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In this paper, we will give some results for developing the two-dimensional triangular
orthogonal functions (2D-TFs) for numerical solution of the linear two-dimensional Fredholm inte-
gral equations of the second kind. The product of 2D-TFs and some formulas for calculating def-
inite integral of them are derived and utilized to reduce the solution of two-dimensional Fredholm
integral equation to the solution of algebraic equations. Also a theorem is proved for convergence
analysis. Numerical examples are presented and results are compared with analytical solution to
demonstrate the validity and applicability the method.

© 2010 King Saud University. All rights reserved.

1. Introduction

Many problems in engineering and mechanics can be trans-
formed into two-dimensional Fredholm integral equations of
the second kind. For example, it is usually required to solve
Fredholm integral equations in the calculation of plasma
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physics (Farengo et al., 1983). There are many works on devel-
oping and analyzing numerical methods for solving Fredholm
integral equations of the second kind (see Alipanah and
Esmaeili, 2009; Alpert et al., 1993; Anselon, 1971; Atkinson,
1976, 1997; Baker, 1977; Delves and Mohamed, 1985). The
subject of the presented paper is applying the 2D-TFs method
for solving two-dimensional linear Fredholm integral equa-
tions. For this purpose we consider the two-dimensional Fred-
holm integral equations of the form

b d
i) =i+ [ [ Kemdonuton i

(v,u) € D, )

where f;(t, 1) and K, (z, u, /,n) are given continuous functions
defined, respectively, on D = L?([a,b] x [¢,d]), E = D x D and
u; (t, 1) is unknown on D.
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2. Review of two-dimensional block pulse functions (2D-BPFs)

As shown in Maleknejad et al. (2010), a set of 2D-BPFs
¢i(x, ) ((=0,1,...,m —1;j=0,1,...,my — 1) is defined
in the region of x € [0,1) and y € [0,1) as:

1, lhl <X<(l+l)hl and/hz <y<(]‘|’l)l’lz7
d)i,[(xvy) = R
0, Otherwise,
2
where my,m, are arbitrary positive integers, and h =

1 1

m ’h2 = 7
1 Accordlng to (2), the interval [0,1) and [0,1) are, respec-
tively, divided into m; and m, subintervals.
One of the important properties of the 2D-BPFs is the dis-

jointness of them,

Gi (%, 2),
0, Otherwise,

ip =i and j; = j,,

b (5 0) i (5,) = { (3)

where il,iz = 0, 1,...71’}’11 — l, jl?jZ :07 17...,1/712 — 1.
The orthogonality of 2D-BPFs is derived immediately from

bt hhy, iy =i andj, =j,,
- N . (A dydx =
/o /o P (%:3) 9, (%, dydx {O, Otherwise.
4)

The other property is completeness. For every
flx,y) € L*([0,1) x [0,1)) when m; and m, approach to the
infinity, Parseval’s identity holds:

/01 /Ulfz(&y)dydx:i if N1y (x, )] (5)

=0 j=0

where

. 1 toet
f=rm / / 6 0) iy ) dy . (6)

In vector form, an arbitrary function can be expanded in the
form f{x,y) = F'¢(x,y) = ¢" (x,y)F, where

. . . . T
F= V0.07~'-7_](0.7712717“'7_](111171.07“'afrn]fl.mzfl} )

with f;’s as defined in (6) (see Maleknejad et al., 2010).

T10,0(x.y)+T20,0(x.y)

$0,0(7,y) =

Figure 1

T1o,0(7,y) i

3. Two-dimensional triangular orthogonal functions

We usually call the triangular orthogonal functions containing
one variable as one-dimensional (1D) triangular orthogonal
functions (1D-TFs) and those containing two variables as
two-dimensional (2D) triangular orthogonal functions (2D-
TFs). 1D-TFs have been widely used for solving different
problems (Babolian et al., 2008; Deb et al., 2006). A complete
detail for 1D-TFs is given in Babolian et al. (2008, 2000).
These discussions can also be extended to the 2D-TFs.

3.1. Definition

In the following, we have dissected a 2D-BPFs into two 2D-
TFs as shown in Fig. 1. Thus, we have
Boo(x,¥) = Tloo(x, ) + T200(x, ). (7)

Now, we demonstrate the construction of 2D-TFs according
to

¢ij(xvy) =

where T1;;(x,

Tli,/(x7y) + T‘zi,i(xvy)’ (8)

») is defined as

L5 iy < x < (i+ iy

T1;;(x,y) = and jh, <y < (j+ 1)ha, )
0, Otherwise,

and 72;;(x,y) is defined as

—jhy . . . .
2,,(x,y) = {J 2y iy < x < (i+1)hy and jhy <y < (j+ 1)ho,

0, Otherwise,
(10)

where 7 =1 a2 =, i=0,1,...om —1,;=0,1,...,
my — 1. Therefore, for each ¢,;(x,y),i=0,1,...,m —1,
j=0, 1,...,m—1, Tl;(x,y) and T2;(x,y) can be con-
structed as above.

3.2. Vector forms

We can generate two vectors of orthogonal 2D-TFs, namely
T1(x,y) and T2(x,y), such that
d(x,y) =

Tl(x,y) + T2(x,y); (x,y)€[0,1)x[0,1).  (11)

Dissection of ¢ (x,») into two 2D-TFs.
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It could be said that these two vectors are complementary to
each other as far as 2D-BPFs are considered. We call
T1(x,y) and T2(x,y) the left-handed two-dimensional triangu-
lar functions (LH2D-TFs) and the right-handed two-dimen-
sional triangular functions (RH2D-TFs), respectively. Now,
if we divide the interval [0,1) x [0,1) to mym, equal parts,
we have

T1 (XJ’) = [T1070(X7y)7 DI TlO,mzfl(x7y)7 ey Tlmlfl,O(X7y)7

ceey T1117171,mzfl(x7y)]7-7 (12)
n(x7y) = [no,o(xay)7 ey Dovmz,l(x,y), ey nn,l,l,o(x,y),
--7T2m1—1.mzfl(x7y)]T' (13)

The orthogonality of LH2D-TFs set (similarly RH2D-TFs set)
resulted from mutual disjointness of LH2D-TFs (and RH2D-
TFS), i.e. for i],iz = 0, 1,. o,y — 17j1>j2 = O, 1,. o,y — 17

1 1 hyhy i=1i andj :]
Tl (6, 0). T2 (x,p) =4 37 172 =
/0 /o wn (6,3 T2 (%,) { 0, Otherwise.

(14)

The following properties of the product of two 2D-TFs vectors
will be used:

T2(x,y)T27(x,)

T200(x,») 0 o 0
0 nO,mzfl(va) 0
0 0 T2, -10(X,) 0
0 0 0 Dnn—],mgfl(xﬁy)
(15)
T1(x,»)T17(x,y)
Tlo(x,) 0 o 0
0 Tlom—1(x,¥) 0
0 0 Tl -10(x,¥) 0
0 0 0 Tln’|—],/rzg—l(x7y)
(16)

and
T1(x, )27 (x,y) ~ 0, (17)
T2(x,y)T1 T(x,y) ~0, (18)

where 0 is the zero m;m, x m;m, matrix. To prove the above
properties notice that, functions 7'1;;(x,y) and 72;;(x,y) also
can be presented by

Y —jh,

T1i(x,p) = i jny (X, ) — Tuﬂuﬂzz (*,»)

y—=(+1)h
+%uﬂm(l‘+l)h2(x7y)> (]9)
y—jh y—0+1)h
72i,/'(xa y) = Iy 2 Uipy jhy (x7 y) - (]hz ) 2 Uipy (j+1)hy (X, }’)
— Uiy 41y, (X, 1), (20)

fori=0,1,....m —1,j=0,1,..
the unit step function defined as

.,my — 1, where u,,(x,y) is

I, y=b,

ua,b(x7y) = {07 y<b (21)

Now, we show that (15) holds. For it, consider the product
T2(x,y)T27(x,p). It is sufficient to show that for each
i=0,1,...,m —1,j=0,1,...,m— 1, T2;;(x,»)T2;;(x,y) =
T2;;(x,y). By disjointness of 72;;(x,y) and T2,(x,y) for
i # k and j # t the desired will be obtained:

T2;(x,3)T2i5(x,y)

[y —jh y—0G+1h
= TZZ/I,'/”J/,Z(X,)})*M

2
I Uipy (j+1)hy (XJ)}

— Uip, LG+1)hy (X,y)

r . 2
y—jh
= h—22 (uﬂh Jhy (x7y) — Uipy (j+1)hy (XJ/)) + Uipy (j+1)hy (Xay):|

y=Jjh,

2
*uihl‘(m)h:(%}’):( Iy ) (uihl,/‘hz(xay)7“[/11‘(/'+1)172(X7y))

~ T2;5(x,p). (22)

Eq. (16) can be obtained similarly. Notice that, we can approx-
imate the result by 7'1;,(x,y) and 72;(x,y),

N
y—jh
( 7 2) (Uf/:1,1'113(x7y)_llfh,.(/ﬂ)hz(%y))

is possibly nonzero only in [jh,, (j + 1)h,). Thus, the last rela-
tion in (22) is followed.
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We now show that Eq. (17) holds. For it

y—Jjh

T1i;(x, ) T25(x, ¥) = T2i(x,y) — h—zzuﬂn,/‘hz (x,)

2

y—0U+ 1)h,
- # Uipy (j41)hy (x,y)

h
+ Uipy ,(j+1)hy (x7 y) (23)

Similar argument discussed for (22) results that

T1i(x, ) T2i5(x,p) = T2;5(x,3) — (T2i5(x, ) =+ tiny 1 (X, 1))

+ Uiy (1) (x,y) ~0, (24)
thus,
T1(x,»)T24(x,y) = T2i(x,») T1(x, ) = 0, (25)
where 0 € R.

3.3. 2D-TFs expansion

We can approximate the function f{x,y) € L*([0,1) x [0, 1))
by 2D-TFs as follows:

S, p) = [eooTloo+co1 T200] 4+ 4 [Comy—1 Tlom, -1
+ Comy T20m—1]++ + [€my—1.0 T Ly —1.0 + Cony 11 T2m, ~1.0]
+ - [y —1my—1 Tl 1 mg—1 F Comy—1.my T2y~ 13my—1]
=1[C0.05" "5 Comr—1s" "> Com—105" " » Comy —1mp—1 ] T1(X, p)

+ [60717' o 7c0.m27 e 7cm|71717' o 7cm|71.mz}n(x7y)7

mp—1 my—1 mp—1 my—1

Tl p) + Y Y e T2i(x,9),  (26)

=0 =0 =0 =0
where

{Ci,j :f(lh17]h2)7
Cije1 =i, G+ D).

Preference ((Maleknejad et al., 2010)). 1t is apparent from (6)
and (27) that unlike 2D-BPFs the representation by 2D-TFs
does not need any integration to evaluate the coefficients, there
by reducing a lot of computational efforts.

3.3.1. Expanding four variables function by 2D-TFs

We can expand K(x,y,t,s) € L*([0,1) x [0,1) x [0,1) x [0, 1))
by 2D-TFs vectors, with m;m, and m3m4 components, respec-
tively. For convenience, consider m = m; = m, = ms; = my.
For obtaining desired results, we first fix the independent vari-
ables 7, s. Then, expand K(x,y, t,s) by 2D-TFs with respect to
independent variables x, y as follows:

K(0,0,1,s)

K(0, (m — 1)h,1,s)

K((m —1)h,0,1,s)

K((m—1)h,(m—1)h,t,s)
K(0,h,t,s)

K(0,mh,1,s)
+ 12" (x,y)

K((m—1)h,h,t,s)

K((m — 1)h,mh,t,s)

Now each of K(ih,jh,t,s)s for i,j=0,1,...,m—1 can be ex-
panded by 2D-TFs with respect to independent variables ¢, s.
Hence, the expansion of K(x,y,t,s) can be written as

K11 T1(t,s) + K12{ T2(t,5)

KU T1(2,s) + K12 T2(2,5)
K(XJJJ) = TlT(X,y)

K11r

m(m—1

\T1(t,5) + K12, T2(1,5)

KU1, T1(t,s) + K127, T2(1,5)

m?

K21{T1(1,5) + K22[ T2(1,5)

K211 T1(1,5) + K22 T2(1,5)
+127(x,)

K217

m(m—1

(T1(t,5)+ K22, T2(1,9)

K217, T1(t,8) + K22T, T2(1,5)
=T17(x,y)KI1T1(t,5)+ T17(x,y) K12T2(t,5)

+ 127 (3, ») K21 T1(t,s) + T27 (x,y) K22T2(t,5),
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which in equation above
K(0,0,0,0) r K(0,0,0, /) T
K(0,0,0,(m — 1)h) K(0,0,0, mh)
K(0,0, (m — 1)1, 0) K(0,0, (m — 1)k, h)
K(0,0,(m — )h,(m — 1)h) K(0,0, (m — 1)h,mh)
K(0, (m — 1)h,0,0) K(0, (m — 1)h,0, h) r
K(0, (m — 1)h,0,(m — 1)h) K(0, (m — 1)h,0,mh)
K(0, (m — 1)h, (m — 1)h,0) K(0, (m — 1)h, (m — 1)h,h)
K(0, (m — D)h, (m — 1)h,(m — 1)h) K(0, (m — D)h, (m — 1)h,mh)
K1l = , K12 = (28)

K((m - 1)h,0,0,0)

K((m —1)h,0,0, (m — 1)h)

K((m—1)h,0,(m — 1)h,0)

K((m —1)h,0,(m — 1)h,(m — 1)h)

K((m — 1)h,(m —1)h,0,0)

K((m—1)h,(m —1)h,0, (m — 1)h)

K((m— 1)h,(m — 1)h, (m — 1)h,0)

K((m —1)h,(m — V)h, (m — 1)k, (m — 1)h)

K((m—1)h,0,0, )

K((m —1)h,0,0,mh)

K((m—1)h,0,(m — 1)h, h)

K((m —1)h,0,(m — 1)h,mh)

K((m —1)h,(m —1)h,0,h)

K((m—1)h,(m — 1)h,0,mh)

K((m— Dh,(m —1)h,(m — 1)h, h)

K((m — 1)h,(m — 1)h,(m — 1)h, mh)
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K(0,1,0,0) r K(0,1,0,h) !
K(0,h,0,(m — 1)h) K(0,h,0,mh)
K(0,h, (m — 1)h,0) K(0,h, (m — 1)h, h)
K(0,h, (m — 1)h, (m — 1)h) K(0,h, (m — 1)h,mh)
K(0,mh,0,0) T K(0,mh,0,h) r
K(0,mh,0, (m — 1)h) K(0,mh,0,mh)
K(0,mh, (m — 1)h,0) K(0,mh, (m — 1)h,h)
K(0,mh, (m — 1)h, (m — 1)h) K(0,mh, (m — 1)h, mh)
K21 = K22 = (29)
K((m = 1)h, h,0,0) ’ K((m = 1)h, h,0,h) r
K((m—1)h,h,0,(m— 1)h) K((m —1)h, h,0,mh)
K((m —1)h,hy(m — 1)h,0) K((m — D, hy(m— 1)h,h)
k((m — V)hyhy(m — )k, (m— 1)h) K((m — 1), hy,(m — 1)h,mh)
T

K((m —1)h,mh,0,0)

K((m — 1)h,mh,0, (m — 1)h)

K((m — 1)h,mh, (m — 1)h,0)

K((m — V)h,mh,(m — 1)h,(m — 1)h)

K((m — 1)h,mh,0,h)

K((m — 1)h,mh,0,mh)

K((m — 1)h,mh, (m — 1)h, h)

K((m — V)h,mh,(m — 1)h, mh)
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3.4. Other properties

Other properties that we will need are

1ol
/ / T1(x,y).T17 (x, y) dydx

/ / T2(x,y).T2 \y)dydxfhhzl, (30)
/ / T1(x,y).T2" (x,y) dydx
=/ / n(x,y)-TIT(x,y)dde=%l, (31)
o Jo

where [ is mym, x mym, identity matrix. To show (30), con-
sider (22) again

[

(i+1)hy (41 ]h2
/, ) ( n )(“f/n:/hz(xvy)_L‘ihl,(i+l)/12(x7Y))dydx
i Jho

(i+1)h (+1)h:
o
ihy jhy

(i+1)hy
- / CNIL Y (32)
i

T(x,y)dydx

3 3

Similarly,

1 1 . hlhz
Tl(x,).T1" (x,y)dydx =
o Jo

/ / T1(x,y).
(i+1)h (+1)hy —ih ) — i)
_ / / (1 ,sz) (M) dydx
ihy jha h hy
(i+1)h (j+1)hy i (i+1)hy (+1)hy —ih 2
/ t “2 YT gy — / / (y J 2) dydx
ihy jhy ihy jhs /12

h h2 h hg h hz
=5 T3 T 6 (33)

(x,y)dydx

Similarly,
1 1 hh
/ / T2(x,y).T1" (x,p) dydx = sz
o Jo

4. Two-dimensional Fredholm integral equation of the second
kind

In this section, we present a 2D-TFs method for solving Eq.
(1). Changing the variables

t=b-a)x+a, p=(d—c)y+c, A=(b-a)t+a
and

n={(d—c)s+c,

Eq. (1) can be written as

u(x,y) = flx,y) + (b —a)(d = ¢)
//ny,ls (t,s5)dtds; (x,y) €D, (34)

where

fx,y) =fi(b—a)x+a,(d-

K(x,y,t,5) = Ki((b — a)x + a,
+c¢,(b—a)t+a,

u(x,y) =u ((b—a)x+a,(d—

and D = L*([0,1) x [0, 1)).

Let us expand f{x,y) and u(x,y) by 2D-TFs (LH2D-TF
and RH2D-TF) as follows:

fx,y) = F{Tl(x,y) + F; T2(x, ), (35)
u(x,y) ~ U{T1(x,y) + U T2(x, y). (36)

)y +c),
(d—c)y
a,(d—c)s+c),
)y + o),

As described in Section 3.3.1, we can expand K(x, y, ,s) in the
interval L*([0,1) x [0,1) x [0,1) x [0,1)) by 2D-TF. Suppose
that this approximation be as follows:

T17(x,y)K11T1(t,s)

+ T17(x, ) K12T2(t, s)

+ 727 (x, ) K21 T1(t, 5)

+ T27(x,y)K22T2(1, s), (37)

K(x7y7 t’ S) =~

where K11, K12, K21 and K22 are obtained from Egs. (28) and
(29). Then, we have

Ul'T1(x,y) + UI'T2(x,y) = FI'T1(x,y) + FX T2(x,y)

myhy mayhy
+p / / (UTT1(z,s)

+UTT2(t,s)) [T17 (x, ) K11 T1(t,s)

+T17(x, y)K12T2(t, 5)

+ 727(x,y)K21T1(t,s)

+ 727 (x, y)K22T2(1,5)] dsdt,
where p = (b —a)(d —
U TI(x,y) + Uy T2(x, y)

= FITI(x,y) + F1T2(x,»)

h myhy
+ p[U{/ / T1(t,s)T17(¢,5) K11 T1(x, ) dtds
0

myhy myhy

¢). Thus, we have

T1(t,s)T27(t,8)K12TT1(x, ) dt ds

myhy Hhhz
+ur / / (t,8)T17(¢,5) K217 T2(x, y) dt ds

J
Ci
J

myhy
/ T2(t,s)T17 (1, ) K117 T1(x, p) dt ds

+ur

+ Ul
727 (1, 5) K227 T2(x, y) dt ds
T

S
S

myhy myhy
+ Ut / / T2(t,s)T27 (1, 8) K127 T1(x, ) dt ds

S
S

1 hy mahy
+Ur / / T2(t,5)T1 (1, 5) K217 T2(x, y) dt ds
0 0

myhy mahy
+U2T/ T2(t,8)T27 (1, 8) K227 T2(x, y) dt ds| .
0 0

By using definite integral formula for 2D-TFs in (30) and (31),
we have
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UITI(x,y) + Uy T2(x,y) = F{ T1(x,y) + F; T2(x, )

I /
+p {U{( “3’2 KUTT1(x,y) + %KIZTTI (x,7)

+h‘3h2 K217 T2(x, ) +%K22T72(’W))

+ UZT(%KHTTI (x,) +¥K127T1 (x, )
+%K21TT2(X7J’) +¥K22T12(x,y))]~ (38)

The coefficients of T1(x,y) and 72(x,y) on both sides of (38)
must be equal; hence, we have the following equations for the
corresponding coefficients of 2D-TFs:

Ul (1 - p(te2 K117 + k2 g127))

—pU; (12 k117 4+ 1 K127) = FT
—pUY (2 k217 + 22 K227)

+U; (I—p(2 k217 + 12 227)) = F}

Set

AI:I—p(¥K11+%K12), (39)
@:—p(%[(ll%—%](ﬂ), (40)
B, = —p(@[ﬂl +%K22), (41)
32:1—p<%1<21+%1<22>. (42)

Then, we have the following linear system:

A A U F
(5 2)(w)=(2) )
B B U, F
After solving the above linear system, we can find U; and U,
and then
u(x,y) = U{T1(x,y) + Uy T2(x, ), (44)

is the estimation of the solution of the two-dimensional Fred-
holm integral equation of the second kind.

5. Convergence analysis

Assume (C[J],||.]]) the Banach space of all continuous func-
tions on J=[0,1) x [0,1) with norm ||f(x,y)| = maxy e/

[, )1

Let Vx,y, 1,5 € [0, 1), |k(x,y,s,1)| < M. We denote the error
2D-TFES by
emtrs = [[um(x, ) — ulx, )|,

where u,,(x,y) and u(x,y) show the approximate and exact
solutions of the two-dimensional linear Fredholm integral
equation, respectively. If we note to Eq. (27), we will see the
coefficients ¢;;’s and d;;,,’s are not optimal. By using the opti-
mal coefficients, the representational errors e,p_rps can be
reduced.

Theorem 1. The solution of the two-dimensional linear Fredholm
integral equation by using 2D-TFs approximation converges if

O0<a<l.

Proof. Let

Hum(xvy) - u(xvy)H

= maxv(x,y)61|um (X, y) - u('x7 y) ‘

q el
—malfixen) +o [ [ Kt drds — 1)

[
—p/ / k(x,y,t,8)u(t,s)dtds
o Jo

< max

1ol
p|/ / |k(x, v, t,8)| |t (2,5) — u(t,s)|dtds
o Jo

1ot
< |p\M/ / max|u,(t,s) — u(t,s)|dtds
o Jo

= ‘P'MHM,”(XJ/) - H(X,y)||7

= Hum(x»y) - u(x,y)H < oc||um(x,y) - u(xvy)Hv

where o = |p|M.

We get (1 —o)||um(x,y) —u(x,»)]| <0 and choose
0 <o <1, by increasing m, it implies ||u,(x,y) — u(x,y)||
—0asm—oo0. U

6. Numerical illustration

In this section, we present one example and their numerical re-
sults to show the high accuracy of the solution obtained by 2D-
TFs.

Example 5.1. Consider the two-dimensional linear Fredholm
integral equation

Table 1 Numerical results of example 1 with 2D-TFs.

Nodes (x,y) 2D-TFs method with m = 32 Error of 2D-TFs method with m = 32 Exact solution
(0,0) 1.0000e—000 0 1.0000e—000
(0.1,0.1) 7.020e—001 —7.5800e—003 6.9444e—001
(0.2,0.2) 5.1974e—001 —9.5400e—003 5.1020e—001
(0.3,0.3) 4.0022e—001 —9.6000e—003 3.9062e—001
(0.4,0.4) 3.1767e—001 —9.0300e—003 3.0864e—001
(0.5,0.5) 2.5030e—001 —3.0000e—004 2.5000e—001
(0.6,0.6) 2.0704e—001 —4.3000e—004 2.0661e—001
(0.7,0.7) 1.7585e—001 —2.2400e—003 1.7361e—001
(0.8,0.8) 1.5055e—001 —2.6200e—003 1.4793e—001
(0.9,0.9) 1.3036e—001 —2.8100e—003 1.2755e—001
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X

u(x,y) :g(x,y)+/0 /0 mu(t,s)dta’s7 (45)

where (x,y) € [0,1) x [0,1) and

1 X

glxy) = (I+x+y)? 68+

It’s exact solution is u(x,y) = m The solution for u(x, y)

is obtained by 2D-TFs method described in Section 4, for
m = 32 is collected as shown in Table 1.

7. Conclusion

Two-dimensional Fredholm integral equations are usually dif-
ficult to solve analytically. In many cases, it is required to ob-
tain the approximate solutions, for this purpose the presented
method can be proposed. We have investigated the application
of orthogonal functions by 2D-TFs for solving the linear two-
dimensional Fredholm integral equations. This technique is
very simple and involves less computation. Also we can expand
this method to higher dimensional problems and other classes
of integral equations such as nonlinear two-dimensional Fred-
holm integral equations, linear and nonlinear two-dimensional
Volterra integral equations.
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