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1. Introduction

Mathematical modeling of biomedical processes, and cancer, in
particular, has come to the forefront of research in recent decades
(Altrock et al., 2015). A conceptual framework for cancer biology
aims to identify the structure, the dynamics, and the rules govern-
ing the regulation of the behavior of the system (Medina, 2018).

A vast plethora of cancer models have been introduced into the
scientific literature during the last years (Magi et al., 2017). In gen-
eral, these models can be classified according to the mathematical
modeling approach: the top-down approach and the bottom-up
approach (Shahzad and Loor, 2012). Also, mathematical models
of cancer are built at different scales with different degrees of
detail (Medina, 2018): very detailed models of metabolic
pathways, middle scale models based on fluxomics, and global
phenomenological scale cancer models based on the interaction
of populations of cells.

Global phenomenological scale cancer modeling approaches
can be characterized either as continuous models or discrete mod-
els (with various subclasses under each type) (Simmons et al.,
2017). Continuum models generate solutions as concentrations of
different types of cells. Usually, they comprise a system of differen-
tial equations (though agent-based, multi-scale, lattice-based,
image-based models are widely used also) (Simmons et al.,
2017). Ordinary differential equations are employed if the varia-
tion of cell populations is investigated in time. Partial differential
equations are employed to describe the variation both in time
and in space.

Mathematical models of a single cancer tumor comprising a
system of two ordinary differential equations coupled by multi-
plicative terms are widely used for the phenomenological descrip-
tion of the interaction between healthy and cancer cells (Liu and
Yang, 2016). Such types of models comprising two Riccati type
nonlinear coupled differential equations are used for the descrip-
tion of prostate cancer treatment with androgen deprivation ther-
apy (Zazoua and Wang, 2019), cancer stem cell-targeted
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immunotherapy (Sigal et al., 2019; Alqudah, 2020), the maximiza-
tion of viability time in general cancer therapy (Bratus et al., 2017).

The phenomenological model of such systems in mathematical
terms reads:

x0 ¼ a0 þ a1xþ a2x2 þ kxxy;

y0 ¼ b0 þ b1yþ b2y2 þ kyxy;

(
ð1Þ

where a0; a1; a2 – 0; b0; b1; b2 – 0 2 R and kx; ky - coefficients of mul-
tiplicative terms.

A formal classification of multiple cancers in humans is first
done in Moertel (1977). According to this classification, multiple
primary cancers of the first type occur in organs with the same
histology. The second type of multiple primary cancers originate
from different tissues or organs. The third type of multiple can-
cers comprise three or more cancers at different tissues and
organs that concurrently coexist with the first type of cancers
(Moertel, 1977). Cancers of the first type are further subdivided
into three groups: 1A – two or more cancers that occur in the
same tissue or organ; 1B – cancers in a joint tissue shared by dif-
ferent organs; 1C – cancers occurring in bilaterally paired organs
(Moertel, 1977).

Multiple primary cancers (MPC) are classified as synchronous
and metachronous cancers (Jena et al., 2016). Among patients with
MPC, triple cancers occur in 0.5 %, and quadruple or quintuple can-
cers in less than 0.1 % of the population (Kim et al., 2010; Kim et al.,
2013). For metachronous gastric cancer patients, the most com-
mon cancer sites are: colorectum, thyroid, lung, kidney, and breast
(in descending order) (Kim et al., 2013). For synchronous gastric
cancer, a different order is observed: head and neck, esophagus,
lung, and kidney (Kim et al., 2013). Females are at a higher risk
of being diagnosed with a first primary cancer of breast or thyroid
cancer at a younger age – but those who survived their first pri-
mary cancer are at a higher risk of developing a metachronous sec-
ond primary cancer after that (Jena et al., 2016).

The life expectancy for a person diagnosed with multiple can-
cer is significantly shorter compared to a person only with a sin-
gle isolated cancer (Jena et al., 2016). For instance, MPC
developed in 10.4% of patients during five years after stomach
cancer treatment (Jena et al., 2016). The probability of survival
of such patients with MPC was considerably less than of patients
with only a single stomach cancer (Jena et al., 2016). The major-
ity of patients with synchronous MPC died during two years
after the removal of the stomach. The survival rate of patients
with metachronous MPC was also low – but many of those
patients did survive for five years. The percentages of patients
who did survive for five years after the removal of the stomach
where: 76.5% for patients without MPC; 67.5% for patients with
metachronous MPC; 34.1% for patients with synchronous MPC
(Jena et al., 2016).

A mathematical model for the immune-mediated theory of
metastasis is recently presented in Rhodes and Hillen (2019). The
interaction between different tumors is modelled by using diffu-
sive terms representing the migration of cancer cells between pri-
mary and secondary tumors in Rhodes and Hillen (2019). This
corresponds well to the mathematical model of migration in diffu-
sively coupled prey-predator system on heterogenous oriented
graphs (Nagatani, 2020).

The main objective of this paper is to explore the existence of
solitary solutions in a paradigmatic cancer metastasis model where
the model of a single tumor is represented by a system of coupled
ordinary differential equations with multiplicative terms, and the
interaction between primary and secondary tumors is represented
by a diffusive term.

In mathematical terms, this model can be represented by the
following system of nonlinear differential equations:
2

x0 ¼ a0 þ a1xþ a2x2 þ kxxy;

y0 ¼ b0 þ b1yþ b2y2 þ kyxyþ c w� yð Þ;

(
z0 ¼ c0 þ c1zþ c2z2 þ kzzw;

w0 ¼ d0 þ d1wþ d2w2 þ kwzw:

(
8>>>>><>>>>>:

ð2Þ

This model uses a system of coupled Riccati type differential
equations to characterize the dynamics of a single tumor (Liu
and Yang, 2016; Zazoua and Wang, 2019; Sigal et al., 2019;
Alqudah, 2020; Bratus et al., 2017). On the other hand, the diffusive
terms coupling different tumors fall in line with the model of
metastasis presented in Rhodes and Hillen (2019). Moreover, Eq.
(2) does generalize the model of diffusively coupled prey-
predator system on heterogenous graphs (Nagatani, 2020) because
the governing differential equations representing the dynamics of
healthy and cancer cells in each tumor are nonlinear Riccati differ-
ential equations (linear differential equations are used in Nagatani
(2020)). The model presented by Eq. (2) also can be interpreted as
the phenomenological generalization of the Master–Slave model
comprising two discrete logistic maps (Ramirez et al., 2018). The
dissipative coupling between different tumors is a one-way cou-
pling. In other words, the primary (the ‘‘Master”) tumor does have
a direct impact on the growth of the secondary (the ‘‘Slave”) tumor,
but not vice versa. As mentioned previously, such dissipative con-
nection between tumors does represent the model of the metasta-
sis discussed in Rhodes and Hillen (2019).

Such kind of generalization of the metastasis model on
heterogenous graph poses an important theoretical challenge from
the mathematical point of view. The existence of solitary solutions
in an androgen-deprivation prostate cancer treatment model
(Telksnys et al., 2020), a hepatitis C evolution model (Telksnys
et al., 2018), or a model of a biological neuron (Telksnys et al.,
2019) always allows to construct the global view of the system
dynamics in the phase space of system parameters and initial con-
ditions. The matter of fact is, that solitary solutions to these models
do usually represent separatrix between different basin boundaries
(Telksnys et al., 2019; Telksnys et al., 2018; Telksnys et al., 2020).
Therefore, the ability to identify solitary solutions (and the corre-
sponding basin boundaries) would provide an important insight
into the dynamics of the paradigmatic cancer metastasis model.

2. Preliminaries

2.1. The concept of solitary solutions

Analytical functions of the form:

x tð Þ ¼ r

Yn

k¼1
exp g t � t0ð Þð Þ � xkð ÞYn

k¼1
exp g t � t0ð Þð Þ � tkð Þ

; ð3Þ

are considered solitary functions in this paper; here n 2 N repre-
sents the order of the solitary function; t0;r;g 2 R are real con-
stants; xk; tk 2 C parameters that depend only on the initial
conditions.

The substitution:

bt ¼ exp g t � t0ð Þð Þ; ð4Þ
is used to rewrite (3) in a more concise form:

x tð Þ ¼ x
lnbt
g

þ t0

 !
¼ bx bt� � ¼ r

X bt� �
T bt� � ; ð5Þ

where functions X; T read:
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X hð Þ ¼
Yn
k¼1

h� xkð Þ; T hð Þ ¼
Yn
k¼1

h� tkð Þ: ð6Þ
2.2. The inverse balancing technique

The primary question that has to be answered when consider-
ing solitary solutions to a particular system is whether they exist
as solutions, and if so, what conditions must the system parame-
ters and solution parameters satisfy. The inverse balancing tech-
nique, presented in detail in Navickas et al. (2016), given a
system or differential equations, both determines the maximum
solitary solution order and derives the necessary and sufficient
conditions for their existence.

The fundamental idea of the technique is to insert the expres-
sion (5) as the ansatz into the system of differential equations.
After simplifying, a linear system of equations with respect to
the equation parameters is obtained. The conditions under which
this system is non-singular coincide with the necessary existence
solutions for the solitary solutions.

This approach differs significantly from the direct construction:
in the latter, after inserting the ansatz into the system of differen-
tial equations, the resulting nonlinear equations are solved for the
solution, rather than the system parameters. This yields a high-
order system of equations that cannot always be solved, especially
if all solutions are to be obtained. Due to these complications, we
forgo the direct approach and use the inverse balancing technique
to analyze (2).

3. Existence of solitary solutions in the Riccati system

The substitution (4) can be used on (2), resulting in:

gbtbx0bt ¼ a0 þ a1bx þ a2bx2 þ kxbxby; ð7Þ
gbtby0bt ¼ b0 þ b1by þ b2by2 þ kybxby þ c bw � by� �

; ð8Þ
gbtbz0bt ¼ c0 þ c1bz þ c2bz2 þ kzbz bw; ð9Þ
gbt bw0bt ¼ d0 þ d1 bw þ d2 bw2 þ kwbz bw: ð10Þ

For the derivations presented, the following functions have to
be defined:

x tð Þ ¼ bx bt� � ¼ r1
X
T
; y tð Þ ¼ by bt� � ¼ r2

Y
T
; ð11Þ

z tð Þ ¼ bz bt� � ¼ r3
Z
T
; w tð Þ ¼ bw bt� � ¼ r4

W
T
; ð12Þ

X ¼ X bt� � ¼ bt � x1
� � bt � x2

� �
� � � bt � xn
� �

¼ btn þ vn�1
btn�1 þ . . .þ v0; ð13Þ

Y ¼ Y bt� � ¼ bt � y1
� � bt � y2

� �
� � � bt � yn
� �

¼ btn þ hn�1btn�1 þ . . .þ h0; ð14Þ
Z ¼ Z bt� � ¼ bt � z1

� � bt � z2
� �

� � � bt � zn
� �

¼ btn þ jn�1btn�1 þ . . .þ j0; ð15Þ
W ¼ W bt� � ¼ bt �w1

� � bt �w2

� �
� � � bt �wn

� �
¼ btn þ qn�1

btn�1 þ . . .þ q0; ð16Þ
T ¼ T bt� � ¼ bt � t1

� � bt � t2
� �

� � � bt � tn
� �

¼ btn þæn�1btn�1 þ . . .þæ0; ð17Þ
X0 ¼ X bt� �� �0bt ; Y 0 ¼ Y bt� �� �0bt ; ð18Þ

Z0 ¼ Z bt� �� �0bt ; W 0 ¼ W bt� �� �0bt ; T 0 ¼ T bt� �� �0bt : ð19Þ
3

Coefficients æk;vk; hk;jk;qk; k ¼ 1; . . . ;n� 1 are, in general, complex
constants. The order n of polynomials X;Y; Z;W; T coincides with
the order of the solutions x; y; z;w.

Inserting the ansatz (11)–(12) into (7)–(10) yields:

gbtr1
X0T � XT 0

T2 ¼ a0 þ a1r1
X
T
þ a2r2

1
X2

T2 þ kxr1r2
XY

T2 ; ð20Þ

gbtr2
Y 0T � YT 0

T2 ¼ b0 þ b1 � cð Þr2
Y
T
þ b2r2

2
Y2

T2

þ kyr1r2
XY

T2 þ cr4
W
T
; ð21Þ

gbtr3
Z0T � ZT 0

T2 ¼ c0 þ c1r3
Z
T
þ c2r2

3
Z2

T2 þ kzr3r4
ZW

T2 ; ð22Þ

gbtr4
W 0T �WT 0

T2 ¼ d0 þ d1r4
W
T

þ d2r2
4
W2

T2 þ kwr3r4
ZW

T2 : ð23Þ

The first two equations can be multiplied by T2

X and T2

Y ,
respectively; the last two by T, resulting in a simplified version
of (20)–(23):

gbtr1X
0T

X
� a0T

2

X
¼ gbtr1T

0 þ a1r1T þ a2r2
1X þ kxr1r2Y ; ð24Þ

� gbtr2YT
0

T
� b2r2

2Y
2

T
� kyr1r2XY

T

¼ �gbtr2Y
0 þ b0T þ b1 � cð Þr2Y þ cr4W; ð25Þ

gbtr3Z
0T

Z
� c0T

2

Z
¼ gbtr3T

0 þ c1r3T þ c2r2
3Z þ kzr3r4W; ð26Þ

� gbtr4WT 0

T
� d2r2

4W
2

T
� kwr3r4ZW

T

¼ �gbtr4W
0 þ d0T þ d1r4W: ð27Þ

Each of the above equations can only hold if both right and left
terms are polynomials of order n, which means the left side
denominators must cancel out in each case:

gbtr1X
0 � a0T ¼ r1a1X; ð28Þ

� gbtr2T
0 � b2r2

2Y � kyr1r2X ¼ r2b1T; ð29Þ
gbtr3Z

0 � c0T ¼ r3a2Z; ð30Þ
� gbtr4T

0 � d2r2
4W � kwr3r4Z ¼ r4b2T; ð31Þ

where a1;a2;b1;b2 2 R;a1;a2;b1; b2 – 0 are constants.
The above relations coincide with the necessary existence con-

ditions for solitary solutions to (2). They can be further simplified
as:

a0T þ a1r1X � gbtr1X
0 ¼ 0; ð32Þ

gbtT 0 þ b1T þ kyr1X þ b2r2Y ¼ 0; ð33Þ
c0T þ a2r3Z � gbtr3Z

0 ¼ 0; ð34Þ
gbtT 0 þ b2T þ kwr3Z þ d2r4W ¼ 0: ð35Þ

Combining (28)–(31) with (24)–(27) results in:

a1T ¼ gbtT 0 þ a1T þ a2r1X þ kxr2Y ; ð36Þ
r2b1Y ¼ �gbtr2Y

0 þ b0T þ b1 � cð Þr2Y þ cr4W; ð37Þ
a2T ¼ gbtT 0 þ c1T þ c2r3Z þ kzr4W; ð38Þ
r4b2W ¼ �gbtr4W

0 þ d0T þ d1r4W: ð39Þ
Obtained Eqs. (36)–(39) are sufficient conditions for solutions

(11) to exist in the system (2). These conditions can be further
rearranged:
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gbtT 0 þ a1 � a1ð ÞT þ a2r1X þ kxr2Y ¼ 0; ð40Þ
cr4W þ b1 � c� b1ð Þr2Y þ b0T � gr2btY 0 ¼ 0; ð41Þ
gbtT 0 þ c1 � a2ð ÞT þ c2r3Z þ kzr4W ¼ 0; ð42Þ
d1 � b2ð Þr4W þ d0T � gr4btW 0 ¼ 0: ð43Þ

Lemma 3.1. Solutions of the form (11)–(12) exist in the system (2) iff
(32)–(35) and (40)–(43) hold true.
4. Maximum possible order of solitary solutions to the Riccati
system

The inverse balancing technique, discussed in detail in Sec-
tion 2.2, is used to determine the maximum possible order solitary
solutions to the considered Riccati system (2).

The following isomorphisms are introduced:

T # T
!
¼ 1;æn�1; . . . ;æ0ð Þ; ð44Þ

X # Xl

!
¼ 1;vn�1; . . . ;v0

� �
; ð45Þ

Y # Yl

!
¼ 1; hn�1; . . . ; h0ð Þ; ð46Þ

Z # Yl

!
¼ 1;jn�1; . . . ;j0ð Þ; ð47Þ

W # Yl

!
¼ 1;qn�1; . . . ;q0ð Þ; ð48Þ

btT 0 #
~btT 0

� �
¼ n; n� 1ð Þæn�1; . . . ;æ1;0ð Þ; ð49Þ

btX 0 #
~btX0

� �
¼ n; n� 1ð Þvn�1; . . . ;v1; 0
� �

; ð50Þ

btY 0 #
~btY 0

� �
¼ n; n� 1ð Þhn�1; . . . ; h1; 0ð Þ; ð51Þ

btZ0 #
~btZ0

� �
¼ n; n� 1ð Þjn�1; . . . ;j1;0ð Þ; ð52Þ

btW 0 #
~btW 0

� �
¼ n; n� 1ð Þqn�1; . . . ;q1; 0ð Þ; ð53Þ

the functions X;Y; Z;W; T have been noted in (13)–(17). Next, the
following auxiliary parameters are introduced in order to simplify
the further derivations: A1l;A2l; L1l; L2l; L3l;N1l;N2l;N3l;K1l;K2l;

K3l 2 R; l ¼ 1;2.
Applying the above identities, previously derived conditions

(32)–(35) and (40)–(43) can be restated via the defined vectors:

T
!
þA11 X

!
þA21

~btX 0
� �

¼ 0; T
!
þA12 Z

!
þA22

~btZ0
� �

¼ 0; ð54Þ
~btT 0

� �
þ L11 T

!
þL21 X

!
þL31 Y

!
¼ 0;

~btT 0
� �

þ L12 T
!
þL22 Z

!
þL32 W

!
¼ 0; ð55Þ

~btT 0
� �

þ N11 T
!
þN21 X

!
þN31 Y

!
¼ 0;

~btT 0
� �

þ N12 T
!
þN22 Z

!
þN32 W

!
¼ 0; ð56Þ

W
!

þK11 Y
!
þK21 T

!
þK31

~btY 0
� �

¼ 0; K12 W
!

þK22 T
!
þK32

~btW 0
� �

¼ 0: ð57Þ

Parameters used in the above equations read:

ið Þ Akl :
A11 ¼ a1r1

a0
; A12 ¼ a2r3

c0
;

A21 ¼ � gr1
a0

; A22 ¼ � gr3
c0

;

iið Þ Lml :
L11 ¼ b1

g ; L12 ¼ b2
g ; L21 ¼ kyr1

g ;

L22 ¼ kwr3
g ; L31 ¼ b2r2

g ; L32 ¼ d2r4
g ;

iiið Þ Nml :
N11 ¼ a1�a1

g ; N12 ¼ c1�a2
g ; N21 ¼ a2r1

g ;

N22 ¼ c2r3
g ; N31 ¼ kxr2

g ; N32 ¼ kzr4
g ;

ivð Þ Kml :
K11 ¼ b1�c�b1ð Þr2

cr4
; K12 ¼ d1 � b2ð Þr4; K21 ¼ b0

cr4
;

K22 ¼ d0; K31 ¼ � gr2
cr4

; K32 ¼ �gr4;

ð58Þ
where m ¼ 1;2;3; l; k ¼ 1;2.
4

All of the parameters defined above can be placed in one of
three exclusive groups which can be represented by a schematic
diagram in Fig. 1:

� ak; bk; ck; dk kx; ky; kz; kw and c; k ¼ 0;1;2 are parameters of the
Riccati system (2).

� g; t0;rk;æm;vm; hm;jm and qm where m ¼ 1; . . . ;n� 1;
k ¼ 1;2;3;4 are parameters of the solitary solutions.

� al; bl;Akl; Lml;Nml and Kml, where m ¼ 1;2;3; l; k ¼ 1;2 are auxil-
iary parameters that neither belong to the solution nor the sys-
tem of differential equations. The first two, al and bl, are applied
in the derivation of conditions (54)–(57) (specifically (28)–
(31)). The remaining parameters Akl; Lml;Nml;Kml relate the Ric-
cati system and its solitary solution parameters via necessary
and sufficient conditions (54)–(57).

The solitary solution and auxiliary parameters can be derived as
a solution to the algebraic Eqs. (54)–(57). The Riccati system
parameters are then obtained as:

a0 ¼ �g r1
A21

; c0 ¼ �g r3
A22

; a1 ¼ g N11 � A11
A21

� �
;

c1 ¼ g N12 � A12
A22

� �
; a2 ¼ N21g

r1
; c2 ¼ N22g

r3
; kx ¼ N31g

r2
;

kz ¼ N32g
r4

; b0 ¼ � gr2K21
K31

; d0 ¼ K22;

b1 ¼ �g K11
K31

þ r2
K31r4

þ L11
� �

; d1 ¼ K12
r4

þ gL12; b2 ¼ L31g
r2

;

d2 ¼ L32g
r4

; ky ¼ L21g
r1

; kw ¼ L22g
r3

; c ¼ � gr2
K31r4

:

ð59Þ

Using the vector definitions (44), (45), (47), (50) and (52) and taking
each element of (54) yields a set of algebraic equations with
unknowns A1l;A2l;æk;vk and jk; k ¼ 0; . . . ;n� 1; l ¼ 1;2:

1þ A11 þ nA21 ¼ 0;
1þ A12 þ nA22 ¼ 0;
æk þ A11vk þ A21kvk ¼ 0; k ¼ n� 1; . . . ;0;
æk þ A12jk þ A22kjk ¼ 0; k ¼ n� 1; . . . ;0:

8>>><>>>: ð60Þ

The solution of the above system reads:

A2l ¼ �1þ A1l

n
; vk ¼

æk

1þ n� kð ÞA21
¼ pk1æk; ð61Þ

jk ¼ æk

1þ n� kð ÞA22
¼ pk2æk; A1l;æk 2 R: ð62Þ

Note that pkl is defined as pkl ¼ 1
1þ n�kð ÞA2l ; k ¼ 0; . . . ; n� 1; l ¼ 1;2 in

the above.
Similarly to (60), using (44)–(49) in conjunction with (55) yields

the following set of linear equations with L1l; L2l; L3l as unknowns:

nþ L11 þ L21 þ L31 ¼ 0;
nþ L12 þ L22 þ L32 ¼ 0;
kæk þ L11æk þ L21vk þ L31hk ¼ 0; k ¼ n� 1; . . . ;0;
kæk þ L12æk þ L22jkþ L32qk ¼ 0; k ¼ n� 1; . . . ;0:

8>>><>>>: ð63Þ

Let:

hk ¼ hk1æk; qk ¼ hk2æk; hkl 2 C; k ¼ 0; . . . ;n� 1; l ¼ 1;2: ð64Þ
Note that if æk ¼ 0, the last two equations of (63) become iden-

tities. Otherwise, cancelling æk – 0 from the last two equations of
(63) results in:

nþ L11 þ L21 þ L31 ¼ 0;
nþ L12 þ L22 þ L32 ¼ 0;
kþ L11 þ L21pk1 þ L31hk1 ¼ 0; k ¼ n� 1; . . . ;0;
kþ L12 þ L22pk2 þ L32hk2 ¼ 0; k ¼ n� 1; . . . ;0:

8>>><>>>: ð65Þ



Fig. 1. A schematic diagram portraying the relationship between different groups of parameters.
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Applying (44)–(49)–(56) yields another set of linear equations
with unknowns N1l;N2l;N3l:

nþ N11 þ N21 þ N31 ¼ 0;
nþ N12 þ N22 þ N32 ¼ 0;
kþ N11 þ N21pk1 þ N31hk1 ¼ 0; k ¼ n� 1; . . . ;0;
kþ N12 þ N22pk2 þ N32hk2 ¼ 0; k ¼ n� 1; . . . ;0:

8>>><>>>: ð66Þ

Note that the two above systems (65) and (66) coincide fully, thus
their solutions will also be derived in an analogous manner.

Finally, applying (44), (46), (48), (51) and (53)–(57) results in a
set of linear equations with respect to K1l;K2l and K3l; l ¼ 1;2:

1þ K11 þ K21 þ nK31 ¼ 0;
K12 þ K22 þ nK32 ¼ 0;
hk2 þ K11hk1 þ K21 þ K31khk1 ¼ 0; k ¼ n� 1; . . . ;0;
K1lhk2 þ K22 þ K32khk2 ¼ 0; k ¼ n� 1; . . . ;0:

8>>><>>>: ð67Þ
4.1. First order solitary solutions to (2)

First order solitary solutions (kink solutions) will be considered
in this subsection. The selection n ¼ 1 transforms systems (65),
(66) into a singular form; the solutions in terms of L3l;N3l read:

L1l ¼ 1þ L3lð Þp0l � L3lh0l

1� p0l
; L2l ¼ � 1þ L3lð Þ þ L3lh0l

1� p0l
; L3l 2 R; ð68Þ

N1l ¼ 1þ N3lð Þp0l � N3lh0l

1� p0l
; N2l ¼ � 1þ N3lð Þ þ N3lh0l

1� p0l
; N3l 2 R; ð69Þ

with l ¼ 1;2. While the expressions of Lkl;Nkl coincide, in general
Lkl – Nkl, since the values L3l and N3l can be selected arbitrarily
and do not depend on each other.

The system (67) yields the expressions for K11;K12;K21;K12:

K11 ¼ h02�nK31�1
1�h01

; K12 ¼ �nK32
1�h02

;

K21 ¼ nK31þ1ð Þh01�h02
1�h01

; K22 ¼ nK32h02
1�h02

;
ð70Þ

where K31;K32 2 R.

Corollary 4.1. The Riccati system (2) admits the first order solitary
solutions (kink solutions, n ¼ 1) without any constraints on Riccati
system parameters or solitary solution parameters.
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4.2. Higher order solitary solutions to (2)

Higher order solitary solutions are obtained by selecting n P 2.
In this case (65), (66) are no longer singular and can only admit one
solution:

L1l ¼ N1l ¼ p1ln�1ð Þh0l�p0l nh1l�1ð Þ
1�p1lð Þh0lþ h1l�1ð Þp0lþ p1l�h1lð Þ ;

L2l ¼ N2l ¼ 1�nð Þh0l�1þnh1l
1�p1lð Þh0lþ h1l�1ð Þp0lþ p1l�h1lð Þ ;

L3l ¼ N3l ¼ n�1ð Þp0lþ1�np1l
1�p1lð Þh0lþ h1l�1ð Þp0lþ p1l�h1lð Þ :

ð71Þ

The above solution is correct if and only if:

kþ L1l þ L2lpkl þ L3lhkl ¼ 0; k ¼ 2; . . . ;n� 1; ð72Þ
1� p1lð Þh0l þ �1þ h1lð Þp0l þ p1l � h1l – 0; l ¼ 1;2: ð73Þ
Conditions (72)–(73) follow from (65), (66): both of the systems
have 2nþ 2 equations and 6 unknowns. When n > 2, the number
of equations surpasses the number of unknown parameters, which
means that the above conditions are necessary in order for the sys-
tem to remain consistent.

As shown above, in the case of higher order solitary solutions,
the auxiliary parameters Lkl and Nkl must be equal. Thus, inserting
Lkl ¼ Nkl (k ¼ 1;2;3Þ into (58) results in the following constraints
on the Riccati system parameters:

a2 ¼ ky; b2 ¼ kx; c2 ¼ kw; d2 ¼ kz: ð74Þ
Applying analogous reasoning used for the derivation of condi-

tions (72)–(73) earlier, it could be concluded that solutions (70) to
the system (67) hold if and only if the following relationships are
true:

hk2 þ K11hk1 þ K21 þ K31khk1 ¼ 0; k ¼ 1; . . . ;n� 1; ð75Þ
K1lhk2 þ K22 þ K32khk2 ¼ 0; k ¼ 1; . . . ;n� 1: ð76Þ

The results of the analysis performed in this subsection are
summarized in the following Lemma.

Lemma 4.1. The Riccati system (2) admits higher order solitary
solutions (n P 2) if and only if (72), (74) and (75)–(76) do hold
true.



Fig. 2. Kink solitary solution x tð Þ to (81).
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4.3. The algebraic structure of higher order solitary solutions (n P 2)

The solutions (11)–(12) can be rewritten in a different form
considering (61)–(62) and (64):

x tð Þ ¼ bx bt� � ¼ r1
X
T
¼ r1

bt� �n þ p n�1ð Þ1æn�1 bt� �n�1
þ . . .þ p01æ0

bt� �n þæn�1 bt� �n�1
þ . . .þæ0

; ð77Þ

y tð Þ ¼ by bt� � ¼ r2
Y
T
¼ r2

bt� �n þ h n�1ð Þ1æn�1 bt� �n�1
þ . . .þ h01æ0

bt� �n þæn�1 bt� �n�1
þ . . .þæ0

; ð78Þ

z tð Þ ¼ bz bt� � ¼ r3
Z
T
¼ r3

bt� �n þ p n�1ð Þ2æn�1 bt� �n�1
þ . . .þ p02æ0

bt� �n þæn�1 bt� �n�1
þ . . .þæ0

; ð79Þ

w tð Þ ¼ bw bt� � ¼ r4
W
T

¼ r4

bt� �n þ h n�1ð Þ2æn�1 bt� �n�1
þ . . .þ h02æ0

bt� �n þæn�1 bt� �n�1
þ . . .þæ0

: ð80Þ

It is important to note that necessary and sufficient conditions
mentioned in Lemma 4.1 do result in a specific algebraic structure
of higher order solitary solutions. The following Lemma splits the
family of solutions into two cases.

Lemma 4.2. While the Riccati system (2) can admit solitary solutions
of arbitrary order, some solutions may have constraints imposed on
their parameters:

(i) The unconstrained case at n ¼ 2. The conditions (72), (75)–
(76) are fulfilled without constraining the parameters of the
solitary solution. Furthermore, any system can admit an infinite
number of unique solitary solutions which can be generated by
selecting different æk; k ¼ 0; . . . ;n� 1 in (77)–(80).
(ii) The constrained case at n > 2. The conditions (72), (75)–
(76) are fulfilled only if n� 2 parameters æk; k 2 0; . . . ;n� 1f g
are set to zero. Selecting different values of the nonzero æk,
results in an infinite number of unique solitary solutions.

Note that case (ii) of the above Lemma does not inherently
mean that higher order solitary solutions become more complex:
due to the result that n� 2 parameters æk; k 2 0; . . . ;n� 1f g must
be set to zero, these solutions retain a maximum number of two
extrema.

5. Numerical experiments

5.1. Kink solitary solution to a single Riccati equation

Consider the following Riccati equation:

x0 ¼ 1þ 9
10

x� 5
8
x2; x 0ð Þ ¼ �0:71: ð81Þ

The solution to (81) is a kink solitary wave depicted in Fig. 2.
Regardless of initial conditions, the solutions to (81) are monoto-
nous (Polyanin and Zaitsev, 2004).

5.2. Bright/dark solitary solutions to a system of Riccati equations with
multiplicative coupling

Consider the following system of Riccati equations with multi-
plicative coupling:

x0 ¼ 1þ 9
10

x� 5
8
x2 þ 1

20
xy; ð82Þ

y0 ¼ �33
10

þ 3
10

yþ 1
20

y2 � 5
8
xy: ð83Þ
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The solutions to (82)–(83) are bright/dark solitary waves depicted
in Fig. 3. A detailed account of solitary solutions in such systems
is given in Navickas et al. (2016). Note that compared to the single
Riccati equation, the solitary solutions to this system are of a higher
order and possess extrema.

5.3. Second order solitary solutions to the system (2)

Suppose the following Riccati system is given:

x0 ¼ 1
3
þ 5869

3
x� 1730

3
x2 � 460xy; ð84Þ

y0 ¼ 275
18

þ 105367
54

y� 460y2 � 1730
3

xy� 1
6

w� yð Þ; ð85Þ

z0 ¼ 1þ 9
10

z� 5
8
z2 þ 1

20
zw; ð86Þ

w0 ¼ �33
10

þ 3
10

wþ 1
20

w2 � 5
8
zw: ð87Þ

The techniques presented above are used to construct second order
solitary solutions (n ¼ 2) (11)–(12).

Firstly, solitary solution parameters rk (k ¼ 1;2;3;4), g; t0 and
æk k ¼ 0;1ð Þ are selected as follows:

r1 ¼ 1; r2 ¼ 3; r3 ¼ 2; r4 ¼ �3;
g ¼ 1; t0 ¼ �5; æ0 ¼ 1; æ1 ¼ 5:

ð88Þ

Then, the auxiliary parameters al; bl;Akl; Lml;Nml and Kml

(m ¼ 1;2;3; l; k ¼ 1;2) are computed from (58):

a1 ¼ 5
3 ; a2 ¼ 3

2 ; b1 ¼ 5864
3 ; b2 ¼ � 3

5 ; A11 ¼ 5;
A12 ¼ 3; A21 ¼ �3; A22 ¼ �2; L11 ¼ N11 ¼ 5864

3 ;

L12 ¼ N12 ¼ � 3
5 ; L21 ¼ N21 ¼ � 1730

3 ; L22 ¼ N22 ¼ � 5
4 ;

L31 ¼ N31 ¼ �1380; L32 ¼ N32 ¼ � 3
20 ; K11 ¼ � 176

9 ;

K12 ¼ � 27
10 ; K21 ¼ 275

9 ; K22 ¼ � 33
10 ; K31 ¼ �6; K32 ¼ 3:

ð89Þ
Having derived the auxiliary parameters, it is now possible to

use (61)–(62), (70), (71) and (75)–(76) to obtain the missing soli-
tary solution parameters pml and hml (m ¼ 0;1; l ¼ 1;2):

p01 ¼ � 1
5 ; p02 ¼ � 1

3 ; p11 ¼ � 1
2 ; p12 ¼ �1;

h01 ¼ 3
2 ; h02 ¼ � 11

9 ; h11 ¼ 187
115 ; h12 ¼ 11:

ð90Þ

The above parameters yield the following non-singular second
order solitary solutions:



Fig. 3. Bright/dark solitary solutions x tð Þ (part (a)) and y tð Þ (part (b)) to (82)–(83).

Fig. 4. Second order solitary solutions x tð Þ (part (a)), y tð Þ (part (b)), z tð Þ (part (c)) and w tð Þ (part (d)) to (84)–(87).
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Fig. 5. Third order solitary solutions x tð Þ (part (a)), y tð Þ (part (b)), z tð Þ (part (c)) and w tð Þ (part (d)) to (95)–(98).
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x tð Þ ¼ 10 exp 2t � 10ð Þ � 25 exp t � 5ð Þ � 2
10 exp 2t � 10ð Þ þ 5 exp t � 5ð Þ þ 1ð Þ ; ð91Þ

y tð Þ ¼ 3 46 exp 2t � 10ð Þ þ 69 exp t � 5ð Þ þ 374ð Þ
46 exp 2t � 10ð Þ þ 5exp t � 5ð Þ þ 1ð Þ ; ð92Þ

z tð Þ ¼ 2 3 exp 2t � 10ð Þ � 15 exp t � 5ð Þ � 1ð Þ
3 exp 2t � 10ð Þ þ 5exp t � 5ð Þ þ 1ð Þ ; ð93Þ

w tð Þ ¼ �3 9 exp 2t � 10ð Þ þ 495 exp t � 5ð Þ � 11ð Þ
9 exp 2t � 10ð Þ þ 5exp t � 5ð Þ þ 1ð Þ : ð94Þ

The above solutions are depicted in Fig. 4.

5.4. Third order solitary solutions to the system (2)

In this subsection, the third order solitary solutions (n ¼ 3) are
constructed for the following Riccati system:

x0 ¼ 1
2
þ 101

44
x� 30

11
x2 � 1

44
xy; ð95Þ

y0 ¼ 15
4

� 5
11

y� 1
44

y2 � 30
11

xy� w� yð Þ; ð96Þ

z0 ¼ 3
2
þ z� 45

56
z2 þ 1

21
zw; ð97Þ

w0 ¼ �15
2

� 3
4
wþ 1

21
w2 � 45

56
zw: ð98Þ
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Analogously as in the previous subsection, solitary solution
parameters rk (k ¼ 1;2;3;4), g; t0 and æk k ¼ 0;1ð Þ are selected
as follows:

r1 ¼ 1; r2 ¼ 3; r3 ¼ 2; r4 ¼ �3;
g ¼ 1; t0 ¼ �5; æ0 ¼ 1; æ1 ¼ 10:

ð99Þ

From the Lemma 4.2 it follows that æ2 ¼ 0.
The auxiliary parameters al; bl;Akl; Lml;Nml and Kml

(m ¼ 1;2;3; l; k ¼ 1;2) are then obtained from (58):

a1 ¼ 5
2 ; a2 ¼ 9

4 ; b1 ¼ � 9
44 ; b2 ¼ � 5

4 ; A11 ¼ 5;
A12 ¼ 3; A21 ¼ �2; A22 ¼ � 4

3 ; L11 ¼ N11 ¼ � 9
44 ;

L12 ¼ N12 ¼ � 5
4 ; L21 ¼ N21 ¼ � 30

11 ; L22 ¼ N22 ¼ � 45
28 ;

L31 ¼ N31 ¼ � 3
44 ; L32 ¼ N32 ¼ � 1

7 ; K11 ¼ 3
4 ;

K12 ¼ � 3
2 ; K21 ¼ 5

4 ; K22 ¼ � 15
2 ; K31 ¼ �1; K32 ¼ 3:

ð100Þ
Finally, the solitary solution parameters pml and hml

(m ¼ 0;1; l ¼ 1;2) are computed using (61)–(62), (70), (71) and
(75)–(76):

p01 ¼ � 1
5 ; p02 ¼ � 1

3 ; p11 ¼ � 1
3 ; p12 ¼ � 3

5 ;

h01 ¼ 5; h02 ¼ �5; h11 ¼ 25; h12 ¼ 5:
ð101Þ
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Thus, the Riccati system (95)–(98) admits the following non-
singular third order solitary solutions:
x tð Þ ¼ 15 exp 3t � 15ð Þ � 50exp t � 5ð Þ � 3
15 exp 3t � 15ð Þ þ 10 exp t � 5ð Þ þ 1ð Þ ; ð102Þ

y tð Þ ¼ 3 exp 3t � 10ð Þ þ 250exp t � 5ð Þ þ 5ð Þ
exp 3t � 15ð Þ þ 10exp t � 5ð Þ þ 1

; ð103Þ

z tð Þ ¼ 2 3exp 3t � 10ð Þ � 18 exp t � 5ð Þ � 1ð Þ
3 exp 3t � 15ð Þ þ 10exp t � 5ð Þ þ 1ð Þ ; ð104Þ

w tð Þ ¼ �3 exp 3t � 10ð Þ þ 50exp t � 5ð Þ � 5ð Þ
exp 3t � 15ð Þ þ 10exp t � 5ð Þ þ 1

: ð105Þ
The solitary solutions (102)–(105) are displayed in Fig. 5. Note that
although the order of the solitary solution is higher compared to the
previous example (see Section 5.3), the number of extrema remains
the same.
6. Conclusions

Solitary solutions to model (2), representing cancer metastasis,
were derived in this paper. Note that (2) represents a systemwith a
one-way interaction between tumors: both tumor nodes are repre-
sented via Riccati systems with multiplicative coupling, however,
the first node is autonomous (in the sense that it is not influenced
by the remainder of the system), and the second is diffusively cou-
pled with the first. This results in a system where the inter-node
interactions are represented by a single diffusive term, rather than
a two-way interaction consisting of two terms, discussed in detail
in Telksnys et al. (2020).

While system (2) may appear similar to the Riccati system dis-
cussed in Telksnys et al. (2020), their dynamics are distinct. In
either case, the evolution of tumor cell populations is non-
monotonous, possessing both maxima and minima for finite time
values as well as differing ratios of limits as time tends to �1 or
þ1. However, with a single diffusive term, as discusssed in this
paper, solitary solutions with at most two maxima (irregardles of
the actual order n of the solution) can be obtained, while two dif-
fusive terms in the analogous system results in at most three
maxima.

Furthermore, it can be noted that the relation between cell pop-
ulation in the nodes themselves can be representative of tumor
evolution: functions x tð Þ; z tð Þ evolve from a higher steady-state to
a lower one, while y tð Þ;w tð Þ do the opposite. It is interesting to
observe that the androgen-deprivation prostate cancer treatment
model does admit only bright/dark (the second order) solitary
solutions (Telksnys et al., 2020) However, this paper shows that
the order of solitary solutions admitted by the metastasis model
represented by multiplicatively and diffusively coupled Riccati sys-
tems can be larger than two. Together with the results of Telksnys
et al. (2020), this paper provides a comprehensive study on solitary
solutions to tumor models. Extensions of these models containing
more complex coupling terms (both inside the nodes and between
them) remain a definite objective of future research.
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