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In this paper, I consider Lyapunov functionals combined with the Laplace transform to obtain bounded-
ness results regarding the solutions of the nonlinear Volterra integro-differential equations

x0 tð Þ ¼ A tð Þx tð Þ þ B tð Þ þ
Z t

0
C t; sð Þf x sð Þð Þdsþ g x tð Þð Þ:

Asymptotic stability results regarding the zero solution are carried out for the case where B tð Þ is iden-
tically zero. Numerical examples are proposed to perform the given results.
� 2018 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction The approximation by linear models made it possible to obtain
An integro-differential equation is an ordinary differential
equation of which one of the variables is an integral. They are used
in a large number of physical domains. Maxwell’s equations are
probably their most famous representatives. They appear in prob-
lems of radiative energy transfers and problems of oscillations of a
rope, a membrane or an axis. Many publication emphasizes also
advantages of the integro-differential equations in various
branches of technology, with special attention paid to large sense
of power engineering. The famous Volterra integro-differential
equations are largely used as models for a large class of semicon-
ductor devices with abrupt pn-junctions (Unterreiter, 1996) which
lead directly to both integro-equations types or integro-differential
equations. Endemic infectious diseases where infection confers
permanent immunity are also modelled by systems of nonlinear
Volterra integro-differential equations type (Hethcote and Tudor,
1980). These models can take into account of distributed infectious
period, immunity, birth and death dynamics.
practical results that were considered sufficient; it is not the same
today where the concern for performance is more and more
demanding. The study of nonlinear systems is added in order to
get closer to physical reality. To all this we can add, the study of
disturbances - elements external to the studied system, not only
undesirable, but also mostly unpredictable. It is interesting in these
conditions to define other forms of stability and to analyze the dif-
ferent theoretical implications for increasingly complex systems.

Continuous models are to be preferred (El Hajji, 2018, 2017,
2015; Sari et al., 2012), on grounds of realism, over discrete mod-
els, the scientifically faithful forms of such continuous models
rarely have closed-form solutions. Where practically useful
insights into solutions are sought, one may turn to numerical
methods, applied to realistic models, to provide approximate val-
ues. In this situation, one seeks ‘appropriate’ numerical formulae;
we are once more led to consider discrete equations.

When we observe the (deterministic) evolution of a quantity
varying over time, we usually have discrete data, that is to say, val-
ues measured at regular (or sometimes irregular) time intervals,
but rarely data continuously recorded. This naturally leads to the
choice of models for difference equations (or recurrences). But
these discrete sequences are sometimes easier to understand and
to study if they are seen as the sampled values of a continuous
(and even derivable) function of time but whose values would have
been considered only at certain moments.

Continuous models are often preferred to discrete models by
mathematicians (ElHajji, 2018, 2017, 2015; Sari et al., 2012)because
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the arsenal of tools they have developed to study themmakes them
generally easier to manipulate. For the biologist, there are cases
where some will be more relevant than the others but most often
there is the choice. On the other hand it is always useful to know
howone passes fromone to the other, by ‘‘smoothing” data tomodel
them more simply continuously on the one hand or, conversely, by
discretizing a model to study it with a computer on the other hand.

In this paper, I am interested in the qualitative analysis of solu-
tions for the nonlinear Volterra integro-differential equations given
by:

x0 tð Þ ¼ A tð Þx tð Þ þ B tð Þ þ
Z t

0
C t; sð Þf x sð Þð Þdsþ g x tð Þð Þ ð1Þ

for t 2 Rþ. x tð Þ;A tð Þ and B tð Þ are continuous scalar functions defined
on Rþ. f xð Þ and g xð Þ are continuous scalar functions defined on R.
C t; sð Þ is a scalar function defined on Rþ � Rþ.

I ammainly interested by boundedness results concerning solu-
tions of Eq. (1). Throughout this paper, I make the following
assumptions: there exist positive constants k1; k2 and M such that
functions f ; g and B satisfy:

jg xð Þj 6 k1jxj; ð2Þ

jf xð Þj 6 k2jxj; ð3Þ
and

jBj 6 M: ð4Þ
Several works have been devoted to the study of the qualitative
analysis of solutions for different forms of the nonlinear Volterra
integral differential equations. Recently, several authors have stud-
ied the behaviour of solutions of variant forms of (1). In particular,
Medina (Medina, 2001, 1997, 1996) obtained stability and bound-
edness results of the solutions of the homogeneous part of (1) by
means of representing the solution in terms of the resolvent matrix.
Elaydi and Murakami (1998), used the notion of total stability and
established results on the asymptotic behaviour of the zero solution
of (1). Their work heavily depended on showing or assuming the
summability of the resolvent matrix. However, a major limitation
of this procedure is that the resolvent matrix is an abstract term.
When g xð Þ ¼ x and jf x tð Þð Þj 6 k2 tð Þ jx tð Þj, it was shown that the zero
solution of (1) is uniformly asymptotically stable provided thatR1
0 k2 tð Þdt < 1. More results regarding the stability of the zero solu-
tion of Volterra-like integral differential equations can be found in
the literature, for example, Crisci et al. (1997), Elaydi (1994) and
Agarwal and Pang (1997) and the references therein.

In this paper, I do not impose any condition on k2 other than it is
simply a positive constant. I look in a first step to use a Lyupanov
functional V tð Þ coupled with the Laplace transform to obtain
boundedness results concerning the solutions of Eq. (1). In a sec-
ond step, stability and boundedness results are given for a partic-
ular case of Eq. (1). Examples are given as applications to the
obtained results.

2. Main results

Definition 1. A function y tð Þ is exponentially bounded for t P 0 if
there exist two constants m P 0 and c such that

jyj 6 mect ; 8 t P 0:
Definition 2. If y tð Þ is a piecewise continuous function defined for
t P 0 of exponential order, then the Laplace transform L yð Þ sð Þ of
y tð Þ is defined by the following integral expression:

L yð Þ sð Þ ¼ eY sð Þ ¼
Z þ1

0
e�sty tð Þdt;

where s is a real number.
For the first part, I assume that there exist a positive decreasing
continuous function u tð Þ 2 L1 0;1½ Þð Þ

Lemma 1. Consider a positive uniformly continuous scalar function
b tð Þ and a positive continuous scalar function H tð Þ such that

H tð Þ ¼ b tð Þ þ k3

Z t

0
u t � sð Þb sð Þds; k3 > 0 ð5Þ

H0 tð Þ ¼ �ab tð Þ; a > 0; b 0ð Þ ¼ 1; ð6Þ
then one has

b tð Þ þ
Z t

0
k3u t � sð Þ þ að Þb sð Þds ¼ 1; ð7Þ

b tð Þ 2 L1 0;1½ Þð Þ; ð8Þ
and

lim
t!þ1

b tð Þ ¼ 0 ð9Þ
Proof. By integrating (6) on 0; tð Þ, one obtains

H tð Þ ¼ H 0ð Þ � a
Z t

0
b sð Þds: ð10Þ

Now by using (5), one obtains H 0ð Þ ¼ b 0ð Þ=1. By equating Eq. (5) to
Eq. (10), we get

b tð Þ þ k3

Z t

0
u t � sð Þb sð Þds ¼ H 0ð Þ � a

Z t

0
b sð Þds:

Now simplifying the obtained equation to get

b tð Þ þ
Z t

0
k3u t � sð Þ þ að Þb sð Þds ¼ 1;

then expression (7) is verified.
From (10) we have,

a
Z t

0
b sð Þds ¼ H 0ð Þ � H tð Þ 6 H 0ð Þ ¼ 1

Since b tð Þ P 0 8t P 0, and by the assumption H0 tð Þ ¼ �ab tð Þ;a > 0,
one deduces that H is a monotonically decreasing function.
ThereforeZ t

0
b sð Þds 6 1

a
; 8 t P 0:

In addition when t ! 1, one obtainsZ 1

0
b sð Þds 6 1

a
:

which means that b tð Þ 2 L1 0;1½ Þð Þ and (8) is then fulfilled.
In order to prove that b tð Þ ! 0 when t ! þ1, I use a classical

prove.
Let e > 0, as b tð Þ is uniformly continuous then

9g > 0; 8x; y > 0; jx� yj < g; jb xð Þ � b yð Þj < e:

The fact that b tð Þ is positive and b tð Þ 2 L1 0;1½ Þð Þ derive

9A > 0; 8x; y > A; j
Z y

x
b tð Þdtj < ge !

Z y

x
b tð Þdt < ge:

Let x > A, one has

gb xð Þ ¼ R xþg
x b xð Þds 6 R xþg

x jb xð Þ � b sð Þjdsþ R xþg
x jb sð Þjds

6
R xþg
x eds þ ge

¼ 2ge:
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Then

b xð Þ < 2e; 8 x > A;

which implies that limt!þ1b tð Þ ¼ 0 and the property (9) is then ful-
filled. This completes the proof. h
2.1. Boundedness result

In the next theorem, I state and prove my first main result.

Theorem 1. In addition to assumptions (2)–(4), assume that there
exist a positive scalar function u : 0;1½ Þ ! 0;1½ Þ satisfying

u0 tð Þ � 0; 8 t P 0 and u 2 L1 0;1½ Þð Þ
Suppose that there exists a constant k3 > 0 such that

k2jC t; sð Þj þ k3u0 t � sð Þ 6 0; 8 0 6 s 6 t < 1; ð11Þ
and there exist a negative scalar function A tð Þ defined on 0;1½ Þ and a
positive constant a such that

A tð Þ þ k1 þ k3u 0ð Þ 6 �a; ð12Þ
then all solutions of Eq. (1) are bounded.
Proof. Define the Lyapunov functional V by

V tð Þ ¼ jxj þ k3

Z t

0
u t � sð Þjx sð Þjds; t P 0: ð13Þ

By differentiating V tð Þ, one obtains

V 0 tð Þ ¼ x0 tð Þ x
jxj þ k3u 0ð Þjxj þ k3

Z t

0
u0 t � sð Þjx sð Þjds; t P 0:

Then, substituting (1) into the expression of V 0 tð Þ, we get

V 0 tð Þ ¼ x tð Þ
jxj A tð Þx tð Þ þ B tð Þ þ

Z t

0
C t; sð Þf x sð Þð Þdsþ g x tð Þð Þ

� �
þ k3u 0ð Þjxj þ k3

Z t

0
u0 t � sð Þjx sð Þjds;

By developing, we get
V 0 tð Þ ¼ A tð Þ x2
jxj þ x tð Þ

jxj B tð Þ þ x tð Þ
jxj

R t
0 C t; sð Þf x sð Þð Þdsþ x tð Þ

jxj g x tð Þð Þ þ k3u 0ð Þjxj þ k3
R t
0 u

0 t � sð Þjx sð Þjds
¼ A tð Þjxj þ x tð Þ

jxj B tð Þ þ x tð Þ
jxj

R t
0 C t; sð Þf x sð Þð Þdsþ x tð Þ

jxj g x tð Þð Þ þ k3u 0ð Þjxj þ k3
R t
0 u

0 t � sð Þjx sð Þjds
6 A tð Þjxj þ jBj þ R t

0 jC t; sð Þjjf x sð Þð Þjdsþ jg x tð Þð Þj þ k3u 0ð Þjxj þ k3
R t
0 u

0 t � sð Þjx sð Þjds:
Using assumptions (2)–(4), we get
V 0 tð Þ 6 A tð Þjxj þM þ k2
R t
0 jC t; sð Þjjx sð Þjdsþ k1jxj þ k3u 0ð Þjxj þ k3

R t
0 u

0 t � sð Þjx sð Þjds
¼ A tð Þ þ k1 þ k3u 0ð Þð Þjxj þ R t

0 k2jC t; sð Þj þ k3u0 t � sð Þð Þjx sð ÞjdsþM:
Now using assumptions (11) and (12), one deduces that

V 0 tð Þ 6 �ajxj þM; M > 0 ð14Þ
Applying the Laplace transform to the Eq. (7), we obtain

L bð Þ þ L
Z t

0
k3u t � sð Þb sð Þds

� �
þ L

Z t

0
ab sð Þds

� �
¼ L 1ð Þ;

which means that
L bð Þ þ k3L u � bð Þ þ aL 1 � bð Þ ¼ L bð Þ þ k3L uð ÞL bð Þ þ aL 1ð ÞL bð Þ ¼ 1
s
:

Now by solving for L bð Þ, one obtains

L bð Þ ¼ 1
1þ k3L uð Þ þ a 1

s

� �
s

ð15Þ

From the inequality (14), there exists a non-negative function
g : 0;1½ Þ ! 0;1½ Þ such that

V 0 tð Þ ¼ �ajxj þM � g tð Þ
Since g is a linear combination of functions of exponential order, g
is also of exponential order and so we can apply the Laplace trans-
form and we obtain

sL Vð Þ � V 0ð Þ ¼ �aL jxjð Þ þM
s
� L gð Þ;

which gives

L Vð Þ ¼ V 0ð Þ � aL jxjð Þ þM
s
� L gð Þ

� �
1
s
:

Now applying the Laplace transform to Eq. (13), we have

L Vð Þ ¼ L jxjð Þ þ k3L uð ÞL jxjð Þ:
Then we obtain

V 0ð Þ � aL jxjð Þ þM
s
� L gð Þ

� �
1
s
¼ L jxjð Þ þ k3L uð ÞL jxjð Þ:

Now, by solving for L jxjð Þ, we get

L jxjð Þ ¼ V 0ð Þ þ M
s � L gð Þ

1þ k3L uð Þ þ a
s

� �
s

or also

L jxjð Þ ¼ V 0ð Þ þM
s
� L gð Þ

� �
1

1þ k3L uð Þ þ a
s

� �
s

Using Eq. (15), we get

L jxjð Þ ¼ V 0ð Þ þM
s
� L gð Þ

� �
L bð Þ:
Then, we obtain

L jxjð Þ ¼ L bð ÞV 0ð Þ þ L bð ÞM
s
� L bð ÞL gð Þ:

using into account properties of the Laplace transform, one obtains

L jxjð Þ ¼ L bð ÞV 0ð Þ þ L M � bð Þ � L g � bð Þ:
and using the convolation properties, one can deduce that
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L jxjð Þ ¼ L bð ÞV 0ð Þ þ L
Z t

0
Mb sð Þds

� �
� L

Z t

0
g t � sð Þb sð Þds

� �
:

Now, we apply the inverse Laplace Transform to get

jxj ¼ b tð ÞV 0ð Þ þM
Z t

0
b sð Þds�

Z t

0
g t � sð Þb sð Þds

6 b tð ÞV 0ð Þ þM
Z t

0
b sð Þds

Since b tð Þ 2 L1 0;1½ Þð Þ and limt!þ1b tð Þ ¼ 0, there exists a positive
constant k > 0 such that
H0 t;x :ð Þð Þ¼ x
jxjx

0 þ jAj�k1�k2
R t
t jC u;tð Þjdu

� 	
jx tð ÞjþR t

0
d
dt jA sð Þj�k1�k2

R t
s jC u;sð Þjdu

� 	
jx sð Þj

� 	
ds

¼ x
jxj A tð Þx tð ÞþR t

0 C t;sð Þ f x sð Þð Þdsþg x tð Þð Þð Þþ jAjjxj�k1jxjþ
R t
0 0�k2jC t;sð Þjjx sð Þjð

�
ds

�
¼ A tð Þjxjþ x

jxj
R t
0 C t;sð Þf x sð Þð Þdsþ x

jxjg x tð Þð Þþ jAjjxj�k1jxj�k2
R t
0 jC t;sð Þjjx sð Þjds

6 A tð Þjxjþ jxj
jxj
R t
0 jC t;sð Þjjf x sð Þð Þjdsþjxj

jxj jg xð Þjþ jAjjxj�k1jxj�k2
R t
0 jC t;sð Þjj x sð Þð Þjds

6 A tð Þjxjþk2
R t
0 jC t;sð Þjjx sð Þjdsþk1jxjþ jAjjxj�k1jyj�k2

R t
0 jC t;sð Þjjx sð Þjds¼0
jx tð Þj 6 k; 8t P 0

This means that the solution y is bounded and this completes the
proof. h
2.2. Asymptotic stability results

For the rest, suppose that B tð Þ ¼ 0. Consider the nonlinear Vol-
terra integro-differential equation

x0 tð Þ ¼ A tð Þx tð Þ þ
Z t

0
C t; sð Þf x sð Þð Þdsþ g x tð Þð Þ ð16Þ

In Theorem 2, I give stability and boundedness results concerning
solutions of (16).

Theorem 2. Assume that (2) and (3) are satisfied and assume that
A tð Þ � 0 such that there exist k1 P 0 and k2 P 0 satisfying

jA sð Þj P k1 þ k2

Z t

s
jC u; sð Þjdu; 8 0 6 s 6 t 6 1 ð17Þ

Then the zero solution of (16) is stable.
If, in addition, there exist two positive constants t2 P 0 and a > 0

such that

jA sð Þj P k1 þ k2

Z t

s
jC u; sð Þjduþ a; 8 0 6 t2 6 s 6 t 6 1;

and if both jA sð Þj and R t
s jc u; sð Þjduare bounded, then the zero solution

of (16) is asymptotically stable.
Proof. By integrating (16) on 0; tð Þ, one obtains

x tð Þ � x 0ð Þ ¼
Z t

0
x0 sð Þds

¼
Z t

0
A sð Þx sð Þdsþ

Z t

0

Z u

0
C u; sð Þf x sð Þð Þdsdu

þ
Z t

0
g x sð Þð Þds

Then, by interchanging the order of the integration, one deduces
x tð Þ ¼ x 0ð Þ þ R t
0 A sð Þx sð Þdsþ R t

0

R u
0 C u; sð Þf x sð Þð Þdsduþ R t

0 g x sð Þð Þds
¼ x 0ð Þ þ R t

0 A sð Þx sð Þdsþ R t
0

R t
s C u; sð Þf x sð Þð Þdudsþ R t

0 g x sð Þð Þds

Define the Lyapunov functional H t; x :ð Þð Þ by

H t; x :ð Þð Þ ¼ jxj þ
Z t

0
jA sð Þj � k1 � k2

Z t

s
jC u; sð Þjdu

� �
jx sð Þjds:

which is positive due to the fact that jA sð Þj P k1þ
k2

R t
s jC u; sð Þjdu; 8 0 6 s 6 t < 1.
Now by deriving H t; x :ð Þð Þ, one obtains
Hence, H t; x :ð Þð Þ is a decreasing Lyapunov function. Recall that the
aim is to prove that the zero solution of (16) is stable. For given
constants e > 0 and t0 P 0, define a continuous function
/ : 0; t0½ � ! R satisfying j/j < d where d > 0 is a positive constant
to be determined.

Since H tð Þ is a decreasing function then

jyj 6 H t; x :ð Þð Þ
6 H t0;/ :ð Þð Þ
6 H t0; dð Þ
¼ dþ d

R t0
0 jA sð Þj � k1 � k2

R t0
s jC u; sð Þjdu

h i
ds

¼ d 1þ R t0
0 jA sð Þj � k1 � k2

R t0
s jC u; sð Þjdu

h i
ds

� 	
In order to obtain jxj < �, one can choose

d ¼ e

1þ R t0
0 jA sð Þj � k1 � k2

R t0
s jC u; sð Þjdu

h i
ds

� 	 ; 8 � > 0

Therefore, the zero solution of (16) is stable.
If there exist t2 P 0 and a > 0 such that jA sð Þj P k1þ

k2
R t0
s jC u; sð Þjduþ a; 8 t2 6 s 6 t < 1 then

jxj þ a
R t
t2
jx sð Þjds 6 jxj þ R t

t2
jA sð Þj � k1 � k2

R t
s jC u; sð Þjdu

h i
jx sð Þjds

6 jxj þ R t
0 jA sð Þj � k1 � k2

R t
s jC u; sð Þjdu

h i
jx sð Þjds

¼ H t; x :ð Þð Þ
6 H t0;/ :ð Þð Þ
6 H t0; dð Þ ¼ N; N > 0ð Þ

Therefore

a
Z t

t0

jx sð Þjds < N

and thus

0 6
Z t

t0

jx sð Þjds < R ¼ N
a
; R > 0ð Þ )

Z t

0
jx sð Þjds < R

)
Z 1

0
jx sð Þjds < 1
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which means that y 2 L1 0;1½ Þð Þ. Note that y0 tð Þ is bounded then
x tð Þ ! 0 when t ! 1 which means that the solution x tð Þ is asymp-
totically stable.
Fig. 2. A tð Þ ¼ �1; f xð Þ ¼ xsin xð Þ; g xð Þ ¼ 1
16 xsin xð Þ; C t; sð Þ ¼ e�t�4þs and B tð Þ ¼ 0. All

solutions of (19) converge to the zero solution of (19), which confirms the given
results concerning the stability of the zero solution of (19).
3. Explicit examples

Consider the nonlinear Volterra integro-differential equation

x0 tð Þ ¼ �x tð Þ þ 1
16

x tð Þ sin x tð Þð Þ þ
Z t

0
e�t�4þsx sð Þ sin x sð Þð Þdsþ cos tð Þ

ð18Þ
In this example, we have A tð Þ ¼ �1; f xð Þ ¼ xsin xð Þ; g xð Þ
¼ 1

16 xsin xð Þ; C t; sð Þ ¼ e�t�4þs and B tð Þ ¼ cos tð Þ. These functions
satisfy

jg xð Þj 6 1
16

jxj ¼ k1jxj; jf xð Þj 6 jxj ¼ k2jxj; jC t; sð Þj ¼ e�t�4þs; jBj 6 1 ¼ M

Consider / tð Þ ¼ e� tþ3ð Þ and define the Lyapunov functional V by

V tð Þ ¼j x tð Þ j þk3

Z t

0
u t � sð Þ j x sð Þ j ds

Note that u0 tð Þ ¼ �e� tþ3ð Þ ) /0 tð Þ 6 0. In addition

k2 j c t; sð Þ j þk3u0 t � sð Þ ¼ e� tþ4�sð Þ � e� tþ3�sð Þ 6 0; 80 6 s 6 t < 1:

Moreover, condition (12) is satisfied because of the fact that
A tð Þ þ 1

16 þu 0ð Þ ¼ �1þ 1
16 þ e�3 6 �a where a � 0:889, is a positive

constant. Thus, by Theorem 1, all solutions of (18) are bounded.
Now by choosing B tð Þ ¼ 0, the system (18) becomes

x0 tð Þ ¼ �x tð Þ þ 1
16 x tð Þ sin x tð Þð Þ þ R t

0 e
�t�4þsx sð Þ sin x sð Þð Þds ð19Þ

Define the Lyapunov functional H t; x :ð Þð Þ by

H t; x :ð Þð Þ ¼ jx tð Þj þ
Z t

0
jA sð Þj � k1 � k2

Z t

s
jC t; sð Þjdu

� �
jx sð Þjds:

Note that

jA sð Þj � k1 � k2
R t
s jC u; sð Þjdu¼ 1� 1

16�
R t
s e

� uþ4�sð Þdu

¼ 15
16þ e� tþ4�sð Þ � e�4; 8 06 s6 t <1

P 15
16� e�4 � 0:92

> 0
Fig. 1. A tð Þ ¼ �1; f xð Þ ¼ xsin xð Þ; g xð Þ ¼ 1
16 xsin xð Þ; C t; sð Þ ¼ e�t�4þs and B tð Þ ¼ cos tð Þ.

All solutions of (18) are bounded and converge to a periodic solution for all initial
conditions.
Hence, condition (17) is satisfied, then the zero solution of (19) is
stable.

Since
R t
s jC u; sð Þjdu ¼ R t

s e
� uþ4�sð Þdu ¼ �e� tþ4�sð Þ þ e�4 6 e�4 then

A tð Þ and R t
s jC u; sð Þjdu are bounded. Moreover, one can easily verify

that jA sð Þj P k1 þ k2
R t
s jC u; sð Þjduþ a 8 0 6 t2 6 s 6 t < 1 and

a � 0:92, then from Theorem 2, the zero solution of (19) is
asymptotically stable.

4. Numerical simulations

Consider a subdivision of the time interval 0; T½ � as follows

0; T½ � ¼
[NT�1

n¼0

tn; tnþ1½ �; tn ¼ nDt; Dt ¼ T=NT

Let x nð Þ be an approximation of x tnð Þ. By using the Euler implicit
scheme, one obtains an analogous discrete system of the nonlinear
Volterra integral differential Eqs. (1), for t 2 0; T½ �, given by:

x nþ1ð Þ ¼ x nð Þ þ Dt A nð Þx nð Þ þ B nð Þ þ
Xn
s¼0

C n; tsð Þf x sð Þ� �þ g x nð Þ� �" #
x 0ð Þ ¼ x 0ð Þ

8><>:
ð20Þ

where A nð Þ ¼ A tnð Þ et B nð Þ ¼ B tnð Þ. By reconsidering the explicit
example (18), I obtain a periodic solution for different initial condi-
tions (see Fig. 1) which confirms the fact that all solutions of (18)
are bounded.

Now consider the explicit example (19), I obtain the asymptotic
stability of the zero solution of (19) as it can be seen in Fig. 2.

5. Conclusion

In this paper, I used Lyapunov functionals combined with the
Laplace transform to obtain boundedness results regarding the
solutions of the nonlinear Volterra integral differential equations
of the form

x0 tð Þ ¼ A tð Þx tð Þ þ B tð Þ þ
Z t

0
C t; sð Þf x sð Þð Þdsþ g x tð Þð Þ:

Asymptotic stability results regarding the zero solution are carried
out for a particular situation of this kind of equations. Numerical
examples are proposed to perform the given results.
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