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Abstract The Newton—Kantorovich method (NKM) is widely used to find approximate solutions
for nonlinear problems that occur in many fields of applied mathematics. This method linearizes the
problems and then attempts to solve the linear problems by generating a sequence of functions. In
this study, we have applied NKM to Volterra-type nonlinear integral equations then the method of
Nystrom type Gauss—Legendre quadrature formula (QF) was used to find the approximate solution
of a linear Fredholm integral equation. New concept of determining the solution based on subcol-
location points is proposed. The existence and uniqueness of the approximated method are proven.

In addition, the convergence rate is established in Banach space. Finally illustrative examples are
provided to validate the accuracy of the presented method.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. Thisis
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nonlinear integral equations occur in many scientific fields,
including fluid mechanics (Ladopoulos, 2003), physics
(Agarwal and Khan, 2015), chemical kinetics (Tsokos and
Padgett, 1974, pp.180), and economic systems (Boikov and
Tynda, 2003). The difficulty lies in determining the exact solu-
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tion for such equations. Therefore, an alternative option is to
find an approximate solution to the problems. A well-known
approximate method is the Newton—Kantorovich method
(NKM), which reduces a nonlinear integral equation into a
sequence of linear integral equations. The solution is then
approximated by processing the convergent sequence.
Particularly, in Boikov and Tynda (2015), weakly singular
Volterra integral equations of the different types are consid-
ered. The construction of accuracy-optimal numerical methods
for one-dimensional and multidimensional equations is dis-
cussed. Since this question is closely related with the optimal
approximation problem, the orders of the Babenko and
Kolmogorov n-widths of compact sets from some classes of
functions have been evaluated. Construction of complexity
order optimal numerical methods for Volterra integral equa-
tions with different types of weakly singular kernels is shown
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in Tynda (2006) as well as it is shown that for Volterra equa-
tions (in contrast to Fredholm integral equations) using the
“Block-by-Block” technique it is not necessary to employ the
additional iterations to construct complexity optimal methods.
The NKM is also used for nonlinear functional equations. For
instance, the authors of Uko and Argyros (2008) proved a
weak Kantorovich-type theorem that generates the same con-
clusions as obtained in Argyros (2004) by the combination of
weak Lipschitz and center-Lipschitz conditions. A local con-
vergence analysis is presented in Argyros and Hilout (2013)
for a fast two-step Newton-like method to find the approxi-
mate solution of nonlinear equations in a Banach space. The
authors in Argyros and Khattri (2015) developed sufficient
convergence conditions of Newton’s method based on the
majorizing principle. The work (Argyros, 1998) presents
results about polynomial equations as well as analyzes iterative
methods for their numerical solution in various general space
settings. A Kantorovich-type convergence criterion was estab-
lished in Shena and Li (2009) for inexact Newton methods.
This criterion assumed that the first derivative of an operator
satisfies the Lipschitz condition. The inexact Newton method
was proved in Ferreira and Svaiter (2012) given a fixed relative
residual error tolerance that was Q-linearly convergent to a zero
of the nonlinear operator. The authors in Saberi-Nadjafi and
Heidari (2010) developed a new method that combines the
NKM with quadrature methods to solve nonlinear integral
equations in Urysohn form. Mixed Hammerstein-type nonlin-
ear integral equations were also solved in Ezquerro et al.
(2012) using the NKM based on the concept of sequence
majorizing provided by Kantorovich. The authors of
Ezquerro et al. (2013) studied the semilocal convergence of
Newton’s method in Banach spaces upon modifying the classic
conditions of Kantorovich and applied to two Hammerstein
integral equations of the second type. In Akyiiz-Dascioglu
and Yaslan (2006), Chebyshev collocation method has been pre-
sented to solve nonlinear integral equations. This method trans-
forms the integral equation to a matrix equation which
corresponds to a system of nonlinear algebraic equations with
unknown Chebyshev coefficients. Finally, some examples are
presented to illustrate the method and results discussed. The
authors in Hameed et al. (2015) and Eshkuvatova et al. (2010)
consider the system of nonlinear integral equations of different
types and proved the existence and uniqueness of the solution
together with the rate of convergence of the approximate
solution as well as numerical examples provided to validate
the proposed method.

In this note we consider the Volterra-type nonlinear inte-
gral equation of the form.

t

" H(t,1)F(x(z))de = f(1), (1)

x(t) =2

where 0 <1 <t < T,A is a real or complex number, the
known function y(r) € C[',Oﬂ provide that p(r) <t and
(1) € Cyy,1- The given kernel H(t, 1) € Cpy 11x(i,n- F() is a dif-
ferentiable continuous function.

The current paper is structured as follows. In Section 2, we
describe (NKM). In Section 3, we solve the system of algebraic
linear Fredholm integral equation by Nystrom type Gauss—
Legendre quadrature formula (QF). Section 4 discusses the
convergence rate of the approximate method and the error
estimation. In Section 5, we apply the proposed method to

three examples to demonstrate the accuracy and efficiency of
the method. Finally, Section 6 summarizes the main concepts
of the approximation method.

2. Newton—Kantorovich approach for nonlinear integral equation

Rewrite Eq. (1) in the operator equation

P(x) =x(1) = f(r) — A !(lt) H(t,7)F(x(1))dr = 0. (2)

Consider the initial iteration of NKM which is of the form
P'(xo(1))(x(2) — xo(2)) + P(xo(2)) = 0, (3)

where x((7) is the initial guess that might be any continuous
function. The Frechet derivative of P(x(z)) at the initial condi-
tion x¢(¢) is defined as

P(xo)x :lii%é [P(x0 + sx) — P(x0)]
1

. 1[dP(xo) &P, 5,
=lim - [ o Xt = (x0+ 0sx)s°x*|, 0€(0,1)
_dP(X())
=0 % 4)
From Egs. (3) and (4) we obtain
dP
i XO(AX([)) = —P(xo(1)), (5)

where Ax(z) = x;(f) — xo(t), and xo(¢) is the initial guess. To
solve Eq. (5) for Ax(7) we need to compute the derivative

g =1£%;[P(xo +5x) — P(x)]
1 !
=lim— sx—},/(’)H(l,r)[[F(xo(r)+sx(r))—[F(xo(r))}dr , (6)

s—05

=x(1)— )./[) H(t,7)F (xo(2))x(1)dx,

h(
From Egs. (5) and (6) we obtain

Ax(1) — )v/t Hy(t,7)Ax(t)dr = Gy(1), (7)
»(1)
where
Hy(t,7) = H(t,7)F (xo(7)) (8)
Golt) =0+ [ Hl1.0)F () — 0. ©)
»(1)

Eq. (7) is linear with respect to Ax(#), and it is easy to find
x1(1) = xo(2) + Ax(1).

By continuing this process, a sequence of approximate solu-
tion x,(t), (m =2,3,...) can be evaluated from the equation

P'(x0)Ax,, + P(x,) =0 (10)
which is equivalent to the equation
t
Ax,, (1) — i/ Hoy(t, 1) Ax, (t)dt = Gy (1), (11)
»(0)
where

Ax,, (1) = x(2) — X (1), m=1,2,..., (12)
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and where H, is defined by (8).
p Thirdly, from (13) and (17) it follows that
G () =) + 2 H(t,1)F(xp_1(1))dr — X1 (2). ,
»0 Axm( Z TisTi Axm( )Wj = Gm—l (Tf)7
Solving Eq. (11) for Ax,,(#) gives a sequence of approximate j=1
solution x,,(¢) . (18)
3. Gauss—Legendre quadrature formula for a numerical solution i=1,2,...,n; k=12,...,¢,
. . . . where

Introducing a uniform grid o, ={t:6=1t+ih, h=
I i=1,2,...,n}, where n refers to the number of partitions (1) & ;

n )< I s _ J i k J .
in [ty, 7], Eq. (11) becomes Gt (w) = /(5 /_:ZIH N )[F(X"H (T"(”H)))W’

[ = xm1 ()
Ax,,(t;) — A Hy(t;, 1) Ax,,(t)dr = G (1), (13) Xm=1\1; )-
»(ti)

where Eq. (18) is a linear algebraic system of n x ¢ equations and

Gu-s(t) =10 +7 | ([") H(t1y2)F (1 (8))d — 1 (1),

The robust way to approximate the integration in the system
(13) is Gauss—Legendre QF. It is known that the Legendre
polynomials P,(¢) are orthogonal on [—1,1] with weight
w = 1. Consider the Gauss—Legendre QF (Jeffrey, 2000, pp.
318)

[ was - iwﬂs,-) LR, (14)

where

W=, =2, P,(s)=0,
(1-s; )[P( Ik Z )
i=1,2,...,n,
si, 1 =1,2,...,nare roots of the Legendre polynomial P,(¢) on
the interval [—1, 1]. The error term of Gauss—Legendre QF is
27t
(9,
(2n+ 1)[(2n)]]

The Gauss-Legendre (QF) formula for arbitrary interval [a, b
has the form

R.(f) =

-1 <é<1.

S o) + R (15)

/ahf(X)dx:b;a 3

where the nodes t; = (b ﬂ) sit+ (1%)

Let us describe the new idea to solve the Eq. (13). Firstly,

we introduce a subgrid w, = {r/} of w; at each subinterval

(%), t] C [to, T], where
_ti—y(n) o nty()
Tl = 3 s+ 5 i=1,2,...,n,
j=12,....¢ (16)

where 1/ # 1; and ¢ refers to the number of sub partitions of
[v(#), t;]. Secondly, we apply Gauss—Legendre quadrature for-
mula to the kernel integral of (13) at each subinterval [y(#), #]
which yields

14
H(t;, T)F(x-1(7))dr =~
»(t)

ZHO ,7 T; A’Cm( >wj7
(17)

n x £ unknowns. If its matrix is non singular then it has a
unique solution in terms of Ax,(¥), i=1,2,...,n,
k=1,2,...,¢, then x,(t /‘) can be evaluated as

() = B () + x5, (),

Since the values of the functions x,,(t} k) is known at ¢ Legendre
grid points in each subinterval (y(z ), ;) for each m iteration,
the values of unknown function x,,(#;) can be found by using
Newton forward interpolation formula given below

X,,1(t) = P[(Z)
= Xm( {) + X, (If,rf_l) (l — ‘Ef)

m=23,.... (19)

(el ) (- ) (1)
() (=) (=) e (1= 1),
(20)
with the error (Atkinson, 1997, pp.110)
I%0(0) = PO < 77y
where

M = max{|x{7(O)||(1 — 1), ...

) (t - T} )| }
4. Convergence analysis

Based on the general theorems of (NKM) and their applica-
tions to functional equations, we state the following theorem
with respect to the successive approximations which are char-
acterized by Eq. (11).

First, since f{(1), xo(¢), H(t,7),F(&),F (&) and F'(&) are con-
tinuous functions in their domains of definitions, then they are
bounded (Zeidler, 1995, pp.33), i.e.

fO] <My, |xo(0)| < My, [H(t,0)| < M3, [F(xo(2))] <
[F (xo (D)) < Ms, [F"(xo(1))] < Mg, M7= min_ |y(1)].

te[t—0,7]

M47

Then, we use the majorant function (Kantorovich and Akilov,
1982, pp.533)

W(1) = K©* — 2t + 2, (21)

where K = M;Ms(T — M;) and n to be nonnegative real
number.
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Theorem 1. Let the operator P(x) =0 in (2) is defined in
Q= {x S C[IU,T] : \x ’Co‘
derivative in ={x€ 1 |x—x0| <1}, where
T=ty+r<to+R. Moreover, let the functions f(t) € Ciy, 1y,
xo(t) € C[le,Tp F(¢) € Cleno)r F () € Ciinon) and the kernel
H(1,7) € C[[O«T]X[ZO«T]’ then if

R} and has a continuous second

1. The linear Volterra integral equation in Eq. (10) has a resol-
vent kernel T'(t, ;1) where ||T|| < M3Mse™M3Ms(T=Me),

2. |Ax| < n,

3. 1P"(x)| < K.

Then Eq. (1) has a unique solution x* in the closed ball Qy and

the sequence x,,(t),m = 0 of successive approximations

t
Ax,, (1) — 2 Hy(t,7)Ax,(t)dt =
»(0)

where Ax,,(t) = x,,(t) — x,, (1) converges to the solution x* ().
The rate of convergence is

g%(l—w/l—ZKn)mH, m=1.2,... (23)

Gm—l (l), (22)

1" = x|

Proof. Since Eq. (7) is a linear integral equation of the second
kind, it has a unique solution in term of Ax(¢) provided that its
kernel Hy(t,7) is a continuous function. Hence the existence of
I’y is accomplished.

To prove I'y is bounded we need to establish the resolvent
kernel T'g(z,7;4) of Eq. (7). Assume the integral operator U
from Clty, T| — [to, T) is given by

t
Hy(t,7)Ax(1)dr, (24)
»(0)

where Hy(¢,7) is defined in Eq. (8). Due to Eq. (24), Eq. (7) can
be written as

Z = U(Ax),

Ax — AU(Ax) = Gy(1). (25)
The solution Ax* of Eq. (25) is written in terms of Gy as
Ax" = GO + B(Go), (26)

where B is an integral operator and can be expressed as a
power series of U (Atkinson, 1997, Theorem 1, pp.378)

B(Go) = I+ AU(Gy) 4+ 22U (Gy) + - - - + 2"U"(Gy) +

(27)
and it is well known that the powers of U are also integral
operators. In fact

Z,=U", Z,()= [ H(L0)A(D)dr, (n=12,..),
»(1)

(28)
where H(()”) is the iterated kernel. Substituting (28) into (26) we
obtain the solution of Eq. (25) which is of the form

t
A (1) = Golt) + / To(t, 7 2)Go(t)d, (29)
(1)

where

o(t,7; ) ZJJH/“ (1,7), (30)
and T'y(z,7,4) is the resolvent kernel. Next, we elucidate that
the series in Eq. (29) is convergent uniformly for all
t € [ty, T]. Since

[Ho(t,7)| = [H(1, 7)F (x0(1))| < [H(1, D)|F (x0(7))]

< M3 M. (31)
Let M = M;Ms, then by mathematical induction we obtain
! M (t— M
o] < [ o siao< O,
30(0) (!
! M (1 — M;)?
00| < | mmmﬂﬂmww<—iﬁri,
yolt) :

! M"(t — M;)""
‘Hgﬂ)(t, ‘L')‘ g/ Ho(l u)H(" 1) u,‘[)‘du < (7?7
o(1) (n—1)!

(n=1,2...),

then

N
IToll = 1BGo)| <[4l |1Hy™ (2, 0), |

Jj=0

<3t LM
Jj=0

(T — My)
e
/=0 :

— MlM(T-M7) (32)

Table 1
n=2,1(0=

Numerical results for Eq. (34).
4, h=0.5

m €x

0.07407
0.02250
0.00734
0.00245
8.20482E—004
3.53286E—006
6.57169E—011

SO AW —

N —

Table 2 Numerical results for Eq. (35).
n=210=4h=05

m €x

0.08227
0.04207
0.00861
0.00355
10.27756—004
5.22045E—005
1.25811E—-010

—_
SO LA W —

3
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Table 3  Error analysis of Example 3.

t Korobov’s Sidi’s Laurie’s Chebyshev’s NKM

0.1 0.12E—004 0.66E—008 0.12E—006 0.36E—007 0.28E—016
0.2 0.31E—004 0.34E—007 0.27E—006 0.63E—007 0.56E—016
0.3 0.60E—004 0.11E—006 0.47E—006 0.35E—007 0.11E —015
0.4 0.11E—003 0.30E—006 0.71E—006 0.88E—007 0.00

0.5 0.18E—003 0.71E—006 0.95E—006 0.23E—007 0.00

0.6 0.29E—003 0.15E—005 0.12E—005 0.70E—007 0.11E-015
0.7 0.49E—003 0.31E—005 0.13E—005 0.69E—007 0.44E—015
0.8 0.82E—003 0.62E—005 0.11E—005 0.14E—007 0.33E-015
0.9 0.14E—002 0.12E—004 0.27E—006 0.12E—007 0.11E-010
1 0.25E—002 0.23E—004 0.20E—005 0.86E—007 0.92E—006

Therefore, the infinite series in Eq. (30) for I'y(z,1; 4) is abso-
lutely and uniformly convergent for all values of /4 in the case
of continuous Volterra kernel. Furthermore, we state that
[|P"(x)]] < K for all x € Q. The second derivative P"(x,)(x)
of nonlinear operator P(x) is represented as

P'(x0)x= lin&1 [P (xo+sx)—P'(x0)],
5s—0.5

1 dZP 1(1’31) d2P
=lim=~ (= (x0)s¥ + 5 — (xo + Os% Szfz)yzi
(dxz( o) 2dx3( 0 ) dx*

X0

then the norm of 3’3 has the estimate

“"’2 max | [ H( P (a()x(x(0)a
—l| = ¢ T ¢o(7))x(7)X(7)dr
dP| i<y ’

< MsMo(T — M3).

Therefore, the second derivative is bounded and by using
(Kantorovich and Akilov, 1982, Theorem 6, pp.532) implies
that x*(z) is the unique solution of operator Eq. (2) and

x*—meg%(l—\/1—2Kn>m+l, m=12,... O (33)

5. Numerical result

Example 1. Consider the following integral equation

! 13446
1) — i ()dr =t — —-1° 34
) [ e e = 1 el (34)
where ¢ € [0,1] and y(r) = 3r.
The exact solution is
xX'(1) =t

Consider the initial guess as

)

N~

XO([) =

Example 2. Consider the following integral equation

() /’ o () s N #0229/ 1377 381748
“ o T T 560 1344 129024
(35)
where 1 € [0, 1], and y(t) =4
The exact solution and initial guess are
. P
X (l) = E + ? s
2 P
Xo([) = Z g .
Example 3. Consider the following integral equation
ot
ﬂg:a—oxy—u+/)ﬂﬂm, (36)
0

where ¢ € [0,1], and y(7) = 0.
The exact solution is

xX(1) = ¢
Consider the initial guess as
xo(f) = 0.5+ 21,

Taken h=0.1, =4, n=10, and m = 20. In Table 3, the
absolute errors of NKM are compared with the errors given
by Korobov’s polynomial transformation, Sidi’s trigonometric
transformation, and Laurie’s special polynomial type transfor-
mation (Galperin et al., 2000) and Chebyshev collocation
method (Akyliz-Dascioglu and Yaslan, 20006).

It is noted from the Table | and Table 2 that only a few
iterations are needed for x,,(¢) to be very close to the exact
solution x*(¢). Furthermore, Table 3 shows that the results
obtained by NKM are more accurate than other methods for
different nodes #; € [0, 1], except the last point = 1. For this
point the result of Chebyshev’s is better than the NKM result.

Notations used here are: n is the number of partitions on
[to, T],¢ is the number of subpartitions on (¥(#),?),
i=1,2,...,n, where m is the number of iterations, and

€& = gl(ggﬁlx,11(t) —x'(1)],
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6. Conclusion

In this note, the NKM is presented to solve the nonlinear inte-
gral equations of Volterra type. We have proposed a new idea
by introducing subgrid collocation points t¥,i=1,2,...,n,
k=1,2,...,¢ which lie in the intervals (y,(#),#;) and
(Vo1 (i), 1;). Gauss—Legendre QF is used for each subgrid
interval. The theorem of existence and uniqueness of the
approximate solution are established based on the general the-
orems of Kantorovich. Numerical examples revealed that the
accuracy of the NKM can be achieved by a few number of
iterations.
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