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In this work, we construct explicit by the travelling wave solutions involving parameters

G

of the Boussinesq and Benjamin—Ono equations by using a new approach, namely the (7)-expan-

G

sion method. The travelling wave solutions are expressed by the hyperbolic functions, the trigono-
metric functions and the rational functions.
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1. Introduction

During the past four decades or so, some efficient and power-
ful methods have been developed by a diverse group of scien-
tists to find the exact analytic solutions of physically important
nonlinear evolution equations. For example, Hirota’s bilinear
method (Hirota, 2004), inverse scattering method (Ablowitz
and Segur, 1981), the tanh method (Fan, 2000; Malfliet,
1992; Parkes and Duffy, 1996; Wang and Li, 2005; Chow,
1995), Backlund transformation (Miura, 1973), symmetry
method (Bluman and Kumei, 1989), the sinecosine function
method (Yan, 1996), the exp-function method (He and Wu,
2006; Zi and Aslan, 2008) and so on. All the methods men-
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tioned above have some limitations in their applications and
a majority of the well-known methods involve tedious compu-
tation if it is performed by hand.

The objective of this paper is to use a new method which is
called the (G'/G)-expansion method (Bekir, 2008; Wang et al.,
2008; Zhang et al., 2008). The main idea of this method is that
the travelling wave solutions of non-linear equations can be
expressed by a polynomial in (G'/G) where G = G(&) satisfies
the second order linear ordinary differential equation G"+
G + uG = 0, where ¢ = x — vt. The rest of the Letter is orga-
nized as follows. In Section 2, we describe briefly the (G'/G)-
expansion method. In Sections 3 and 4, we apply the method
to Boussinesq and Benjamin—Ono Equations. In section 5
some conclusions are given.

2. Description of The %—expansion method

Suppose that a nonlinear equation, say in two independent
variables x and ¢, is given by

)=0, (1)

where u = u(x, t) is an unknown function, P is a polynomial in
u=u(x,t) and its various partial derivatives, in which the

P(Z/l., Uy Upy Upgy Uy Uy - -
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highest order derivatives and nonlinear terms are involved. In
the following we give the main steps of the %—expansion
method.

Step 1: Combining the independent variables x and ¢ into one
variable ¢ = x — vt, we suppose that

u(x,r) =u(f), &=x-—t. (2)

The travelling wave variable (2) permits us to reduce
Eq. (1) to an ODE for u = u(¢), namely

) =0. (3)
Step 2: Suppose that the solution of ODE (3) can be

expressed by a polynomial in % as follows

u(ﬁ):am(%)m+..., (4)

where G = G(&) satisfies the second order LODE in
the form

G"+ G +uG =0, (5)

/ ! 2.1 1" "
P(u,—vid o v, —vd"

O, - - -, A and p are constants to be determined later,
o, 7 0, the unwritten part in (4) is also a polynomial
in %, but the degree of which is generally equal to or
less than m — 1, the positive integer m can be deter-
mined by considering the homogeneous balance be-
tween the highest order derivatives and the
nonlinear terms appearing in ODE (3).

Step 3: By substituting (4) into Eq. (3) and using the second
order linear ODE (5), collecting all terms with the
same order of % together, the left-hand side of Eq.
(3) is converted into another polynomial in % Equat-
ing each coefficient of this polynomial to zero yields a
set of algebraic equations for o,,,..., 4 and p.

Step 4: Assuming that the constants o,,...,4 and u can be
obtained by solving the algebraic equations in Step
3, since the general solutions of the second order
LODE (5) have been well known for us, then substi-
tuting o, ...,v and the general solutions of Eq. (5)
into (4) we have more travelling wave solutions of
the nonlinear evolution Eq. (1).

3. Boussinesq equation

We now consider the Boussinesq equation in the form
3(u2)_Y,\’ = 0 (6)
In what follows, we study the travelling wave solutions to Eq.

(6). Substituting u = u(¢), & = x — vt into Eq. (6) and integrat-
ing twice, we have

(V= Du—u" =3’ +c¢=0, (7)

Uy — Uy — Uxyxx —

where ¢ is the integration constant, and the first integrating
constant is taken to zero. Suppose that the solutions of the
O.D.E. (7) can be expressed by a polynomial in % as follows:

G/ m

- = . 8
) =on(G) +oo ®
where G = G(¢) satisfies the second order LODE in the form
G" + G + uG = 0. )

By using (8) and (9) and considering the homogeneous balance
between " and «? in Eq. (7) we required that 2m = m + 2 then
m = 2. So we can write (8) as

-2 (%) (%) o

So by using (9) and (10) it is derived that

, G/ 4 Gl 3
u' = 60, (5) + (201 + 1002 1) <5>

"N 2
+ (Baapt + 304 4 + 4052/12) (%)

U

G )
+ (6a2)vu+2m,u+ot|iz) (E) + 2000 + oy A (11)

On substituting (10)-(11) into (7), collecting all terms with the
same powers of% and setting each coefficient to zero, we ob-
tain the following system of algebraic equations:

e+ (V= Do — 308 — (200u* + oy Ap) =0 (12)
(v — Doy — 60690ty — (603 At + 200 1 + 051/12) =0

(= Doty — 3(02 + 20500) — (8otapt + 3o 2 + doy 27) = 0

— 6oty — 200 — 100 A =0

— 302 — 60, = 0.

On solving the algebraic equations above yield

o =-2, o =24 (13)
v=+1/1— 52+ 8u+ 6u

¢ = =30 4+ 2271 — 4 — Sopp + S/,

A, and o are arbitrary constants.
By using (13), expression (10) can be written as

u(é) = —2(%)2 +24 (%) + o, (14)

where & = x F /1 — 547 + 8u + 6uqt.
On solving Eq. (9), we deduce after some reduction that

G 1/, Cysinhi ),2—4,ué+C2cosh% 72— dué
1 e (o

Cicoshi/ 22 —dué+ Cysinhi 72— 4ué

A
2 )
where C; and C, are arbitrary constants. Substituting the gen-
eral solutions of Eq. (9) into (10) we have three types of trav-
elling wave solutions of the Boussinesq equation (6) as follows:

Case 1: When /> —4u >0
u(&) = =2(4* — 4p)
Cysinhy/ 22— 4ué + Cycoshin/7% — dpé : N 3 n
X = —+ o,
Creosh /72— 4ué + Cosinh /22 —ape) 2
where ¢ = x F /1 — 542+ 81+ 602, C, and C, are arbitrary
constants.If C; and C, are taken as special values, the various

known results in the literature can be rediscovered, for in-
stance, if C; > 0, Cf > C%, then u = u(¢) can be written as
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[ c s
u(é) = —125* (12 — 4p) x sech’ (E W —Aué+ g0>

+ ¥,
2

Case 2: When > —4u <0
u(é) = =2(4u — %)
2
o fC]sin% Vap— e+ Czcos% dp— 2*¢
Cycosi/4u— e+ Casini\/4u — 2

+ 3 +o
2 T
Case 3: When A2 —4u =0
-2C3 32

u(@) = +op (15)

(Cl + Czé)z +7

4. Benjamin—Ono equation

In this section we consider the Benjamin—Ono Equation in the
form

u, + huy, + uu, = 0. (16)

And look for the travelling wave solution of Eq. (16) in the
form

u(x,0) = u(@), E=x—w, (17)
where the speed v of the travelling waves is to be determined
later.

By using the travelling wave variable (17), Eq. (16) is con-
verted into an O.D.E. for u = u(¢)

1
—vu + " + E(uz)' =0.
Integrating it with respect to ¢ once yields
1
c—vu—o—hu'—i-izfzo7 (18)

where c is the integration constant. Suppose that the solutions
of the O.D.E. (18) can be expressed by a polynomial in % as
follows:

G/ m
= Un\| ~ ceey 19
w) =) + (19)
where G = G(&) satisfies the second order LODE in the form.
G" + G + uG = 0. (20)

By using (19) and (20) and considering the homogeneous bal-
ance between u” and «*> in Eq. (18) we required that 2m =
m+ 1 then m = 1. So we can write (19) as

m@:a(%)+%. (21)

On substituting (20)—(21) into (18), collecting all terms with the
same powers of % and setting each coefficient to zero, we ob-
tain the system of algebraic equations. And by solving this
algebraic equations we obtain

o = 2h (22)

v:hi—uo,c:2lzzy—hkao—%a§. (23)

By using (22), expression (21) can be written as
. G
u(é)=2h Yel + o, (24)

where £ = x — (hA — ag)t. Eq. (24) is the formula of a solu-
tion of Eq. (18), provided that the integration constant ¢ in
Eq. (18) is taken as that in (23). Substituting the general solu-
tions of Eq. (9) into (21) we have three types of travelling
wave solutions of the Benjamin—-Ono Equation (16) as
follows:

u(&) =2h\/ X* — 4y
Clsinh%\/iz —4pué + Cycoshiv/ 22— 4ué A'+
x — =+,
Cicoshin/i> — 4ué + Cosinhin/27 — 4pé 2t

where x — (hA — )¢, C; and C, are arbitrary constants.
When 2% — 4u < 0.

u(&) =2m\/4u—2?
" (ClAvin;quLCzcoA?;mf) A
Cycosi 4ufizg’+C2sin%mf 2
When 2> —4u=0

o) = 2
>/= Ci+ ¢’

+O€0.

where C; and C, are arbitrary constants.
5. Conclusions

In this paper, we have seen the three types of travelling wave
solutions in terms of hyperbolic, trigonometric and rational
functions for Boussinesq and Benjamin—Ono Equations. These
equations are very difficult to be solved by traditional meth-
ods. The performance of this method is reliable, simple and
gives many new exact solutions. We have noted that the %—
expansion method changes the given difficult problems into

simple problems which can be solved easily.
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