,= as=|bs| = by -[bs| = bs - |bs] - (bs)*, 4

the 1-st and 2-nd equations of system (5.1) could be trans-
formed as presented below:

a3

20— V(1) U(1)- (bs- (224 e~ 2b¢) + b+ (2= b3))
FU() s+ (e = bs) + V2 (1) by (25— 28 ),
L0 —u@)- V(- (bs' ( *Zf) +be by (c2—b3)+bs by (hz,lf‘”rcs *2b6)>

V(1) (bo- (1) +bs- by (¢ = 20) ) + V(1) by by (e2 =),
(5.5)

where a, = bg, see (4.4). Besides, if we additionally choose
b, = as, system (5.5) above could be reduced to the simplified
regular form below:
0 = (bs - U(t) + C) - U(1) - (bs - (¢35 — bg) + bg - (c2 — b3))
+U(1) - by - (2 = b3) + (bs - U(1) + C)* - b - (¢3 — bg),
dZ—El)zbg-dZ—ft) = V(t)=bs-U(t)+C, C=const
(5.6)

where the 1-st equation of system (5.6) has a proper solution

below (bg = bs - be):
dU(r)

(4-U*() + B-U(t) + D)

= dr, (5.7)

A:(bg 'b3 '(C} *b(,)‘f’bg 'b(,'(szbg)‘f’b} '(Cz*b,})"’(bg)z'b@'(c‘} *b(,))
B=C-(b3-(c3—be) + b - (c2 —b3) +2bg - bs - (¢3 —bg)), D=C* bg-(c3—bs)

The left side of expression (5.7) could be transformed to the
proper elliptical integral (Lawden, 1989) in regard to function
U(1):

* arctan(“L\/%)*B), A>0

— A Arth(2Y0EE) A <0

dU(1) _ _ >
/(A~U2(t)+B-U(t)+D)_ A=(44-D-5)

(5.8)

6. Discussion

In fluid mechanics, a lot of authors have been executing their
researches to obtain the analytical solutions of Euler and
Navier—Stokes equations (Drazin and Riley, 2006), even for
3D case of compressible gas flow (Ershkov and Schennikov,
2001). But there is an essential deficiency of non-stationary
solutions indeed.

(cy+10)*((tanh(-y))-1) —

Figure 4 A schematic plot of the function ~ (x —y + 10) *
{tanh(—¢) — 1}, here we designate: x € (—1, 1), t = y € (0, 1).
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(x-y+30)*((tanh(-y))-1) —

Figure 5 A schematic plot of the function ~ (x —y + 30) *
{tanh(—r) — 1}, here we designate: x € (—1, 1), t = y € (0, 1).

Our presentation (3.1) of the non-stationary solutions of
3D Euler equations (1.1) and (1.2) for incompressible flow is
considered here. The spatial part of such a solution is deter-
mined by equalities (4.4), under the given initial conditions;
but the time-dependent part is determined by Eqgs. (5.1)—(5.3).

Besides, the real example of exact solution is obtained. The
spatial part of such a solution is presented by the equalities
(4.5) and (4.6), but the time-dependent part is presented by
equalities (5.2)—(5.4) and (5.8).

Also, we should especially note that the components of flow
velocity (4.6) of the solution (3.1) will be uniformly increasing
when (x, y, z) > co. So, such a solution should be defined
within the limited domain of the meanings of variables (x, y,
z), it should be given by the initial conditions.

The explicit solutions for U(f) can easily be obtained from
Eqgs. (5.7) and (5.6), therefore, the explicit form of the special
solutions (3.1) should be provided:

U = U(I) ' M(}C, Vs Z)a U = V(t) ' V(X, 2 Z)v us
= W(I) 'W()C, z Z), p :P(t) 'p(x7 Vs Z)v
where:

(x-y-10)*((tan(y))-1) —

Figure 6 A schematic plot of the function ~ (x —y —10)*
{tan(f) — 1}, here we designate: x € (—1, 1), 1 = y € (0, 1).

2277777777777

-1

(ey+1)*(tan(y))-1) —

Figure 7 A schematic plot of the function ~ (x —y + 1)*
{tan(r) — 1}, here we designate: x € (—1, 1), 1 = y € (0, 1).

(x-y+10)* ((tan(y))-1) —

Figure 8 A schematic plot of the function ~ (x —y + 10) *
{tan(#) — 1}, here we designate: x € (—1, 1), t = y € (0, 1).

u=—by-x+b3-bs-y+./az-z
v:x—bﬁ-y—/b—“_;-z,
w=./a3-|b3| - x—be-|bs|- /a3 -y —as-z,

P(X, ¥, 2) ==bs-bg-x-y—\[a5-x-2+be /a5y -+ 5
+(B4E) 24l 2,

P(1) = =[V(1) - U(1) - bg + W(1) - U(t) - a5 + U(1)" - b3] - by
—[W(t) - V(t) - a3+ U(t) - V(£) - by + V2(£) - bg) - bs

—[U@)- W) e+ V() W(t) - 3+ W(1) - a3) - as,
Wy = v 2w
as as

= (b3 -be) - U(t) + C, C = const,

here we should choose as = {|b3| — b3y - |bs3| —
by |bs| - (be)*} 20, —bs- (1 + (be)®) = 1, but the key function
U(t) should be given as below (bg = b5 - bg):
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VA-tan ((¥2)-1)-8
Su(@)

u(n) =

U([) \/.'Alllll( ( ) )—B, A<0
A
B

=

(44-D—B)

= (bs- b;-(c;—bé)—t-bs-b(,-(cz—b3)+b3~(cz—b3)+(b3)2»b6»(03—b(,))

=C-(bs-(c3—bg) +be-(c2—b3) +2bs -bs - (c3— b)), D=C*-bs-(c3—bs)

For example, if we choose ¢3 = bg (C # 0) it should simplify
the expression for U(z):

U([) _ V=Atanh (;A(@) -r) —B7 A= —Bz

A=by-(c2—by)- (14 (b)*), B=C-bg-(c;—

and, if we additionally choose ¢, = 2b3, b3 = 2/C (C#0),
be = 1, we should obtain (see Figs. 1-5):

b3)7 D=0

2

Mﬂ=%~ﬁmM4%JL

B=2 D=0

A= 745 A= (b3)2 : 27

We assume at Figs. 1-5 that in the expressions (x — y — 10),
(x—y+1),(x—y+ 10), (x — y + 30) set of meanings {—10,
1, 10, 30} is varying according to the varying of the range of
variable z; besides, the factor {tanh(—¢) — 1} could be schemat-
ically presented (for imagination of the plots of solutions) by
the changing of parameter ¢ to variable y, for example.

At Figs. 6-8 we schematically imagined solutions for the
case A > 0.

Also, we should note that since some solutions are
unbounded (see for instance Eq. (5.8) for A > 0), such a solu-
tion should be defined within the limited range of the meanings
of time-parameter ¢ (it should be given by the initial
conditions).

Besides, we should additionally note that the only periodic
(and unbounded) solutions are the ones given by U(¢) for
A > 0 (Figs. 6-8), since the hyperbolic tangent is a non peri-
odic but bounded function in this case (Figs. 1-5).

7. Conclusion

A new presentation of non-stationary solutions of 3D Euler
equations for incompressible inviscid flow is considered here.
Such a solution is the product of 2 separated parts: - spatial
and the time-dependent parts.

Spatial part of a solution could be determined if we
substitute such a solution to the equations of motion (equation
of momentum) under the demand of scale-similarity in regard
to the proper component of spatial velocity. So, the
time-dependent part of equations of momentum should
depend on the time-parameter only.

The main result, which should be outlined, is that the
governing (time-dependent) ODE-system consists of 2
Riccati-type equations in regard to each other, which has no
solution in general case. But we obtain conditions when each
component of time-dependent part is proved to be determined
by the proper elliptical integral in regard to the time-parameter
t, which is a generalization of the class of inverse periodic func-
tions. Thus, by the proper obtaining of re-inverse dependence
of a solution from time-parameter we could present the expres-
sion for each component of motion as a set of periodic cycles.
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