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1. Introduction

For highly reliable materials; components or devices, their life-
times are usually longer under normal functioning circumstances.
Therefore, it becomes time-consuming for getting enough failure
time information or the cost of the experiment is high. Conse-
quently, efficient methods of testing such materials are needed.
Accelerated life tests (ALTs) or partially accelerated life tests
(PALTs) are considered the most effective methods of testing units
of long life span under unusual stresses such as voltage, tempera-
ture, humidity, strength, pressure, and so on. In this respect readers
can refer, for example, to (Porter et al., 2019; He et al., 2018; Torre
et al., 2018; Lan et al., 2018; Prudhomme et al., 2018; Ismail, 2020).
In addition, interested readers can also refer to (Nelson, 1990)
which is a comprehensible source for ALT.
ALTs generally assume a relationship between the stress level
and the corresponding life distribution. This relationship is usually
referred to as the time transformation function. Interested readers
can refer, for example, to (Nelson, 1990; Nelson, 1980; Nelson,
1982). If such time transformation function is not known or can’t
be assumed, ALTs can’t be applied and other tests, namely, PALTs
come to be a good alternative of ALTs. Under ALTs, the test units
are run only under high stress. But in PALTs the test items are
run under both use- and high-stresses.

There are different ways to apply the stress. As indicated by (Yin
and Sheng, 1987) the common types of stress are: constant, step,
and progressive. Under constant-stress PALTs each item is run at
either use condition or accelerated condition only. That is, each
unit is run at a steady stress (constant-stress level) until the test
is terminated or the unit fails. For more details, interested
researchers can refer, for example, to (Ismail, 2019; Xin et al.,
2020). Regarding to the step-stress PALTs, a test item is first run
at use condition and, if it does not fail for a pre-specified time s,
then it is run at accelerated condition until it fails or the test is ter-
minated. The progressive stress (PS) is similar to step stress, but
the stress on units is a progressive (continuous) function. Statisti-
cal theory for progressive stress under ALTs has been studied by
some authors, for example, (Yin and Sheng, 1987; Mann et al.,
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Nomenclature

Notation
a, b parameters of function that relates rate parameter and

stress
ALTs accelerated life tests
K K1, K2 ML slope of linear progressive stress (stress rate, a some

pre-assigned positive constant) design and high stress
rates maximum likelihood

MLEs maximum likelihood estimates/estimators
MTTF mean time to failure
n number of test units (sample size)
na number of failures at accelerated condition
nc number of non-observed (censored) units
nu number of failures at use condition
PALT(s) partially accelerated life test(s)

PS progressive stress
q number of stress levels
S stress
Si stress of level i, i = 1, 2, . . ., q
SSPALTs step-stress partially accelerated life tests
ti observed lifetime of unit i tested under PSPALTs
WD Weibull distribution
^ implies a maximum likelihood estimate
a WD shape parameter
b acceleration factor (b < 1)
k WD rate parameter (inverse of scale parameter)
g censoring time
h WD scale parameter (h = 1/k)
s stress change time
si time at which the stress goes from Si to Si + 1
e max

i
ti � sið Þ
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1974; Allen, 1959) discussed this kind of testing theoretically when
the underlying life distributions are exponential. In addition,
(Abdel-Hamid and AL-Hussaini, 2007) presented progressive stress
under ALTs using finite mixture models. Also, (Abdel-Hamid and
AL-Hussaini, 2011) considered progressive stress under ALTs when
the lifetime of an item under use condition follows Weibull distri-
bution (WD) with a scale parameter satisfying the inverse power
law.

This article discusses PS under PALTs when the lifetime of test
units under use condition follows the inverse Weibull distribution
(IWD). The PS is assumed to be directly proportional to time. That
is, the stress is a linearly increasing function in time. The objective
of PALTs is to collect more failure data in a limited time without
necessarily using high stresses to all test units. Moreover, as indi-
cated by (Lin and Fei, 1991), testing time can be further shortened
by progressive stress. They considered a nonparametric approach
to progressive stress accelerated life tests (PSALTs). Except one
article on PS under PALTs assuming Weibull distribution by
(Ismail and Al-Babtain, 2015), all published works on PALTs had
been considered under the two traditional types of stress: constant
and step. For example, see (Goel, 1971; DeGroot and Goel, 1979;
Bai and Chung, 1992; Bai et al., 1993; Ismail, 2004; Abdel-Hamid
and Al-Hussaini, 2008; Aly and Ismail, 2008; Ismail, 2010; 2012a;
2012b; 2012c; 2013; Srivastava and Mittal, 2010; Tahir, 2003;
Bhattacharyya and Soejoeti, 1989). Now, the present work will
concentrate on PS under PALTs using the IWD. The idea of model-
ing PALTs with PS is a new one. In this article, the maximum like-
lihood (ML) estimators of the model parameters are obtained and
their statistical properties such as existence, uniqueness and
invariance are explored.

The rest of this article is organized as follows: Section 2 pre-
sents the test procedure, its assumptions and the used model. In
Section 3, the ML equations under progressive stress PALTs
(PSPALTs) are outlined to get the ML estimates of the model
parameters. Section 4 discusses some statistical properties of the
estimators. In Section 5, some simulation results about the perfor-
mance of the ML estimators are provided. Section 6 concludes the
article and presents some points for further research.
2. Test assumptions and model

2.1. Basic assumptions and test procedure

The following assumptions are used throughout the paper in
the framework of PSPALTs:
2

For design stress, the lifetime distribution is assumed to be
IWD.
Progressive stress is directly proportional to time (the stress is a
linearly increasing function of time).
The testing is Type-I censored sample testing.
The rate parameter of IWD (inverse of the scale parameter) and
stress are related as k = aSb. The stress can be as S(t) = Kt, where
a > 0, b > 0, and K > 0. Progressive stress during stress level i
(i = 1, 2) is expressed by Si(t) = Kit, with Ki pre-assigned positive
constants, K1 < K2. That is, simple progressive stress test is
assumed, ie, we have only two levels of stress which are design
and high.

The test procedure is as follows. Let n units be tested under the
progressive stress Si(t) = Kit, i = 1, 2 for a pre-assigned censoring
time g. The n test units are tested under a linearly increasing stress
condition. Each of the n test units is first run under use condition
with stress rate K1. If it does not fail by a pre-specified times, it
is run under accelerated condition with stress rate K2 until it fails
or it is censored.

2.2. The inverse Weibull distribution as a failure time model

The two-parameter IWD is considered in this article. It can be
used to model a variety of failure characteristics; early failure, use-
ful life and wear-out periods. It has a main role in numerous appli-
cations to describe and illustrate the degradation incidents of
mechanical components. More details about this distribution were
presented by (Nelson, 1990; Drapella, 1993; Jiang et al., 2001).

The probability density function (pdf) of a two-parameter IWD
is given by:

f Tðt;a; hÞ ¼ a h t�ðaþ1Þexpf�h t�ag ; t > 0;a > 0; h > 0;

ð1Þ
The reliability function takes the form.

RðtÞ ¼ 1� expf�h t�ag; ð2Þ
and the corresponding failure rate function is given by:

hðtÞ ¼ a h t�ðaþ1Þ

expfh t�ag � 1
: ð3Þ

Therefore, the cumulative distribution function (cdf) is given by

FðtÞ ¼ expf� ð1= kÞt�ag ; t > 0 ð4Þ
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where k is the rate parameter of IWD (inverse of the scale
parameter).

Then, according to Yin and Sheng [10], the cdf with design stress
rate k1 based on assumption 4 is given by.

FðtÞ ¼ expf� ½ð1=aÞk�b
1 t�ðbþaÞ�g; t > 0 ð5Þ

The CDF, in (5), under linear PS is the Weibull distribution with
new rate and shape parameters:

k
^

¼ 1=að Þk�b
1 and a

^ ¼ ðbþ aÞ ð6Þ
3. Parameters estimation

This section considers the process of obtaining the ML estimates
of the model parameters under PSPALTs using Type-I censored
data. According to (DeGroot and Goel, 1979), the lifetime of a unit
under step-stress PALTs (SSPALTs) can be written as.

Y ¼ T if T 6 s
sþ b�1ðT - sÞ if T > s ;

�
ð7Þ

where T is the lifetime of the unit under use condition, s is the stress
change time and b is the acceleration factor; b > 1. This model is
called the tampered random variable (TRV) model.

As mentioned by (Yin and Sheng, 1987), progressive stress is
similar to step stress, but the stress on specimens is a progressive
(continuous) function. In addition, they said that constant stress
and step stress are particular cases of progressive stress.

According to (Yin and Sheng, 1987), for any progressive stress
sðtÞ, there is a step stress;

s
�ðtÞ ¼ sðsiÞsi�1 6 t < si; s0 ¼ 0; i ¼ 1; 2; :::; q;where

si; i ¼ 1; 2; :::; q are points in the domain of definition of sðtÞ and
represent the times at which the stress goes from Si to Si+1.

s
�ðtÞ is an approximation of sðtÞ. So, sðtÞ ¼ lim

e!0
s
�ðtÞ where

e � max
i

ðti�siÞ. That is, the maximum time difference between

the needed time, ti, to increase the stress and the time si at which
the stress goes from Si to Si+1 will be very small or tends to zero.

Since the step stress s
�ðtÞ becomes progressive stress sðtÞ when

e ! 0, the CDF,F
�
ðtÞ, under step stress converges to the CDF,FðtÞ,

under progressive stress when e ! 0. That is,FðtÞ ¼ lim
e!0

F
�
ðtÞ.

Progressive stress during stress level i (i = 1, 2) is expressed by
Si(t) = Kit, with Ki pre-assigned positive constants, K1 < K2. That is,
based on the relationship Si(t) = Kit, K1 < K2, the units under use
condition have stress rate (K1) different from that (K2) of the units
under accelerated condition. Therefore, the pdf of Y under PSPALTs
model can be given by.
f Y ðtÞ ¼
0; t 6 0;

f 1ðtÞ ¼ a ð1=aÞk�b
1 t�ðbþaþ1Þexpf� ð1=aÞk�b

1 t�ðbþaÞg; 0 < t 6 s

f 2ðtÞ ¼ a b ð1=aÞ k�b
2 ðbðt � sÞ þ sÞ� ðbþaþ1Þexpf� ð1=aÞk�b

2 ðbðt � sÞ þ sÞ�ðbþaÞg; t > s;

8><
>: ð8Þ
where f1(t) is the pdf under use condition and f2(t), obtained by the
transformation-variable technique using f1(t) and the model given
in (7), is the pdf under accelerated condition.

The observed values of the total lifetime under PSPALTs are
given by:

tð1Þ 6 ::: 6 tðnuÞ 6 s 6 tðnuþ1Þ 6 ::: 6 tðnuþnaÞ 6 g

where nu and na denote the number of items failed at use and accel-
erated conditions, respectively, and tðiÞ is the order statistic realiza-
3

tion of ti based on i.i.d random variables. Let d1i and d2i be two
indicator functions such that d1i � I (ti � s) and d2i � I (s<ti � g),
i = 1, . . ., n.

Since the total lifetimes Y1, . . ., Yn of n units are i.i.d r.v.’s, then
the total likelihood function for them is given by:

Lða; b;a;bÞ / Qn
i¼1

a ð1=aÞk�b
1 t�ðbþaþ1Þexpf� ð1=aÞk�b

1 t�ðbþaÞg
h id1i

: a b ð1=aÞ k�b
2 ðbðt � sÞ þ sÞ� ðbþaþ1Þexpf� ð1=aÞk�b

2 bðt � sÞ þ sð Þ�ðbþaÞg
h id2i

: 1� expf� ð1=aÞk�b
2 ðbðg� sÞ þ sÞ�ðbþaÞg

h id�1i d
�
2i

ð9Þ

where d
�
1i ¼ 1� d1i and d

�
2i ¼ 1� d2i.

The natural logarithm of the above likelihood function is given
by.

ln L / ðnu þ naÞln a� ðnu þ naÞln aþ naln b� ðnu ln k1 þ na ln k2Þb
�ðbþ aþ 1Þ½Pnu

i¼1
ln ti þPna

i¼1
ln ðbðti - sÞ þ sÞ�

�ð1=aÞ ½k - b
1

Pnu
i¼1

t� ðbþaÞ
i þ k - b

2

Pna
i¼1

bðti - sÞ þ sð Þ� ðbþaÞ�

þð1=aÞ k�b
2 nc bðg - sÞ þ sð Þ� ðbþaÞ

ð10Þ
The MLEs of a, b, a and b can be obtained by solving the follow-

ing likelihood equations:

@lnL
@a

¼ �ðnu þ naÞ
a

þ ð1=a2Þ k - b
1

Xnu
i¼1

t�ðbþaÞ
i þ k - b

2

Xna
i¼1

w�ðbþaÞ
i

"

� nc k
- b

2 w�ðbþaÞ
g

�
¼ 0; ð11Þ

Where wi ¼ bðti - sÞ þ s and wg ¼ bðg - sÞ þ s .

@lnL
@b ¼ ðnu ln k1 þ na ln k2Þ � ½Pnu

i¼1
ln ti þ

Pna
i¼1

ln wi�

þð1=aÞf ðk - b
1 ðln k1Þ

Pnu
i¼1

t�ðbþaÞ
i þ k - b

2 ðln k2Þ
Pna
i¼1

w�ðbþaÞ
i Þ þ nck

- b
2 w�ðbþaÞ

g ln k2g ¼ 0;

ð12Þ

@lnL
@a

¼ ðnu þ naÞ=a� ½
Xnu
i¼1

ln ti

þ
Xna
i¼1

ln wi� þ ð1=aÞ½k - b
1

Xnu
i¼1

t� ðbþaÞ
i ln ti

þ k - b
2

Xna
i¼1

w� ðbþaÞ
i ln wi� �ð1=aÞnck

- b
2 w� ðbþaÞ

g ln wg ¼ 0; ð13Þ
@lnL
@b

¼ na

b
� ðbþ aþ 1Þ

Xna
i¼1

ðti � sÞ
wi

þ ð1=aÞ ðbþ aÞ½k - b
2

Xna
i¼1

ðti � sÞw�ðbþaÞ�1
i

þ nck
- b

2 ðg� sÞw�ðbþaÞ�1
g � ¼ 0: ð14Þ

From (11), the MLE of a can be obtained as.
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â ¼ k�b̂
1

Pnu
i¼1t

�ðb̂þâÞ
i þ k�b̂

2

Pna
i¼1 w�ðb̂þâÞ

i � nc k
�b̂
2 w�ðb̂þâÞ

g

nu þ na
ð15Þ

When a is known, one can eliminate (13) and can put the
known values of a and a in (12) and (14). Then, solve for b and b.

4. Properties of estimators when a ¼ 1

The ML estimators of the model parameters for a ¼ 1 have the
following properties.

4.1. b̂ and Ki, i = 1, 2 are related by test data

From the maximum likelihood equations, we have.

ðnu þ naÞ þ ð
Xnu
i¼1

ln ti þ
Xna
i¼1

ln wiÞ

� ðPnu
i¼1t

ðb̂þ1Þ
i þPna

i¼1 wðb̂þ1Þ
i Þ

ðnu þ naÞ½
Pnu

i¼1t
ðb̂þ1Þ
i ln ti þPna

i¼1 wðb̂þ1Þ
i ln wi�

¼ 0 ð16Þ
where wi ¼ bðti - sÞ þ s

b̂ can be found without Ki, i = 1, 2. That is, b̂ is indirectly related
to Ki, i = 1, 2 by test data.

4.2. Uniqueness of b̂

Let.

f �
Xnu
i¼1

ln ti þ
Xna
i¼1

ln wi ð17Þ

and

gðxÞ � ðPnu
i¼1t

x
i þPna

i¼1 wx
i Þ

ðnu þ naÞ½
Pnu

i¼1t
x
i ln ti þPna

i¼1 wx
i ln wi�

� ðnu þ naÞ
x

ð18Þ

then,

dgðxÞ
dx ¼ ½

Pnu
i¼1

tx
i
ln ti þ

Pna
i¼1

wx
i ln wi � ðnuþnaÞ½

Pnu
i¼1

tx
i
ln tiþ

Pna
i¼1

wx
i ln wiÞ�

nuþnað Þ2
Pnu

i¼1
tx
i
ln tiþ

Pna
i¼1

wx
i ln wiÞ

� �2
� ð

Pnu
i¼1

tx
i
þ
Pna

i¼1
wx
i ÞðnuþnaÞ½

Pnu
i¼1

tx
i
ðln tiÞ2þ

Pna
i¼1

wx
i ln wið Þ2 �

nuþnað Þ2 ½
Pnu

i¼1
tx
i
ln tiþ

Pna
i¼1

wx
i ln wiÞ

� �2 þ ðnuþnaÞ
x2

¼ ½
Pnu

i¼1
tx
i
ln ti þ

Pna
i¼1

wx
i ln wi �

ðnuþnaÞ½
Pnu

i¼1
tx
i
ln tiþ

Pna
i¼1

wx
i ln wiÞ�

� ð
Pnu

i¼1
tx
i
þ
Pna

i¼1
wx
i Þ½
Pnu

i¼1
tx
i
ln tið Þ2þ

Pna
i¼1

wx
i ln wið Þ2 �

ðnuþnaÞ
Pnu

i¼1
tx
i
ln tiþ

Pna
i¼1

wx
i ln wiÞ

� �2 þ ðnuþnaÞ
x2

Since ti > 0 ði ¼ 1; 2; :::; nu þ naÞ,dgðxÞdx > 0.
That is,gðxÞ is a strictly monotone increasing function. In addi-

tion, it is noted that b̂ > 0 and if b̂ is the solution of (16), then

gðb̂þ 1Þ ¼ f . Therefore, with the strict monotonicity and continuity

of gðxÞ in [1,1), we conclude that b̂ determined by (16) is unique.
Similarly, we can conclude that b̂ is also unique.

4.3. Invariance of b̂

Let xi ¼ ti
f , where f is an arbitrary constant. Then, substituting

fxi for ti into (16), we can obtain.

ðnu þ naÞ þ ðPnu
i¼1

ln xi þ
Pna
i¼1

ln /iÞ þ ðnu þ naÞln f

� ð
Pnu

i¼1
xðb̂þ1Þ

i
fðb̂þ1Þ þ

Pna
i¼1

/ðb̂þ1Þ
i

fðb̂þ1ÞÞ
ðnuþnaÞ½

Pnu
i¼1

xðb̂þ1Þ
i

fðb̂þ1Þðln xiþln fÞ þ
Pna

i¼1
/ðb̂þ1Þ
i

fðb̂þ1Þðln /iþln fÞ�
¼ 0;
4

where /i ¼ bðxi - sÞ þ s.
That is,

ðnu þ naÞ þ ð
Xnu
i¼1

ln xi þ
Xna
i¼1

ln /iÞ

� ðPnu
i¼1x

ðb̂þ1Þ
i þPna

i¼1 /ðb̂þ1Þ
i Þ

ðnu þ naÞ½
Pnu

i¼1x
ðb̂þ1Þ
i ln xi þPna

i¼1 /ðb̂þ1Þ
i ln /i�

¼ 0 ð19Þ

It is clear that Eqs. (16) and (19) have the same form. Eq. (19)
does not include f. This means that if the test data are divided

(or multiplied) by an arbitrary constant, b̂ does not change.

4.4. Existence b̂

By definition of gðxÞ.

gð1Þ � f ¼
Pnu

i¼1ti þPna
i¼1 wi

ðnu þ naÞ½
Pnu

i¼1tiln ti þPna
i¼1 wiln wi�

� ðnu þ naÞ

�
Xnu
j¼1

ln tj �
Xna
j¼1

ln wj

¼ f½
Xnu
i¼1

ti þ
Xna
i¼1

wi�=fðnu þ naÞ½
Xnu
i¼1

Xnu
j¼1

ðln ti � ln tjÞ: ti

þ
Xna
i¼1

Xna
j¼1

ðln wi � ln wjÞ: wi�gg � ðnu þ naÞ

¼ f½
Xnu
i¼1

ti þ
Xna
i¼1

wi�=f½
Xnu
i¼1

Xnu
j¼1

ðln ti � ln tjÞ: ½ti � tj�

þ
Xna
i¼1

Xna
j¼1

ðln wi � ln wjÞ: ½wi � wj��gg � ðnu þ naÞ ; i < j

If

f½
Xnu
i¼1

ti þ
Xna
i¼1

wi�=f½
Xnu
i¼1

Xnu
j¼1

ðln ti � ln tjÞ: ½ti � tj� þ
Xna
i¼1

�
Xna
j¼1

ðln wi � ln wjÞ: ½wi � wj��gg

P ðnu þ naÞ; i < j ð20Þ
then

gð1Þ P f :

When gð1Þ P f , it is certain that gðxÞ> f , (x<1) according to the
strict monotonically and continuity of gðxÞ in [1, +1), ie, Eq. (16)

can’t provide solution b̂ < 0 when Eq. (20) is true. Inversely, if.

f½
Xnu
i¼1

ti þ
Xna
i¼1

wi�=f½
Xnu
i¼1

Xnu
j¼1

ðln ti � ln tjÞ: ½ti � tj� þ
Xna
i¼1

Xna
j¼1

ðln wi

� ln wjÞ: ½wi � wj��gg
< ðnu þ naÞ; i < j

then

gð1Þ < f

According to the continuity of gðxÞ on [1+n, c), where n is a small
constant and c is a large constant such that gð1þ nÞ > f and gðcÞ<f ,
there exists an x� 2 ½1þn, c], which satisfies gðx�Þ ¼ f and

b̂ = x� � 1 is the solution of (16).
Thus the necessary and sufficient condition for (19) providing

solution b̂ < 0 is:
f½Pnu

i¼1ti þPna
i¼1 wi�=f½

Pnu
i¼1

Pnu
j¼1ðln ti � ln tjÞ: ½ti � tj�þPna

i¼1

Pna
j¼1ðln wi � ln wjÞ: ½wi � wj��gg < ðnu þ naÞ; i < j.



Table 2
Average values of the MLEs and MSEs, when a, b, a and b set at 1.5, 1.2, 0.5 and 2.4,
respectively, with K1 = 2 and K2 = 5.

n Parameters / (s, g) (7, 9) (6, 9) (7, 12)

30 a
b
a
b

1.3562 0.2654
0.9347 0.2316
0.3722 0.1985
2.1853 0.2514

1.3852 0.2270
0.9722 0.2192
0.4365 0.1803
2.1053 0.2261

1.4183 0.2106
1.1158 0.1962
0.4413 0.1578
2.1955 0.2065

50 a
b
a
b

1.4133 0.2279
1.1510 0.2034
0.4381 0.1843
2.2792 0.2182

1.4106 0.1967
1.1741 0.1851
0.4582 0.1654
2.1846 0.1935

1.4460 0.1689
1.1868 0.1521
0.4672 0.1253
2.2813 0.1676

75 a
b
a
b

1.4691 0.1292
1.1835 0.0974
0.4805 0.0720
2.3469 0.1146

1.4490 0.0820
1.1934 0.0811
0.4855 0.0694
2.2768 0.0817

1.4732 0.0755
1.1975 0.0685
0.4956 0.0531
2.3694 0.0743

100 a
b
a
b

1.4876 0.0764
1.2106 0.0655
0.5041 0.0485
2.3954 0.0685

1.4985 0.0638
1.2052 0.0562
0.5011 0.0381
2.3956 0.0584

1.5003 0.0522
1.2014 0.0472
0.5007 0.0324
0.0513
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5. Numerical results

In this section simulation studies are considered to assess the
performance of the MLEs in terms of their mean squared errors
(MSEs) for different choices of a, b, a, b,s, K1, K2 and g values.

The simulation study is implemented according to the following
algorithm:

(1) Specify the values of n,s, K1, K2 and g.
(2) Specify the values of the parametersa, b, a and b.
(3) Generate a random sample of size n from the random vari-

able Y given by (7) and sort it.
(4) Use the model given by (8) to generate Type-I censored data

for a given n,s, K1, K2, g, a, b, a and b.
(5) Use the Type-I censored data to compute the MLEs of the

model parameters. Newton-Raphson method is applied for
solving the nonlinear equations given by (12) - (14) to obtain
the MLEs of the parameters b, a and b. Then one can easily
obtain the value of a using (15). Accordingly, k is determined
from the relation k = aSb to obtain the estimated value of the
parameter h, where h = 1/ k.

(6) Replicate the steps 3–5 10,000 times.
(7) Compute the average values of MSEs associated with the

MLEs of the parameters.
(8) Steps 1–7 are done with different values of n,s, K1, K2, g, a, b,

a and b.
(9) Conducting the above algorithm, the average values of MSEs

are obtained using 10,000 replications to avoid randomness.
The results are reported in Tables 1 and 2 based on different
values of n,s, K1, K2, g, a, b, a and b to investigate the perfor-
mance of the MLEs of the model parameters.

From Tables 1 and 2 the following notes can be detected.

1) For fixed s and g, the MSEs decrease as n increases.
2) For fixed s and n, the MSEs decrease as g increases.
3) For fixed g and n, the MSEs are to be larger when s is getting

to be large and a > 1.
4) For fixed g and n, the MSEs are to be slightly larger when s is

getting to be large and a < 1.
5) It is also observed that the MLEs of the model parameters are

very close to the true values as n increases.

Accordingly, under the proposed model developed in this paper,
we have obtained good estimates of the model parameters.
Table 1
Average values of the MLEs and MSEs, when a, b, a and b set at 1.5, 1.2, 1.7 and 2.4,
respectively, with K1 = 2 and K2 = 5.

n Parameters / (s, g) (7, 9) (6, 9) (7, 12)

30 a
b
a
b

1.3716 0.2718
0.9013 0.2411
1.1327 0.2130
2.1711 0.2619

1.3972 0.2311
0.9782 0.2162
1.1756 0.1822
2.2189 0.2216

1.4051 0.2149
0.9274 0.1942
1.1547 0.1527
2.1135 0.1677

50 a
b
a
b

1.4389 0.2513
1.1245 0.2177
1.4944 0.1658
2.2382 0.2475

1.4416 0.2063
1.1378 0.1709
1.5346 0.1281
2.2755 0.1944

1.4521 0.1756
0.9733 0.1591
1.2378 0.1105
2.2385 0.1224

75 a
b
a
b

1.4766 0.1492
1.1791 0.1083
1.6727 0.0790
2.2855 0.1304

1.4805 0.1243
1.1861 0.0854
1.6829 0.0521
2.3420 0.1265

1.4865 0.1033
1.1508 0.0743
1.6452 0.0456
2.3454 0.0688

100 a
b
a
b

1.4968 0.0561
1.2013 0.0473
1.7124 0.0418
2.3879 0.0527

1.5043 0.0375
1.1991 0.0351
1.7083 0.0294
2.3976 0.0411

1.4988 0.0267
1.1896 0.0312
1.6985 0.0216
2.4105 0.0307

5

6. Conclusion

In this article we have considered PALTs under PS when the PS
is directly proportional to time. That is, the stress is a linearly
increasing function with time. PSPALTs can substantially shorten
the duration of the test without affecting the accuracy of lifetime
distribution estimates. That is, The PS test pattern is more effective
in time and money compared with constant- or step-stress. For
highly reliable products, PSPALTs have been proposed to obtain
timely information of the products whose lifetime follows inverse
Weibull distribution. We have established some statistical proper-
ties of the MLEs of the model parameters such as existence,
uniqueness and invariance under PSPALTs. For further studies,
the progressive stress testing wherein the stress on every unit is
increased continuously in a non-linear pattern with time will be
considered.
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