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Abstract In this paper, we consider the nonlinear vibrations of nano-sized cantilever. The elastic

force is considered anharmonic, deriving from a Morse potential and the nonlinearity is attributed

to the Casimir force. The solution is established for viscous and fractional damping by making use

of He’s polynomials which are calculated from homotopy perturbation method (HPM). The solu-

tion procedure explicitly reveal the complete reliability and simplicity of the proposed algorithm.

Moreover, comparison with variational iteration method (VIM) shows that both the techniques

are in full agreement with each other.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The mechanical properties of the micro- and nano-devices can

be described in terms of classical or quantum mechanics (Cle-
land, 2003; Draganescu and Capalnasan, 2003; Draganescu,
2006;Drăgănescu et al., 2010;Ke andEspinosa, 2004;Ghorbani

and Nadjfi, 2007; He, 2008a). It is an established fact (Dragane-
scu andCapalnasan, 2003;Draganescu, 2006;Drăgănescu et al.,
3 151290.

.com (S.T. Mohyud-Din).

y. Production and hosting by

Saud University.

lsevier
2010;Ke andEspinosa, 2004) thatmechanical motion of the ele-
ments of micro- and nano-devices is examined inconnection

with nonlinear forces of quantum nature similar to the Casimir
force. Moreover, the anelastic properties of materials are non-
linear in nature (see Draganescu, 2006; Drăgănescu et al.,
2010; Ke and Espinosa, 2004; He, 2008a, and the references

therein). TheCasimir effect consists in the electrical polarization
of two perfectly conducting bodies, the Casimir force taking sig-
nificant values when the separation between these bodies is re-

duced to less than 100 nm. On the other hand (Cleland, 2003;
Draganescu and Capalnasan, 2003; Draganescu, 2006; Drăgă-
nescu et al., 2010; Ke and Espinosa, 2004; Ghorbani andNadjfi,

2007; He, 2008a), it was found that in materials like plastics and
nano-wires, the most adequate kind of damping is the fractional
damping. Recently, Drăgănescu et al. (2010) used Adomian’s
decomposition method for solving the governing problem. It

is worthmentiong that Adomian’s scheme is coupled with
number of complexities including evaluation of the so-called
Adomian’s polynomials. He (2008a,b, 2006, 2005, 2004a,b,

2000) developed the homotopy perturbation method (HPM)
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bymerging the standard homotopy andperturbation. TheHPM
(Ghorbani and Nadjfi, 2007; He, 2008a,b, 2006, 2005, 2004a,b,
2000; Mohyud-Din, 2009; Mohyud-Din et al., 2009; Mohyud-

Din and Noor, 2007; Mohyud-Din and Noor, 2009; Mohyud-
Din et al., 2009; Yıldırım, 2009; Yıldırım, 2008; Yıldırım,
2008; Xu, 2007; Abbasbandy, 2007; Abbasbandy, 2007; Abdou

and Soliman, 2005;Abdou and Soliman, 2005) has been success-
fully applied to a wide class of nonlinear problems. In a subse-
quent work, Ghorbani and Nadjfi (2007) established He’s

polynomials which are calculated from homotopy perturbation
method (HPM), are compatible with Adomian’s polynomials
but are much more user friendly (see Ghorbani and Nadjfi,
2007; Mohyud-Din et al., 2009; Mohyud-Din and Noor, 2007;

Mohyud-Din and Noor, 2009; Mohyud-Din et al., 2009 and
the references therein). It is to be highlighted thatNoor andMo-
hyud-Din (2008), Mohyud-Din et al. (2010) made the elegant

coupling of He’s polynomials and correction functional of vari-
atioanl iteration method (VIM) and introduced one of the most
reliable modified version of VIM. It is also explained (Noor and

Mohyud-Din, 2008;Mohyud-Din et al., 2010) that thismodified
version is easier to implement and is very effective to tackle the
nonlinear terms. The basic motivation of this paper is the exten-

sion of He’s polynomials for solving anharmonic vibration
equation of a nano-sized oscillator with fractional damping.
The solution procedure explicitly reveal the complete reliablity
of the proposed algorithm.Moreover, we have also applied var-

iational iteration method (VIM) on the same problem and it is
observed that results obtained by both the techniques are in
good agreement with each other.

2. Homotopy perturbation method (HPM) and He’s polynomials

To explain the He’s homotopy perturbation method, we con-

sider a general equation of the type,

LðuÞ ¼ 0; ð1Þ
where L is any integral or differential operator. We define a
convex homotopy Hðu; pÞ by
Hðu; pÞ ¼ ð1� pÞFðuÞ þ pLðuÞ; ð2Þ
where FðuÞ is a functional operator with known solutions v0,
which can be obtained easily. It is clear that, for

Hðu; pÞ ¼ 0; ð3Þ
we have

Hðu; 0Þ ¼ FðuÞ; ð4Þ
Hðu; 1Þ ¼ LðuÞ: ð5Þ

This shows that Hðu; pÞ continuously traces an implicitly de-
fined curve from a starting pointHðv0; 0Þ to a solution function
Hðf; 1Þ. The embedding parameter monotonically increases
from zero to unit as the trivial problem FðuÞ ¼ 0, is continu-

ously deforms the original problem LðuÞ ¼ 0. The embedding
parameter p 2 ð0; 1� can be considered as an expanding param-
eter (Ghorbani and Nadjfi, 2007, 2008a,b, 2006, 2005, 2004a,b,

2000; Mohyud-Din, 2009; Mohyud-Din et al., 2009; Mohyud-
Din and Noor, 2007; Mohyud-Din and Noor, 2009; Mohyud-
Din et al., 2009; Yıldırım, 2009; Yıldırım, 2008; Yıldırım, 2008;

Xu, 2007; Noor and Mohyud-Din, 2008; Mohyud-Din et al.,
2010). The homotopy perturbation method uses the homotopy
parameter p as an expanding parameter (He, 2008a,b, 2006,
2005, 2004a,b, 2000) to obtain
u ¼
X1
i¼0

piui ¼ u0 þ pu1 þ � � � ; ð6Þ

if p! 1, then (6) corresponds to (2) and becomes the approx-

imate solution of the form,

f ¼ lim
p!1

u ¼
X1
i¼0

ui: ð7Þ

It is well known that series (7) is convergent for most of the
cases and also the rate of convergence is dependent on L (u)
(see He, 2008a,b, 2006, 2005, 2004a,b, 2000). We assume that
(7) has a unique solution. The comparisons of like powers of p

give solutions of various orders. In sum, according to Ghor-
bani and Nadjfi (2007), He’s HPM considers the nonlinear
term NðuÞ as

NðuÞ ¼
X1
i¼0

piHi ¼ H0 þ pH1 þ p2H2 þ � � � ; ð8Þ

where Hn’s are the so-called He’s polynomials (Ghorbani and

Nadjfi, 2007), which can be calculated by using the formula

Hnðu0; . . . ; unÞ ¼
1

n!

@n

@pn
N
Xn
i¼0

piui

 ! !
p¼0

; n ¼ 0; 1; 2; . . .

ð9Þ
3. The nonlinear model

Consider the elastic force acting in case of oscillations of the
nano-devices originates in the Morse potential (Draganescu

and Capalnasan, 2003; Draganescu, 2006; Drăgănescu et al.,
2010):

VðxÞ ¼ Dðexpð�2axÞ � 2 expð�axÞÞ; ð10Þ

where D is the dissociation energy, a is the anharmonicity con-

stant and x is the displacement from the equilibrium position.
It is established that the Casimir force (Cleland, 2003; Drag-
anescu and Capalnasan, 2003; Draganescu, 2006; Drăgănescu

et al., 2010; Ke and Espinosa, 2004; Ghorbani and Nadjfi,
2007; He, 2008a) between two perfectly conducting plates
without roughness, is an attractive force given by:

F ¼ p2hcA

240z4
; ð11Þ

when acts between two perfectly conducting plates without
roughness, and by:

F ¼ p3hcR

360z3
; ð12Þ

when acting between a sphere and a plate, both perfectly con-
ducting and having smooth surfaces. Here �h ¼ h=2p is the

Planck constant, c is the velocity of the light, A is the area
of the plates, R radius of the sphere; z is the distance between
the two plates, and between the sphere and the plate respec-

tively. Our model is composed from a nano-sized one-dimen-
sional oscillator consisting of a conducting sphere of mass m
and radius R, situated on a horizontal conducting surface.

The sphere is suspended by means of a vertical elastic wire
which produces a force originating in a Morse potential (1);
a Casimir force is present between the sphere and the conduct-

ing. The distance between the center of the sphere and the
surface is d� R. Consider that a perturbing force F acts on
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the sphere. Consider that a fractional damping force of damp-

ing constant k (Cleland, 2003; Draganescu and Capalnasan,
2003; Draganescu, 2006; Drăgănescu et al., 2010; Ke and
Espinosa, 2004; Ghorbani and Nadjfi, 2007; He, 2008a) is also

present. We will denote by x the instantaneous vertical dis-
placement of the sphere from the equilibrium position to the
conducting surface. The one-dimensional motion of the sphere
can be expressed by the differential equation:

m
d2

dt2
xþ k

dl

dtl
xþ 2aDðexpð�2axÞ � expð�axÞÞ � c

ðd� xÞ3
¼ FðtÞ

ð13Þ

where the second term is the fractional damping force, the

third is the anharmonic elastic force, the forth is the Casimir
force and FðtÞ is an external excitation force. The fractional
damping from (12) is expressed by means of a fractional deriv-

ative operator ðdl=dtlÞ, l being a fractional number. As a typ-
ical value of l ¼ 0:5 can be taken; for l ¼ 1, we obtain the
classical viscous damping force. The constant a is a parameter

which will be discussed in the next section. The motion is pos-
sible for x < d� R. We consider the case of a harmonic exci-
tation with angular frequency x and we will denote by xn

the pseudo-natural angular frequency of the system in absence

of the Casimir force and damping:

FðtÞ ¼ F0 sinðxtÞ ð14Þ

where F0 is the amplitude of the force. Accordingly, (12)
becomes:

m
d2

dt2
xþ k

dl

dtl
xþ 2aDðexpð�2axÞ � expð�axÞÞ � c

ðd� xÞ3

¼ F0 sinðxtÞ: ð15Þ

In case of the small oscillations, around the equilibrium posi-

tion, the nonlinear term can be expanded into series, which
leads to the fact (Drăgănescu et al., 2010) that (14) can be writ-
ten as:

d2

dt2
xþ k

m

dl

dtl
x� 2

ajDj
m
�axþ 3

2
ðaxÞ2 � 7

6
ðaxÞ3 þ 16

24
ðaxÞ4

� �

� c

md3
3
x

d
þ 5

x2

d2
þ 10

x3

d3
þ 15

x4

d4

� �
¼ F0 sinðxtÞ:

ð16Þ
The pseudo-natural angular frequency of the system is:

xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2jDj
m
� c

md3

s
: ð17Þ
4. Fractional derivatives

The fractional derivative was first introduced by Leibniz, and

then was studied by mathematicians like Liouville and Rie-
mann. With the aid of Riemann–Liouville definition ([Cleland,
2003; Draganescu and Capalnasan, 2003; Draganescu, 2006;

Drăgănescu et al., 2010; Ke and Espinosa, 2004; Ghorbani
and Nadjfi, 2007; He, 2008a), the fractional derivative opera-
tor Dl

t;a, which is a linear operator, may be written as:

Dl
t;axðtÞ ¼

1
Cðn�lÞ

dn

dtn

R t

a
ðt� yÞn�l�1

fðyÞdy; n� 1 < l < n;

dn

dxn
fðtÞ l ¼ n;

(

ð18Þ
where n is an integer. This definition of the fractional deriva-

tive is in fact more general, since it gives the fractional differ-
entiation operator Dl

t;a for positive l, and the fractional
integration operator for negative values of l. The fractional

differentiation operator exhibits the following properties:

Dl
t;aD

v
t;a ¼ Dlþn

t;a ð19Þ
D0

t;axðtÞ ¼ xðtÞ ð20Þ

Dl
t;afðtÞgðtÞ ¼

X1
k¼0

k

l

� �
Dk

t;afðtÞDl�k
t;a gðtÞ ð21Þ

It is worth to mentioning that different values of a greatly af-
fects (Drăgănescu et al., 2010) differentiation operators results,
with different differentiation rules. The value a ¼ �1 gives

the Dl
t;�1 operator, to which the following differentiation rule

corresponds:

Dl
t;�1 expðutÞ ¼ ul expðutÞ ð22Þ

where u is a complex quantity, u 2 C. The following differen-
tiation rules result:

Dl
t;�1 expðiatÞ ¼ al exp i atþ p

2
l

� �� �
;

Dl
t;�1 sinðxtÞ ¼ xl sin xtþ p

2
l

� �
; ð23Þ

Dl
t;�1 cosðxtÞ ¼ xl cos xtþ p

2
l

� �
:

For a = 0 the differentiation operator

Dl
t ¼ Dl

t;0; ð24Þ

results, which will be used in our calculation since the process
investigated by us corresponds to positive time values. For this
kind of fractional derivative one finds

Dl
t t

k ¼ n!

Cðk� lþ 1Þ t
k�l; ð25Þ

The differentiation rule for the constant function fðtÞ ¼ 1 is

Dl
t 1 ¼

n!

Cð1� lÞ t
�l; ð26Þ

and this is valid for l P 0 and t > 0; here C is the Euler’s

Gamma function (Drăgănescu et al., 2010). In this paper the
differentiation operator Dl

t;�1 ¼ dl=dtl which corresponds to
a ¼ �1 will be used;

5. Implementation of the method

We will solve Eq. (16) by using He’s polynomials with the ini-

tial conditions

xð0Þ ¼ A and _xð0Þ ¼ 0:

d2

dt2
x� d2

dt2
x0 ¼ p

� k
m

dl

dtl
xþ 2 ajDj

m
ax� 3

2
ðaxÞ2 þ 7

6
ðaxÞ3 � 16

24
ðaxÞ4

h i
þ c

md3
3 x

d
� 5 x2

d2
� 10 x3

d3
� 15 x4

d4

� �
þ F0 sinðxtÞ � d2

dt2
x0

8><
>:

9>=
>;
ð27Þ

xðtÞ ¼ x0ðtÞ þ px1ðtÞ þ p2x2ðtÞ þ p3x3ðtÞ þ � � � ð28Þ

We can substitute (28) into (27) and then we can find terms of
the power of p gives.

p0 :
d2

dt2
x0 �

d2

dt2
x0 ¼ 0 ð29Þ

p1 : d2

dt2
x1 ¼ � k

m
dl

dtl
x0 þ 2 ajDj

m
ax0 � 3

2
ðax0Þ2 þ 7

6
ðax0Þ3 � 16

24
ðax0Þ4

h i
þ c

md3
3 x0

d
� 5

x2
0

d2
� 10

x3
0

d3
� 15

x4
0

d4

� �
þ F0 sinðxtÞ � d2

dt2
x0

ð30Þ
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p2 : d2

dt2
x2 ¼ � k

m
dl

dtl
x1 þ 2 ajDj

m
ax1 � 3

2
a2ð2x0x1Þ þ 7

6
a3ð3x2

0x1Þ � 16
24

a4ð4x3
0x1Þ

	 

þ c

md3
3 x1

d
� 5 ð2x0x1Þ

d2
� 10

ð3x2
0
x1Þ

d3
� 15

ð4x3
0
x1Þ

d4

� �
ð31Þ

..

.
;

where pi’s are He’s polynomials. The solution of (27) can be
obtained by setting p ¼ 1 in (28):

xðtÞ ¼ x0ðtÞ þ x1ðtÞ þ x2ðtÞ þ x3ðtÞ þ . . . ð32Þ

We now successively obtain

x0ðtÞ ¼ A� F0

m

1

x2
sinðxtÞ; ð33Þ

x1ðtÞ ¼
F0

mx4
xl sin xtþ p

2
l

� �
� 2ajDj

m
T1 �

c

md3
T2; ð34Þ

where T1 and T2 are

T1 ¼ �
1

2
aAt2 þ aF sinðxtÞ

mx4
þ 15

128

a4F4t2

m4x8
þ 3

4
a2A2t2

� 3
a2AF sinðxtÞ

mx4
þ 3

8

a2F2ðcosðxtÞÞ2

x6m2

þ 3

8

a2F2t2

m2x4
� 7

12
a3A3t2 þ 7

2

a3A2F sinðxtÞ
mx4

� 7

8

a3AF2ðcosðxtÞÞ2

x6m2
� 7

8

a3AF2t2

m2x4
þ 7

54

a3F3ðsinðxtÞÞ3

x8m3

þ 7

9

a3F3 sinðxtÞ
x8m3

þ 5

16
a4A4t2 � 5

2

a4A3F sinðxtÞ
mx4

þ 15

16

a4A2F2ðcosðxtÞÞ2

x6m2
þ 15

16

a4A2F2t2

m2x4

� 5

18

a4AF3ðsinðxtÞÞ3

x8m3
� 5

3

a4AF3 sinðxtÞ
x8m3

� 5

128

a4F4ðsinðxtÞÞ4

x10m4
þ 5

128

a4F4ðcosðxtÞÞ4

x10m4
ð35Þ

and

T2 ¼ �30
A2F sinðxtÞ

d3x4m
þ 3

2

F2ðcosðxtÞÞ2

d2x6m2
þ 3

2

F2t2

d2x4m2

� 12
AF sinðxtÞ
d2x4m

� 3
F sinðxtÞ
dmx4

þ 3

2

At2

d
þ 21

2

A5t2

d5

þ 15

2

A4t2

d4
þ 5

A3t2

d3
þ 3

A2t2

d2
þ 45

16

F4t2

d4x8m4

� 15

16

F4ðsinðxtÞÞ4

d4x10m4
þ 45

16

F4ðcosðxtÞÞ2

d4x10m4
� 40

AF3 sinðxtÞ
d4x8m3

� 20

3

AF3ðsinðxtÞÞ3

d4x8m3
þ 45

2

A2F2t2

d4x4m2
þ 45

2

A2F2ðcosðxtÞÞ2

d4x6m2

� 60
A3F sinðxtÞ

d4x4m
� 10

9

F3ðsinðxtÞÞ3

d3x8m3
� 20

3

F3 sinðxtÞ
d3x8m3

þ 15

2

AF2t2

d3x4m2
þ 15

2

AF2ðcosðxtÞÞ2

d3x6m2

� 56

5

F5 sinðxtÞ
d5x12m5

21

25

F5ðsinðxtÞÞ5

d5x12m5
� 28

15

F5ðsinðxtÞÞ3

d5x12m5

þ 315

16

AF4t2

d5x8m4
þ 315

16

AF4ðcosðxtÞÞ2

d5x10m4

� 105

16

AF4ðsinðxtÞÞ4

d5x10m4
� 140

A2F3 sinðxtÞ
d5x8m3

� 70

3

A2F3ðsinðxtÞÞ3

d5x8m3
þ 105

2

A3F2ðcosðxtÞÞ2

d5x6m2

� 105
A4F sinðxtÞ

d5x4m
: ð36Þ
The last calculations were carried out using Maple 12 Software

Package. In principle, it is possible to calculate other terms.

x0ðtÞ ¼ A� F0

m

1

x2
sinðxtÞ; ð37Þ

x1ðtÞ ¼
F0

mx2
cosðxtÞ � 2ajDj

m
T1 �

c

md3
T2; ð38Þ

where T1 and T2 are (35) and (36). Our solution agrees with

Drăgănescu et al. (2010) where Adomian’s decomposition
method coupled with its complexities was used.

Now, we shall apply variational iteration method (VIM) on
Eq. (16) using the conditions xð0Þ ¼ A and _xð0Þ ¼ 0. The cor-

rection functional (with Lagrange multiplier s� t) is given by

xnþ1ðtÞ ¼ Aþ
Z t

0

ðs� tÞ d2xn

dt2
þ k
m

dlxn

dtl
� 2

ajDj
m

�

� �axþ 3

2
ðaxÞ2 þ 16

24
axð Þ4

� ��
ds

þ
Z t

0

ðs� tÞ c

md3
3
x

d
þ 5

x2

d2
þ 10

x3

d3
þ 15

x4

d4

� ��

� F0SinðxtÞ
�
ds:

Consequently, we get the same results as (33)–(38). Hence, it is
observed that results obtained by He’s polynomials and varia-

tional iteration method are in good agreement with each other.

6. Conclusion

In this study, we studied a nonlinear oscillator model with
fractional damping and a nonlinearity due to Casimir force
and anharmonic elastic force deriving from a Morse potential.

The solution of the model was obtained with the aid of He’
polynomials which aare calculated from homotopy perturba-
tion method (HPM). Unlike classical techniques, the homoto-

py perturbation method leads to an analytical approximate
and exact solutions of the nonlinear equations easily and ele-
gantly without transforming the equation or linearizing the
problem and with high accuracy, minimal calculation and

avoidance of physically unrealistic assumptions. As a numeri-
cal tool, the method provide us with numerical solution with-
out discretization of the given equation, and therefore, it is not

effected by computation round-off errors and one is not faced
with necessity of large computer memory and time. Moreover,
the proposed algorithm is independent of the complexities aris-

ing in calculating Adomian’s polynomials.
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