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Objective: This paper is concerned with evaluating suggested approach of selecting the suitable covari-
ance structure for fitting the seemingly unrelated regression equations (SURE) models efficiently.
Method: The paper assessed AL-Marshadi (2014) methodology in terms of its percentage of times that it
identifies the right covariance structure for mixed model analysis of SURE models using simulated data.
Application: The simulated equations of SURE models have identical explanatory variables, the regressors
in one block of equations are a subset of those in another, and different regressors in the equations with
various settings of covariance structures of

P
. Moreover, the percentage of times that REML fail to con-

verge under normal situation are reported. The application of the proposed methodology is given using a
panel of data.
Conclusions: In short, AL-Marshadi (2014) methodology provided an excellent tool for selecting the right
covariance structure for SURE models using restricted maximum likelihood (REML) estimation method in
order to fit the SURE models more efficiently than the existing method that considering the stander
unstructured covariance structure in fitting SURE models.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A lot of studies come across econometric models having several
equations to model a real-life situation. But it so happens that the
disturbance terms for such equations are somewhat correlated
meaning thereby that variables affecting the disturbance term in
one equation may also simultaneously affect the disturbance term
in some other equation in the system of equations under study.
Numerous econometrically estimated theoretical models consist
of more than one equation. Overlooking such a correlation of the
disturbance terms results in producing inefficient estimates of
the coefficients. But estimating all such equations simultaneously
with generalized least squares (GLS (estimator, considering the
suitable covariance structure of the residuals, leads to efficient
estimates. The nomenclature for such is commonly known as
‘‘seemingly unrelated regression equations ‘‘(SURE), Zellner
(1962). Foschi and Kontoghiorghes (2003) worked on estimating
regression with autoregressive disturbance. Banterle et al. (2018),
Feng and Polson (2020), and Bottolo et al. (2021) worked on regres-
sion theory using the Bayesian approach.

The paper assessed methodology was given by AL-Marshadi
(2014) in terms of its percentage of times that it identifies the right
covariance structure for mixed model analysis of SURE models
using simulated data. The simulated equations of SURE models
have identical explanatory variables, the regressors in one block
of equations are a subset of those in another, and different regres-
sors in the equations with various settings of covariance structures
of
P

. It is expected that the proposed method will be more effi-
cient than the existing method of considering the stander unstruc-
tured covariance structure in fitting SURE models’ since the
number of the parameters in the covariance structure will be
reduced when the suitable covariance structure is selected other
than the stander unstructured covariance structure.

2. The SURE model

The basic model we are concerned with comprises multiple
regression equations, Greene (2003).
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yti ¼
XKi

j¼1

xtijbij þ �ti ð1Þ

t ¼ 1; � � � ; T ; i ¼ 1; � � � ;Mð Þ

j ¼ 1;2; � � � ;Kið Þ
where yit is the t’th observation on the i’th dependent variable (the
variable to be ‘‘explained” by the i’th regression equation); xtij is the
t’th observation on the j’th regressor or explanatory variable
appearing in the i’th equation; bij is the coefficient associated with
xtij at each observation; and �ti is the t’th value of the random distur-
bance term associated with the i’th equation of the model.

In matrix notation, this M-equation model may be expressed
more compactly as.

yi¼ Xibiþ�i i ¼ 1; � � � ;Mð Þ ð2Þ
where yi is a T � 1ð Þ vector with a typical element yit; Xi is a T � Kið Þ
matrix, each column of which comprises the T observations on a
regressor in the i’th equation of the model;bi is a Ki � 1ð Þ vector
with the typical element bij; and �i is the corresponding T � 1ð Þ dis-
turbances vector.

By writing (2) as.
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the model may be expressed in the compact form.

y ¼ Xbþ � ð3Þ
where y is TM � 1ð Þ, X is TM � K�ð Þ, b is K� � 1ð Þ, � is TM � 1ð Þ, and
K� ¼PiKi

We assume that elements of the disturbance vector �i follow a
multivariate probability distribution with

E �ið Þ ¼ 0 for all i; i ¼ 1; � � � ;Mð Þ ð4Þ

E �i�0 ið Þ ¼ riiIT ð5Þ

E �i�0 j
� � ¼ rijIT i; j ¼ 1; � � � ;Mð Þ ð6Þ
Consider the non-singular matrices, as Qii and Qij, which have

the finite elements.
i.e. Qii ¼ lim

T!1
1
T X0iXi
� �

and Qij ¼ lim
T!1

1
T X0iXj
� �

Writing (4), (5) and (6) in compact form, we have

E 2 20ð Þ ¼

r11IT
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where W is an MT �MTð Þ matrix.

2.1. Approaches for estimating the SURE model

For estimating the parameters of the SURE model, various esti-
mators have been proposed, by considering those based on the
principle of least squares. By observing these estimators, we recog-
nize two basic approaches: the first approach is estimating the
2

parameters of the SURE model equation by equation perhaps using
ordinary least squares (OLS); the second approach is to estimate
the parameters in all of the equations jointly, perhaps using the
GLS estimator or one of its feasible variants in the case where

P
is unknown Greene, (2003).

2.2. OLS estimation of the SURE model

The OLS estimation method ignores the essential jointness of
the relationships that make up the SURE model. This method
implicitly assumes that the SURE model (3) comprises a set of
regression equations that are independent of one another.

The most frequently used method for the general linear model
is OLS estimation.

Consider the system of the SURE model in matrix notation as

yTM�1¼ XTM�K� bK��1þ�TM�1
ð7Þ

With the assumptions,

E �ið Þ ¼ 0

E ee0ð Þ ¼
X�

IT

 !
¼ W

The OLS estimation method is applied to the combined Eq. (7) is
identical to OLS applied to each equation separately.

The Eq. (7) can be rewritten as a general linear model,

y ¼ Xbþ � ð8Þ
where b is regression co-efficient. Let bb denote a column vector of
the estimates of b.

It provided that the coefficients exit if the inverse exists.
The OLS estimator of b is given by

b̂ ¼ x0xð Þ�1x0y

It provided that the coefficients exit if the inverse exists. This
form is obtained from the assumption of the SURE model is
q Xð Þ ¼ K� where K� is constant and this estimator treats the
variance-covariance matrix as scalar; the equation of this proce-

dure is OLS normal equations, i.e., bb is the OLS estimator of b:
The OLS estimator is unbiased for b and, the variance- covariance

matrix of bb is Greene (2003).

V b̂
� �

¼ r2 X�Xð Þ�1
2.3. The GLS estimation of the SURE model

Consider the SURE model as

yTM�1¼ XTM�K� bK��1þ�TM�1

With the assumptions

E �ð Þ ¼ 0;

and E ee0ð Þ ¼ P�IT
� � ¼ W.

The generalized least squares estimation may take the jointness
of the relationships that make up the SURE model.

The GLS estimator of b will be

b̂SURE ¼ X0W�1X
� ��1

X0W�1Y ¼ X0 X�IT
� �

X
� ��1

X0 X�IT
� �

Y ð9Þ

and the variance-covariance matrix of bbSURE is given by Greene
(2003).

V b̂SURE

� �
¼ X0W�1X
� ��1

¼ X 0 X�IT
� �

X
� ��1
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2.4. GLS estimators of the SURE model reduces to OLS estimator

There are two special cases where the GLS estimator of the
SURE model reduces to the OLS estimator.

We know that the theoretical GLS estimator of b is given by
b� ¼ E X�0X��1
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ð10Þ
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The first case is when the unstructured covariance matrix (11)
is diagonal so that there is no contemporaneous correlation i.e.
the equations are actually unrelated. As a consequence, Eq. (10)
will also be diagonal.

The second case is when the regressor matrices Xi are the same
for all equations i = 1,2,. . .,m i.e. equations have identical explana-

tory variables. In that case X ¼

X
0
:
:
:
0

0
X
:
:
:
0

:
:
:
:
:
:

:
:
:
:
:
:

:
:
:
:
:
:

0
0
:
:
:
X

266664
377775 ¼ IM � X.

where � is the Kronecker product, Greene (2003).
3. Comparison between OLS and GLS estimator

The OLS and GLS estimators are unbiased, and GLS is at least as

efficient as OLS when estimating b in the SURE model. bbSURE is the
BLUE of b in the SURE model, since

P
is non-stochastic and observ-

able; this follows Aitken’s theorem, Aitken (1935). Looking at the

expression for bbSURE in (9), it is not an operational or feasible esti-
mator of b because in general R, and hence W, will be unobserv-
able. Recognizing this, Zellner (1963) proposed an estimate of b
in the SURE model, basing this on (9), but with R replaced by an
observableM�Mmatrix S. In particular, the elements of S are cho-
sen to be estimators of the corresponding elements of R. With this
replacement for R, and hence W, we now have a feasible general-
ized least squares FGLS estimator of b in (2):
bF ¼ X0 S�1 � IT
� �

X
� ��1

X 0 S�1 � IT
� �

Y : ð12Þ

We are assuming that the matrix S = [sij] is non-singular, where
sij is some estimator of rij. Although there are many possible
choices of S, two ways of obtaining the sij are popular. Each of these
is based on residuals obtained by the application of OLS in one way
or another. Oberhofer and Kmenta (1974) suggested a general pro-
cedure for obtaining maximum likelihood estimates by iterating
the FGLS. Direct maximum likelihood estimation can be used by
inserting the special form of R in the log-likelihood function for
the generalized regression model instead of iterated FGLS, William
H. Greene, (2003). Risto and Neudecker (1997) presented the
essentials of parameters estimate for the coefficients b of the SURE
model using least squares (LS), generalized least squares (GLS), and
maximum likelihood (ML) (under normality). Also, parameters
estimate for the variance-covariance matrix Wusing an LS-related
estimator and a maximum likelihood estimator (under normality)
was presented with their asymptotic properties.
3

4. Restricted maximum likelihood estimation of the SURE
model

The MIXED procedure of the SAS System has advantages over
the standard multivariate procedures in fitting multiple design
multivariate models (the seemingly unrelated regression models
of econometrics) such as it uses observations that have incomplete
responses in the calculation of the fitted models where most mul-
tivariate procedures discard an entire observation if it has any
missing data. Also, it allows one to select one suitable covariance
structure of the available collection covariance structures to fit
the best models to data instead of restricting our analysis to
unstructured covariance matrix,

P
in (11), when fitting the SURE

model, Wright (1998), Littell et al. (1999), and Khattree and Naik
(2000). The MIXED procedure of the SAS System can be used to
develop either maximum likelihood (ML) or restricted maximum
likelihood (REML) estimates in order to complete the analysis of
the data, where REML estimation are generally preferred to ML,
Kenward and Rogers (1997). Selecting the suitable covariance
structure to fit the best models to data is the concerned issue. In
this paper, we suggest using AL-Marshadi (2014) method to select
the suitable covariance structure to fit the best seemingly unre-
lated regression models to the data using the MIXED procedure
with restricted maximum likelihood (REML) estimates method. Fit-
ting the seemingly unrelated regression models with unsuitable
covariance structure may impact the quality of the fitted model
using the MIXED procedure, AL-Marshadi (2008). In order to eval-
uate the proposed suggestion, a simulation study was conducted
for variety of settings of seemingly unrelated regression models
such as equations that have identical explanatory variables, the
regressors in one block of equations are a subset of those in
another, and different regressors in the equations with various set-
tings of covariance structures of

P
. The first covariance structure

was considered compound symmetry (CS) covariance structures.
The second covariance structure was considered heterogeneous
compound symmetry (CSH) covariance structure. The third covari-
ance structure was considered, first-order autoregressive (AR (1))
covariance structure. The fourth covariance structure was consid-
ered heterogeneous first-order autoregressive (ARH (1)) covariance
structure. The fifth covariance structure was considered, Toeplitz
(TOEP) covariance structure. The sixth covariance structure was
considered, Unstructured (UN) covariance structure, Littell et al.
(1999). Wright (1998) explained the way of fitting the seemingly
unrelated regression equations SURE models format using a MIXED
procedure with MIXED Model format with restricted maximum
likelihood (REML) estimates method which was used in this study.
5. The simulation study

In this section, a simulation study is carried out to assess AL-
Marshadi (2014) methodology in terms of the percentage of times
that it identifies the right covariance structure for mixed model
analysis of SURE models’ data. Moreover, it is also reported that
when the PROC MIXED procedure used REML without any inter-
vention, the percentage of times that REML failed to converge
under normal situation, Robert and Casella (2004).

From four SURE models given below, correlated multivariate
normal data were generated by specifically developing SAS PROC
IML code using the MIXED Model format, Wright (1998). Using
two different sample sizes T = 60 and 100with six covariance struc-
tures, resulting in 12 scenarios and for each scenario 4000 data sets
were simulated. Thereafter, on each data set AL-Marshadi (2014)
algorithm was employed and the percentage of times the right
covariance structure is identified is reported in Table 1.

The first simulated SURE model:



Table 1
Six covariance matrix structure settings used in simulations.

Setting #. Covariance Matrix

1
Compound Symmetry (CS)

16&12:8&12:8&12:8&12:8&12:8&12:8
12:8&16&12:8&12:8&12:8&12:8&12:8
12:8&12:8&16&12:8&12:8&12:8&12:8
12:8&12:8&12:8&16&12:8&12:8&12:8
12:8&12:8&12:8&12:8&16&12:8&12:8
12:8&12:8&12:8&12:8&12:8&16&12:8
12:8&12:8&12:8&12:8&12:8&12:8&16

2666666664

3777777775
2First-Order Autoregressive (AR(1)

)
16&14:4&12:96&11:664&10:4976&9:44784&8:503056

14:4&16&14:4&12:96&11:664&10:4976&9:44784
12:96&14:4&16&14:4&12:96&11:664&10:4976
11:664&12:96&14:4&16&14:4&12:96&11:664
10:4976&11:664&12:96&14:4&16&14:4&12:96

9:44784&10:4976&11:664&12:96&14:4&16&14:4
8:503056&9:44784&10:4976&11:664&12:96&14:4&16

2666666664

3777777775
3

Toeplitz (TOEP)
16&1:6&8&6:4&4:8&3:2&11:2
1:6&16&1:6&8&6:4&4:8&3:2
8&1:6&16&1:6&8&6:4&4:8
6:4&8&1:6&16&1:6&8&6:4
4:8&6:4&8&1:6&16&1:6&8
3:2&4:8&6:4&8&1:6&16&1:6
11:2&3:2&4:8&6:4&8&1:6&16

2666666664

3777777775
4

Heterogeneous Compound Symmetry (CSH)
4&4:8&6:4&8&9:6&11:2&12:8

4:8&9&9:6&12&14:4&16:8&19:2
6:4&9:6&16&16&19:2&22:4&25:6

8&12&16&25&24&28&32
9:6&14:4&19:2&24&36&33:6&38:4
11:2&16:8&22:4&28&33:6&49&44:8
12:8&19:2&25:6&32&38:4&44:8&64

2666666664

3777777775
5Heterogeneous First-Order Autoregressive (ARH(1)

)
4&4:8&5:12&5:12&4:9152&4:58752&4:194304

4:8&9&9:6&9:6&9:216&8:60160&7:86432
5:12&9:6&16&16&15:36&14:336&13:1072

5:12&9:6&16&25&24&22:4&20:48
4:9152&9:216&15:36&24&36&33:6&30:72

4:58752&8:6016&14:336&22:4&33:6&49&44:8
4:194304&7:86432&13:1072&20:48&30:72&44:8&64

2666666664

3777777775
6

Unstructured (UN)
4&2:4&4:8&8&8:4&7&4:96

2:4&9&2:4&1:5&2:7&7:35&10:8
4:8&2:4&16&3:4&10:08&15:4&6:48
8&1:5&3:4&25&18:9&16:45&9:2

8:4&2:7&10:08&18:9&36&4:62&22:56
7&7:35&15:4&16:45&4:62&49&16:24
4:96&10:8&6:48&9:2&22:56&16:24&64

2666666664

3777777775
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yt1 ¼ 3þ 3xt0 þ 3xt1 þ 2xt2 þ �t1

yt2 ¼ 8þ 6xt0 þ 6xt1 þ 4xt2 þ �t2

yt3 ¼ 5þ 9xt0 þ 9xt1 þ 6xt2 þ �t3

yt4 ¼ 2þ 2xt0 þ 2xt1 þ 3xt2 þ �t4

yt5 ¼ �9� 9xt0 � 9xt1 � 6x2t þ �t5

yt6 ¼ �3� 6xt0 � 6xt1 � 4xt2 þ �t6

yt7 ¼ �9� 3xt0 � 3xt1 � 2xt2 þ �t7

where x0 is the dummy variable which takes the values 0 or 1, x1
and x2 explanatory variables following the Normal distribution with
l = 5 and r = 2. For simulation study, correlated disturbance terms
(�ti) t ¼ 1; � � � ; T ; i ¼ 1; � � � ;M ¼ 7ð Þ of the given equations were sim-
ulated using a different setting of the covariance matrix Ʃ.

The second simulated SURE model:

yt1 ¼ 3þ 3xt1 þ 2xt2 þ �t1

yt2 ¼ 8þ 6xt1 þ 4xt2 þ �t2

yt3 ¼ 5þ 9xt1 þ 6xt2 þ �t3

yt4 ¼ 2þ 2xt1 þ 3xt2 þ �t4

yt5 ¼ �9� 9xt1 � 6x2t þ �t5
4

yt6 ¼ �3� 6xt1 � 4xt2 þ �t6

yt7 ¼ �9� 3xt1 � 2xt2 þ �t7

where x1 and x2 are independent variables follow Normal distribu-
tion with l = 5 and r = 2. For simulation study correlated distur-
bance terms (�ti) t ¼ 1; � � � ; T ; i ¼ 1; � � � ;M ¼ 7ð Þ of the given
equations were simulated using the different settings of the covari-
ance matrix Ʃ.

The third simulated SURE model:

yt1 ¼ 3þ �t1

yt2 ¼ 9þ 6xt0 þ 3xt1 þ �t2

yt3 ¼ 7þ 5xt1 þ �t3

yt4 ¼ 12þ 2xt2 þ �t4

yt5 ¼ 5þ 22xt1 þ 2x2t þ �t5

yt6 ¼ 1þ 18xt1 þ 52xt2 þ �t6

yt7 ¼ 5þ 12xt0 þ 2xt1 þ 2xt2 þ �t7

where x0 is a dummy variable taking values 0 or 1, x1 and x2
explanatory variables following normal distribution with l = 5
and r = 2. For simulation study, correlated disturbance terms (�ti)
t ¼ 1; � � � ; T ; i ¼ 1; � � � ;M ¼ 7ð Þ of the given equations were simu-
lated using a different setting of the covariance matrix Ʃ.
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The fourth simulated SURE model:

yt1 ¼ 3þ �t1

yt2 ¼ 8þ 3xt1 þ �t2

yt3 ¼ 7þ 5xt1 þ �t3

yt4 ¼ 12þ 2xt2 þ �t4

yt5 ¼ 5þ 22xt1 þ 2x2t þ �t5

yt6 ¼ 1þ 18xt1 þ 52xt2 þ �t6

yt7 ¼ 12þ 2xt1 þ 2xt2 þ �t7

where x1 and x2 are explanatory variables following the normal dis-
tribution with l = 5 and r = 2. For simulation study correlated dis-
turbance terms (�ti) t ¼ 1; � � � ; T ; i ¼ 1; � � � ;M ¼ 7ð Þ of the given
equations were simulated using a different setting of the covariance
matrix Ʃ.

6. Results

Table 2 exhibits summarized results of AL-Marshadi (2014)
approach selecting the right covariance structure percentage of
times from the six Covariance structures, when W = 10, and
T = 60, where ‘W’ represents the number of the bootstrap samples.
Table 3 exhibits summarized results of AL-Marshadi (2014)
approach selecting the right covariance structure percentage of
times from the six Covariance structures, W = 10, and T = 100,
where ‘W’ represents the number of the bootstrap samples and this
is in line with the suggestions provided in AL-Marshadi (2014).
Results of Table 2 and Table 3 show similar reliable performance
with a high percent of success in selecting the suitable covariance
structure with AL-Marshadi (2014) approach across all the simu-
lated SURE models with the different covariance structures which
will be allowed the SURE models fitted more efficient than the
existing method of considering the stander unstructured covari-
Table 2
True % of times covariance structures from possible covariance structures when W = 10 a

The correct model Best set of Covariance Structure Clusters

CS CS, CSH,TOEP,TOEPH,UN
CSH CSH, ARH(1),TOEPH,UN
AR(1) AR(1), ARH(1), TOEP, TOEPH, UN
ARH(1) ARH(1),TOEPH,UN
TOEP TOEP, TOEPH, UN
UN UN
Over all the percent of success

Table 3
True % of times covariance structures from possible covariance structures when W = 10 a

The correct model Best set of Covariance Structure Clusters

CS CS, CSH, TOEP, TOEPH,UN
CSH CSH, ARH(1), TOEPH, UN
AR(1) AR(1), ARH(1), TOEP, TOEPH, UN
ARH(1) ARH(1), TOEPH, UN
TOEP TOEP, TOEPH,UN
UN UN
Over all the percent of success

5

ance structure in fitting SURE models’ since the number of the
parameters in the suitable selected covariance structure will be
reduced when the suitable covariance structure is selected other
than the stander unstructured covariance structure. The compar-
ison of the efficiency of fitting the SURE models using the stander
unstructured covariance structure or using the suitable selected
covariance structure with AL-Marshadi (2014) approach will be
clear in the application using a panel of data. Results of Tables 2
and 3 also suggest that the performance of the approach has
enhanced with the increase in the sample size with constant boot-
strap samples.

Tables 4 and 5 exhibit the percentage of times that the PROC
MIXED procedure failed to converge when the PROC MIXED proce-
dure used REML without any interfering for all the investigated
settings of the covariance matrix and W = 10, and T = 60 and
W = 10, and T = 100. To put it in a nutshell, the results in Tables
4 and 5 suggest that increasing the sample size addresses the con-
vergence problem (Table 6).
7. Application using grunfeld’s data

To illustrate the AL-Marshadi (2014) approach to select the
right covariance structure among the seven covariance structure
considered in the study using a panel of data that serve as a useful
tool for investigating multiple equation estimators for a long per-
iod of time in the literature. The data consist of time series of
twenty yearly observations for five firms and three variables:

It = gross investment.
Ft = market value of the firm at the end of the previous year.
Ct = value of the stock of plant and equipment at the end of the

previous year, William H. Greene, (2003), and Grunfeld (1958). The
estimated model with these data is.

Iit ¼ b1i þ b2iFit þ b3iCit þ �it

where i indexes firms and t indexes years.
Therefore, the AL-Marshadi (2014) approach was applied to

select the best covariance structure among the seven covariance
structure considered in the study for the data as follow:
nd T = 60 selected through with ACSMSCCS approach.

The percent of success

Model 1 Model 2 Model 3 Model 4

% % % %
98.625 98.925 98.7 99.025
97.1 97.45 97.875 97.825
100 100 100 100
85.45 86.35 87.75 87.375
84.925 85.6 84.975 85.325
92.95 93.125 84.875 85.425
93.175 93.575 92.3625 92.4958

nd T = 100 selected through with ACSMSCCS approach.

The percent of success

Model 1 % Model 2 % Model 3 % Model 4 %

100 100 100 100
99.425 99.225 99.55 99.475
100 100 100 100
94.6 95.025 95.475 95.5
93.175 93.375 92.8 93
97.875 97.65 92.325 93.1
97.5125 97.5458 96.6917 96.8458
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1. We generated the bootstrap samples on a case-by-case using
the original data (i.e., based on resampling from twenty-year
observations). The bootstrap sample size is taken to be the same
as the size of the original data (i.e., 20 years).
Table 4
Percentage of times the PROC MIXED procedure failed to converge when the PROC MIXED
settings and W = 10 and T = 60.

The fitted structure The right covariance structure

AR(1)
%

ARH(1)
%

CS
%

CS 0 0 0
AR(1) 0 0 0
TOEP 0 0 0
CSH 0 0 0
ARH(1) 0 0 0
UN 0 0 0

Table 5
Percentage of times the PROC MIXED procedure failed to converge when the PROC MIXED
settings and W = 10 and T = 100.

The fitted structure The right covariance structure

AR(1)
%

ARH(1)
%

CS
%

CS 0 0 0
AR(1) 0 0 0
TOEP 0 0 0
CSH 0 0 0
ARH(1) 0 0 0
UN 0 0 0

Table 6
The average of each information criteria for each model and two clusters according to the

Structure AIC AICC HQIC

CSH 600.854 603.031 599.8
ARH (1) 600.408 602.585 599.4
TOEPH 601.753 606.817 600.2
UN 596.818 613.123 594.2
CS 656.678 656.963 656.3
AR (1) 661.855 662.137 661.5
TOEP 665.208 666.723 664.3

Table 7
The parameter estimates of the model and the standard error of the parameter estimates

Effect Firm Estimate

Firm (b11) 1 �149.78
Firm (b12) 2 �6.1900
Firm (b13) 3 �9.9563
Firm (b14) 4 �0.5094
Firm (b15) 5 �30.3685
F*Firm (b21) 1 0.1193
F*Firm (b22) 2 0.0779
F*Firm (b23) 3 0.0265
F*Firm (b24) 4 0.0528
F*Firm (b25) 5 0.1566
C*Firm (b31) 1 0.3714
C*Firm (b32) 2 0.3157
C*Firm (b33) 3 0.1517
C*Firm (b34) 4 0.0924
C*Firm (b35) 5 0.4239
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2. The model was fitted with the candidate covariance structures
that we like to select the best covariance structure from them,
to each of the bootstrap samples, thereby obtaining the
bootstrap
procedure used REML without any interference for all investigated Covariance Matrix

CSH
%

TOEP
%

TOEPH
%

UN
%

0 0.0000125 0.00000625 0
0 0 0.00000625 0
0 0 0 0
0 0 0.0000375 0
0 0 0.00001875 0
0 0 0 0.04378

procedure used REML without any interference for all investigated Covariance Matrix

CSH
%

TOEP
%

TOEPH
%

UN
%

0 0 0 0
0 0 0 0
0 0.00000625 0 0
0 0 0.0000625 0
0 0 0.000025 0
0 0 0 0.02739

five correlated variables.

BIC CAIC Cluster

47 603.857 609.857 1
01 603.411 609.411 1
42 606.257 615.257 1
99 604.325 619.325 1
26 657.659 659.659 2
19 662.856 664.856 2
68 667.710 672.710 2

using the two covariance structures.

Standard Error

Using CSH Using UN

96.3157 105.84
13.5062 13.5065
31.3228 31.3742
7.9684 8.0153

129.34 157.05
0.02351 0.02583

5 0.01997 0.01997
5 0.01554 0.01557
9 0.01561 0.01571

0.06497 0.07889
0.03374 0.03707
0.02881 0.02881
0.02566 0.02570

1 0.05577 0.05610
0.1278 0.1552
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AIC�BIC�CAIC�HQIC�AICC� for the model with the candidate
covariance structures.

3. Repeat steps (1) and (2) (10) times
4. Bootstrapping of the original data is given us the opportunity to

have (10) replication values for each model and each informa-
tion criteria (from steps (1to 3). we used the average of each
information criteria for each model sepyarately in the algorithm
as a random vector that follows 5-dimensional multivariate

normal distribution: AIC
�

BIC
�

CAIC
�

HQIC
�

AICC
�h i

Coveriancstructure�i
.

In this stage, clustering method was used to cluster the candi-
date covariance structures s two clusters according to the five cor-
related variables (the averages of the five information criteria). One
of the two clusters is called the cluster of the best set of covariance
structures according to the cluster that contains the general covari-
ance structure UN (Unstructured covariance structure). Then the
best covariance structure is the simplest covariance structure in
the cluster of the best set of covariance structures. The results for
the data are given in Table 7 that suggest CSH is the best covari-
ance structure for the data. The efficiency of using the best suitable
covariance structure for the data instead of using the stander
unstructured covariance structure for the data is shown in Table 7
which compares the stander error for estimated parameters for the
two covariance structures. The comparison of the stander error for
estimated parameters in Table 7 shows the stander error for esti-
mated parameters with suitable selected covariance structure with
AL-Marshadi (2014) approach are less than the stander error for
estimated parameters with the stander unstructured covariance
structure.

8. Conclusions

In our simulation, we considered SURE models, examining the
performance of the AL-Marshadi (2014) approach to select the
right covariance structure with different covariance structure set-
tings. Overall, the AL-Marshadi (2014) approach provided an excel-
lent tool for selecting the right covariance structure for SURE
models in order to fit the SURE models more efficiently than the
existing method that considering the stander unstructured covari-
ance structure in fitting SURE models that can be seen with the
application of the panel of data when the standard errors com-
pared in Table 7. Future work can be considered to examine the
performance of the AL-Marshadi (2014) approach under the exis-
tent of multicollinearity.
7
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