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An analytical study on a nonlinear elastic rod equation is conducted in this paper. The modified
Kudryashov method, the (G'/G)-expansion method, and the Exp-function method are employed to extract
exact solutions for the equation. As a result, a range of exact traveling wave solutions is obtained, includ-
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the general solutions derived from each of the proposed techniques are compared and verified together.
Finally, merits and drawbacks of these methods are comprehensively discussed.
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1. Introduction

“The most incomprehensible thing about the world is that it is at all
comprehensible” (Albert Einstein), but the question coming up is
how we can fully appreciate incomprehensible issues? Nonlinear
sciences provide clues for this context.

The world surrounding us is intrinsically nonlinear. In this
regards, nonlinear partial differential equations (NPDEs) are of a
substantial significance to describing complicated physical phe-
nomena; for instance, nonlinear wave propagation can arise in
the scopes of elasticity theory, fluid dynamics, plasma physics,
and nonlinear optics. Both the procedures applied for and the solu-
tions derived from equations of nonlinear wave propagation differ
remarkably from those seen in the linear wave equations. Of sev-
eral types of nonlinear wave propagation, solitons or solitary
waves are best-known. In this way, there is an intense inclination
towards the explicit solitary wave solutions. The investigation of
analytical, exact solutions for NPDEs has become quite notable
due to the recently great advances gained in the computational
techniques. In the numerical approaches, stability and convergence
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should specifically be considered and have still remained a serious
challenge in order to avoid inappropriate or divergent outcomes
(Abdi Aghdam and Kabir, 2010; Borhanifar et al., 2011; Kabir and
Demirocak, 2017). However, in the recent decade, several efficient
analytical and semi-analytical approaches were established and
developed remarkably for solving NPDEs, consisting mainly of
the homotopy analysis method (HAM) (Abbasbandy, 2010;
Rashidi and Shahmohamadi, 2009), bilinear differential operator
extension method (Lu and Ma, 2016; Lu et al., 2016a, 2016b,
2016c¢; Gao et al., 2016), Darboux transformation method (Lu and
Lin, 2016), Madelung fluid description approach (Lu et al,
2016d), variational methods (Hashemi Kachapi et al., 2009; Helal
and Seadawy, 2009; Seadawy, 2015a), the extended direct alge-
braic method (Seadawy and El-Rashidy, 2013; Seadawy, 2014,
2015b, 2016a, 2016b, 2017), the tanh method (Wazwaz, 2005),
the differential transform method (DTM) (Biazar and Eslami,
2011), the Exp-function method (He and Wu, 2006; Borhanifar
et al., 2009; Borhanifar and Kabir, 2009; Kabir and Khajeh, 2009;
Kabir, 2011a; Kabir and Abdi Aghdam, 2012), the (G//G)-
expansion method (Wang et al., 2008; Kabir, 2011a; Kabir et al.,
2011a; Kabir and Bagherzadeh, 2011; Kabir and Abdi Aghdam,
2012), and many others. Notwithstanding the rapidly burgeoning
emergence of analytical methods, it is important to point out that
most of these methods yield equivalent exact solutions to each
other. Furthermore, there are some cautions and considerations
to be observed in applying such approaches. In this regard, Kudrya-
shov has admonished research community to avoid a number of
common errors as well as misleading, redundant solutions have
taken place when applying these recent analytical methods
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(Kudryashov, 2009, 2012; Kudryashov and Loginova, 2009;
Kudryashov and Soukharev, 2009).

The aim of the present study is to investigate exact traveling
wave solutions for the nonlinear elastic rod equation by applying
the modified Kudryashov method, (G'/G)-expansion, and Exp-
function methods. More importantly, we aimed this equation to
make prominent comparisons among the mathematical
approaches presented in the paper. Besides, to our knowledge, a
few studies have been undertaken to date in order to find exact
traveling wave solutions of this equation through analytical tech-
niques. Abdou (2009) implemented the extended mapping method
to find some of the periodic and solitary solutions of nonlinear
elastic rod equation. For the first time, Zhuang and Zhang (1986)
extracted the following nonlinear partial differential equation
showing the longitudinal oscillation in an elastic rod coupled with
lateral inertia (Li and Zhang, 2008):

ou\" ' o*u  [(v,\ &*u
1 _ p = 1.1
1 (E)x) } ox? s | ot2ox? 0 (1
wheres, J,and ¢} =£, v, p, and E are the rod’s cross-sectional area,

polar moment of inertia, the square velocity of linear longitudinal
waves, Poisson’s ratio, the rod density, and Young’s modulus,
respectively. n and a, also are an integer and the constant of rod
materials. In the hard nonlinear substances (e.g. polymers and rub-
bers) a, > 0, while for the soft nonlinear ones (e.g. most of the met-
als) a, < 0 (Zhuang and Zhang, 1986).

Nonlinear dynamics of slender elastic rods and beams under
external forces and torques as well as parametric excitations
remains interesting to the engineering and applied mathematics
research communities. Analysis of nonlinear dynamics of elastic
rod equation poses important applications in accelerating space
crafts and missiles, turbo-machinery parts operating at high
speeds, manipulator arms of robots, Micro-Electro-Mechanical Sys-
tems (MEMS), bridge elements (e.g. cables and towers), and other
structural components.
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2. A brief review on the proposed methods
2.1. The modified Kudryashov method

The classic version of the method was introduced by
Kudryashov (1988), then it was modified for the first time by
Kabir et al. (2011b) and applied to higher-order nonlinear differen-
tial equations as well as the nonlinear transient heat conduction
equations in one- and two-dimensional spaces with nonlinearity
of n (Kabir, 2011b).

As a brief review of the method, a general NPDE is first consid-
ered in the following form

-)=0. (2.1)
where P accounts for a nonlinear function of the given variables or a
function that can be mitigated to a polynomial through employing

some suitable transformations.
Introducing a wave variable # described as

u=u(), n=kx—ct (2.2)

P(u, ug, Uy, Uxx, Ure, Ugy, -

Eq. (2.1) reduces to the following ordinary differential equation
(ODE)

P(u, —cu' ku" kPu", c2u", —keu” - ) = 0. (2.3)

where ¢ and k are two constants which will be determined later.
Now, we should seek a rational function type of solution for the
given PDE, in terms of exp(#), in the form of:

m ak
u(n) = _ 2.4
=2 [+ expnl 24
in which ag, a;, ---,
solution of Eq. (2.3).

The next step is the calculation of value m in the above formula.
The m value can be specified using the pole order of general solu-
tions for Eq. (2.3). Substituting u(n) = =™, where m > 0 into all the
terms of Eq. (2.3), then comparing those terms which have the
smallest powers we will obtain the value of m to expand the Eq.
(2.4) (Kudryashov, 2012).

Differentiating (2.4) with respect to #, inserting the outcome
into Eq. (2.3), and equating the coefficients of the same powers
of e with zero, we can achieve an algebraic system. The rational
function solutions of Eq. (2.1) are then found by determining
ay, ai, ---, 4y from the system.

a, are constants that will be specified from the

2.2. The Exp-function method

Follow the steps described above before Eq. (2.4). Afterwards, it
is assumed that the travelling wave solution of Eq. (2.3) is
expressed as

f
u(’/,) B ,;Ean EXD(T”/I) _ bae exp(en) 4+ (blff exp(_i'ly,) (2 5)
h exp(gn) +---+b_nexp(~hn)”
b exp(mmn) ¢

where e, f, g, h are positive integers that can be selected arbitrarily;
a, and by, are also unknown constants which will be specified later.

2.3. The (G'/G)-expansion method

Based on the (G'/G)-expansion method, the solution of Eq. (2.3)
is assumed to be a polynomial in the (€) terms:

n = Z%’(%) + 0o, Um0 (2.6)
i=1

in which o, and oy, fori =1, 2, --- , m stand for constants that will
be determined further, and G(y) can satisfy the following second-
order linear ordinary differential equation:

&Gy) | ,dGn)

e +)—+,uG( )=0 (2.7)
where 1 and p account for arbitrary constants. Regarding the gen-
eral solution of Eq. (2.7), we have

7 an G sinh< v /274”;1) +Cy cosh< 274#r1> 2 g 0
/—‘ /2 an _iz - :u> 3
GI(’I) Cy cosh < n) +Cy sinh ( 74#;1) 2
G(}’]) e -Gy sm( e 217) +C2cos< ik /211) . > 4'u 0
—L = <0,
? C1c05<‘4“2 )+C25m( a2 ) 2
(2.8)

and it follows from (2.6) and (2.7) that

,iicxi {(%’)Hl I ;“(%,)i N 'u(%’)‘?l]y

1+2 i+1

m / " o _/i
U= iy i+1)(%) i521+1)(c) +l(j12 +2)(9)
= [ rwaRi-1(§) - 1)(E)
(2.9)
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The prime in the above expressions indicates the derivative
with respect to .

To explicitly
implemented:

Stage 1. Ascertain the integer m through inserting Eq. (2.6) cou-
pled with Eq. (2.7) into Eq. (2.3), and then setting a balance
between the highest-order nonlinear term(s) and the highest-
order partial derivative.

Stage 2. Substitute Eq. (2.6) with the magnitude of m specified in
Stage 1, along with Eq. (2.7) into Eq. (2.3) and gather all the terms
having the same order (%) the left side of Eq. (2.3) is transformed
to a polynomial in (). Then equate each coefficient of the polyno-
mial with zero in order to extract an algebraic system with k, ¢, og
and oy, fori=1,2, ---, m.

Stage 3. Solving the algebraic system derived in Stage 2 to find
k,c, oo and o, fori=1, 2, --- , m, using the Maple.

Stage 4. Use the results gained from the above stages to extract a
set of fundamental solutions u(n) of Eq. (2.3) as a function of (£);
given that the solutions of Eq. (2.7) are well-known, we can achieve
exact solutions of Eq. (2.1).

reach u, the following four stages are

3. Application of the methods to the nonlinear elastic rod
equation

3.1. Application of the modified Kudryashov method

To seek traveling wave solutions of Eq. (1.1), we take advantage
of the wave variable # defined as Eq. (2.2), then Eq. (1.1) reduces to
the following ODE:

v,

(c® — Ak*)u" — nayc2k™" ()" 'u" — (s) K" =0, (3.1)

where c is the wave speed, and ' is the derivative with respect to .
Taking ¢(n) = u(n)’, integrating the resulting equation once, and
then choosing the integration constant as zero leads to

v,

(c® — 2k*)p — ancik™ ' " — ( <

)kzcqu” =0, (3.2)

2
Denote that o ="% g—cZ and y = a,c2. Then, for n =2 we
obtain

—k*Cag” + (¢ — Bk*) ¢ — y kP ¢? = 0, (3.3)

In the next stage, as previously described in the Section 2.1,
substituting ¢(n) = n~™ into all the terms of the above equation
and then comparing terms, we obtain m =2 to extend Eq. (2.4),
which yields:

a; 4 ay
1+exp(n)  (1+exp(n))*’

in which aq, a;, a, are unknown constants that will be determined
from the solution of (3.3). Differentiating (3.4) with respect to 7,
inserting the result into Eq. (3.3), and setting the coefficients of
the same power of e equal to zero, we obtain a set of algebraic
equations. With the aid of Maple 18, the solutions of the algebraic
system are below found:

Case 1.

c =4k LZ’ (10:0, a; = &Lkz? GZZ*%I(Z
1— ok P(1 — ok?) P(1 — ak?)

(3.5)

Inserting Eq. (3.5) into (3.4) and simplifying the result, the soli-
tary wave solution of Eq. (3.3) is achieved in the following form:

¢(n) = do + (34)

6ap k
(1 — ok®)

el
(1+eny?

; (3.6)

1=

where 1 = k(x + ,/:% t) and k is a free parameter which may be

computed by the relevant initial and boundary conditions.
Using the transformation

exp(n) = coshn + sinhy,

3.7
exp(—#n) = coshn — sinhy 37
then Eq. (3.6) can be easily converted to
3apk 2N
=—————sech’(5), 3.8
¢ 2y(1 — ak®) (2> 3:8)

The exact solution obtained above is shown at described param-
eters in Fig. 1.

In case k is an imaginary number, the above obtained solitary
solution may be transformed to periodic solution. We therefore
write k = iK where K is a real number.

With the aid of the following transformation:

n=iéé :K(xi 1+£K2 t)

exp(n) = cos(&) + isin(¢), (3.9)
exp(—n) = cos(¢) —isin(¢).
and substituting Eq. (3.9) into Eq. (3.8) yields

_ 3uB K ., (§>
= (Zy(l + ocKz)) 1sec 2 (3.10)

Case 2.
c=+k sz ap :—Lkz, a, = —4ocﬁk2 ,

\/1+ock 7(1 4 ok®) 7(1 + ak®)
4aB k

= 3.11

a2 (1 _kaz) ( )

Inserting Eq. (3.11) into (3.4), we attain another solitary wave
solution as follows:

Fig. 1. Exact hyperbolic-type solutions (3.8) and (3.28) at k=2, «=0.1,
B=1,y=1.
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afk e —4el +1
Y1 +ak®)| (1+er)?

where 1 = k(x + \/H% t).

Using the transformation (3.7), we are able to achieve the
hyperbolic form of the solution:

¢=— Lkz {1 23 sech2<ﬂ)},
P(1 + ok”) 2 2
The exact solution gained above is shown at described parame-
ters in Fig. 2.
When k is an imaginary number, the obtained solitary solution
can be converted into periodic solution. Following the same

manipulation demonstrated in the prior case, we find this particu-
lar solution:

_ [ wpK )] 3 2<£)}
¢ <y(l—ocl<2)>l[1 2% 2))
inwhiché:l((x;,/:%t).

3.2. Application of the Exp-function method

by = — (3.12)

(3.13)

(3.14)

Now, we seek to solve the Eq. (3.3) by applying Exp-function
method. To specify values of e and g cited in the Section (2.2),
we need to set a balance between the highest order nonlinear term
¢* and the linear term of the highest order ¢” in Eq. (3.3) as
follows:

crexp(g+eml+---

O = expldgn) G15)
PR exp(2en) +--- exp(2gn) _ c3exp((2e+2g)n) +---
Ca€xp(2gn) +---  exp(2gn) caexp(4gn) +---
(3.16)

where ¢; stand for the determined coefficients used for simplicity.
Making a balance between the highest orders of the Exp functions
in Egs. (3.15) and (3.16) results in

Fig. 2. Exact hyperbolic-form solutions (3.13) and (3.37) at k=1, « = 1000, 8 =
100, y = 200..

3g +e=2e+2g, (3.17)
which leads to
e=g. (3.18)

Likewise, to determine the values of f and h, we write

" "'+d1 exp[(f(3h +f)’7]

= 3.19
¢ -« +d,exp(—4hy) ' (3.19)
g = s exp(=2fn)  exp(-2hn)

.-+ dyexp(—2hn) = exp(—2hn)
_ ot dsexp(=2(f + h)n) (3.20)

-+ dg exp(—4hn)

where d; stand for the determined coefficients. Making a balance
between the lowest orders of the Exp functions in Egs. (3.19) and
(3.20) results in

3h+f=2(f+h), (3.21)
and then
f=nh (3.22)

We can arbitrarily select the values of f and e. For simplicity, the
valuese =g =1 and f = h =1 are set which reduce Eq. (2.4) to

o01) = a; exp(n) + do + a_1 exp(—1n)
= exp(”n) + bo + b_1 exp(—n)

; (3:23)
Substituting Eq. (3.23) into Eq. (3.3) then using Maple, we reach

1
7[C3€XP(31) + C2 €Xp(217) + €1 €XP(1) + Co + C-1 €XP(—1))

+ cpexp(—2n)+c_szexp(-3n)] =0, (3.24)
in which
A = [exp(1) + bo + b_1 exp(—n)]’, (3.25)

and the c, are coefficients of exp(n#). Vanishing the coefficients for
all the powers of exp(ny) leads to an algebraic system for
ao, bo,ay,a_1,b_1, k and c. Solving this algebraic system using Maple
18, we achieve the following:

Case 1.

| B
c=+k , a1 =0,a_1=0, by = by,
PR 1 1 o 0

30 kb b3
oo ba=g
(ok? — 1)y 4

Substituting Eq. (3.26) into (3.23), we can obtain the general-
ized solitary wave solution of Eq. (3.3):

(3.26)

3ap kbg

o(n) = — 20

=0 (3.27)
el + by + e

where 1 = k(x F./ 17/; = t) and by accounts for an arbitrary param-

eter that is specified using initial and boundary conditions.
If we set by =2 and apply the transformation (3.7), then
Eq. (3.27) can be simply converted to

qbfigaﬁ k )sech2 (g),

= 3.28
2y(1 — ak? (3.25)

Similarly, if we set by = —2 in the general solution (3.27), we
obtain

csch? (ﬂ) ,

; (3.29)
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e Comparing our results together, Eq. (3.28) with the exact solu-
tion (3.8) derived by the modified Kudryashov method, it can
vividly be observed that both are exactly the same.

In case k is assumed to be an imaginary number, the above
obtained solitary solutions are transformed into periodic solutions,
we set k = iK where K is a real number.

Substituting the transformation (3.9) into Eq. (3.27) yields

3o boK i
7(1+0K?)

[(1 +§) cos(&) + bo + (1 —é) i sin({)]

P(&) =

7 (3.30)

If we look for a periodic or a compact-like solution, the imagi-
nary part in the denominator of Eq. (3.30) must be eliminated, that
requires

by
2= 0, (3.31)
from Eq. (3.31) we obtain
by = +2, (3.32)
Substituting by = 2 into Eq. (3.30) results
d) — % i sec? (é)/ (333)
2y(1 4+ aK”®) 2
and similarly inserting by = —2 into Eq. (3.30) leads to
¢ = LKZ icsc? (§> (3.34)
2y(1 4 aK®) 2

e Validating our results together, Eq. (3.33) with the periodic
solution (3.10) obtained by the modified Kudryashov method,
it can obviously be seen that both are exactly the same.

Case 2.

2
c=+k Lza bOZbO, b,] :b—()’aO:lLkgo,
1+ ok 4 (]+OCk)’))

~ opkb; ok
(1 + ok®)y

4y(1 + ok®)’

(3.35)

Inserting Eq. (3.35) into (3.23), one admits to the solitary wave
solution as follows:
ap k 20 kb ap kbl

_ l _ -1
(1+o¢k2)ye + (1+0k?)y 4y(1+ock2)e

o(n) =

2
el +bo+%en

_ af k 1 3by
(1 +ak®yy e + by +ée*’1 7

where 7 = k(xi 1+/;ck2 t) and bg is an arbitrary constant which

may be determined through initial and boundary conditions.
If we take by =2 and use the transformation (3.7), then Eq.
(3.36) can be easily converted to

(3.36)

af k { 3 2N }
=—(———-|[1-=sech’(5)]|, 3.37
’ (y(l + ak2)> 2 G) 537
and similarly replacing by = —2 into Eq. (3.36) leads to
af k { 3 2 /N }
= —F—5|[1+Scsch™(5)], 3.38
’ (v(l + ak2>> >=e(3)] 2

e Comparing our results together, Eq. (3.37) with the hyperbolic-
type solution (3.13) obtained by the modified Kudryashov
method, it can vividly be seen that both are exactly the same.

If k is assumed to be an imaginary number, the solitary wave
solutions already obtained will be transformed to the periodic
solutions. Adopting the same procedure as represented in the prior
case, we find:

4)(5)_( upK ) . 3by
(1 —ok?) <(1+§)cos(é)+bo+<l—§)isin(é)) 7
(3.39)

where 5 = i¢, ¢ = K(xi \ /1-£1<Z t).
If we look for periodic-type or compaction-like solutions, the

imaginary part of denominator in Eq. (3.39) have to be set zero.
To satisfy this aim, we set by = 2, which results

_ (K] 3 e (gﬂ
¢ (V(l - ocI<2)> i {1 5 sec 5| (3.40)
and inserting by = —2 into Eq. (3.39), yields
_ (oK N3 e (ﬁ)}
¢ (y(l - ocK2)> i {1 2csc Ik (3.41)

e Finally, to validate our results together, Eq. (3.40) with the peri-
odic solution (3.14) extracted through the modified Kudryashov
method, it can obviously be seen that both are exactly the same.

3.3. Application of the (G'/G)-expansion method

According to Step 1 mentioned in Section 2.3, a homogeneous
balance between the terms ¢” and ¢? in Eq. (3.3) leads to

m+2=2m, (3.42)
and then
m=2. (3.43)

Assume the solutions of (3.3) is expressed in the following poly-
nomial form:

G/ G/ 2
o) = oo + oy (ﬁ) + 0 <E> , o, 070,

in which o, o; and o, are unknown constants which will be deter-
mined further.Inserting Eq. (3.44) coupled with Eq. (2.7) into Eq.
(3.3), and then gathering the terms with the same (G'/G) powers,
the left side of Eq. (3.3) is transformed to a polynomial in the terms
of (G’/G). Vanishing each of the coefficients results in an algebraic
system for oo, o4, o, k, ¢, 2 and p. Getting assistance from Maple
18 to solve this algebraic system of equations, we have:
Case 1.

(3.44)

T S S ] TR
1—ok®(2°—4w) P[1 —ok™ (25 —4w))
o4 :,Lk}', a2:76“—ﬁk (345)

P = ak? (7 — 4g0)) Y1 = ak? (22 — 4g))

where k, / and p are arbitrary constants.
Case 1.A. /2 —4u >0
Using Eq. (3.45), the expression (3.44) turns into

"= _y[l - oc?cf(ﬁzic—4u)] [,u-;—l(%) i <%/)2}

Inserting the general solution of (2.8) into Eq. (3.46), we gain
the following generalized traveling wave solution:

(3.46)
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o 3af k(A2 — 4u) (Q sinh(¢) + C, cosh(é))z »
- 2"/[1 k(% — 4#)] Cy cosh(¢&) + C; sinh(¢) '

(3.47)

P 724 V24,
where ¢ — Yty — ot (x| o).

Now, to show some particular cases of the above general solu-
tion, we take C; = 0; then (3.47) yields

P L R
29[1 - ok (s —4;4)]

3ap k(22 — 4p)

= csch?(0), 3.48

2 - a7 4] " 249

and, when C;, = 0, the general solution (3.47) becomes
3op k(2 — 4

p=—PHEZA k) 1

29[1 — ok®(2° — 4p)]

2
3ap kU4 oop2 () (3.49)

T 29[ — ok’ (72 — 4]

« We note that, if we set 2* — 4u = 1 in the above solutions (3.49)
and (3.48) obtained by (G'/G)-expansion method, we can
recover the same hyperbolic-type solutions (3.8), (3.28), and
(3.29), respectively, obtained already by the modified Kudrya-
shov method and the Exp-function method.

Case 1.B. 2> —4u <0

Following the same procedure as shown in the Case 1.A; insert-
ing Eq. (3.45) into Eq. (3.44), and then substituting the general
solution of (2.8) into the obtained result, we can easily obtain
the generalized solitary wave solutions as

oo 3ap k(4u — %) (41 sin(é) + C, cos(é))z ;
- 2))[1 + ok (4p— )?)] Cy cos(¢) + Gy sin(¢) '

(3.50)

. apu—72 472

Likewise, to extract some particular cases of the above solution,
we set C; = 0, then (3.50) leads to

3op k(4u — 2%) 5
= t 1
¢ 291 + ok’ (4p — 72)] [cot (O +1i
_ 3o k(4p — 22 ; 351
29[1 + ak® (4 — 72)] s, G3:31)
and, when C;, = 0, the exact solution (3.50) will be
3o k(4p — 2%) ,
= t 1
2911 + ok’ (g — 72)] (@) + 1]
30 k(4p — 7%) 2
=— . 3.52
29[1 + ak® (4 — 72)] e (3:52)

« Comparing our results together, if we put /2 — 4y = —1 in the
solutions (3.52) and (3.51) extracted from the (G'/G)-
expansion method, those can be simply converted to the same
periodic solutions (3.10), (3.33), and (3.34), respectively,
obtained previously by the Exp-function and modified Kudrya-
shov methods.

Case 2.
2
— P g mkCreR)
1+ ok (27 —4w) P[1 + k™ (A — 4w)]
oy — 60 ka 6op k 7 (3.53)

T+ ok (72 — 4p)]

where k, 4 and p are arbitrary constants.

Case 2.A. /> — 4u > 0.
By the similar procedure as explained in the cases 1.A and 1.B,
we can finally find the following exact solutions:

_ 3apk (P -4 <c1 sinh(¢) + G, cosh(f))z 1
- 2)/[1 N ockz(f _ 4.“)] Cy cosh(¢) + Cy sinh(¢) 3|’

Y1+ ok® (A2 — 4u))’

(3.54)

R (TR ) 5
where ¢ = ¥Y5—Ey =Y E k(x T —;Hoszuzfz:m t).
In particular, if we take C; = 0 in the above general solution;
then (3.54) leads to

_ 3Bapk (4w R
0= 291 + ak® (7% — 4p)) {COt © 3}

of k(2 —4u) {3 2 }
=—-——-" 77 |Zcsch*(()+ 1], 3.55
Y1 + ok (2% — 4u)] [2 esehr (@) (3:35)
and, when C, = 0, the exact solution (3.54) becomes
3o k (22 —4p) [ 2., 1}
=— tanh -
¢ 291 + ok’ (7% — 4p)] anh’(0) —3
of k(2 —4u) { 3 3 }
=-———- " |-Z=sech”({) +1 3.56
Y1+ ak® (2 — 4y L 2 sech(©) (3:36)

« We note that, if we set 22 — 4u = 1 in the above solutions (3.56)
and (3.55), we can reach the same hyperbolic-form solutions
(3.13), (3.37), and (3.38), respectively, derived already through
the modified Kudryashov and Exp-function methods.

Case 2.B. 2> —4u < 0.
Following the same procedure as represented in the previous
cases, we have

3ap k (4 — 12) (fclsin(f)JrCzCOS(f))z 1
291 — ak(4p— %)) |\ Cicos(&) + Gosin(E) ) 3]

(3.57)

o NAu? N Au 2 B
where ¢ =Y =Y k(xF /Wt .

Likewise, to show some particular cases of the above solution,
we choose C; = 0; then (3.57) results in

308 k(4p — 2%) [ ) }
= =1, 3.58
i eyl GRS (358)
and, when C, = 0, the exact solution (3.57) is converted to
308 k(4u — 2%) { 5 1}
=-— t =. 3.59
¢ 291 — ok (4p — 72)] O+ (3.29)

« Validating our results, if we set 2> —4u = —1 in the solutions
(3.59) and (3.58) gained via (G'/G)-expansion method, those
can simply be transformed to the same periodic solutions
(3.14), (3.40), and (3.41), respectively, obtained previously by
the modified Kudryashov and Exp-function methods.
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e Remark 1. In addition to comparing and validating the exact
solutions together, extracted through the proposed approaches,
we have verified and double-checked all the solutions obtained
in the present study through inserting them into the original
equation using Maple 18.

e Remark 2. It is important to note that unlike the modified
Kudryashov method, each of the (G'/G)-expansion and Exp-
function methods applied to the target equation contributed
to other two sets of solutions appearing as a constant after care-
ful simplifications. Such redundant and misleading sets of solu-
tions may set the stage for making mistakes in introducing NEW
exact solutions to the research community.

4. Discussions & conclusions

The exact traveling wave solutions of the nonlinear elastic rod
equation were extracted using three analytical approaches which
have attracted a considerable amount of attention in recent years.
As the implication of the study, despite the fact that all the meth-
ods applied to the target equation led to the same exact solutions,
the modified Kudryashov method showed more straightforward
and faster solution procedure as compared to the other two meth-
ods which got involved with considerably larger-volume computa-
tions. Furthermore, both the (G'/G)-expansion and Exp-function
methods set the stage for obtaining a broad spectrum of mislead-
ing solutions leading to redundant and constant ones after simpli-
fication, while the modified Kudryashov method does not produce
such solutions. This merit is also well-predictable with regard to
the function form of solution considered originally for the modified
Kudryashov method. On the other hand, given the more compli-
cated function form introduced in the Exp-function method in
comparison with the modified Kudryashov method, the former
does not enable us to reach exact solutions for higher-order NPDEs,
since a large system of algebraic equations coupled with the abun-
dant parameters is not directly solved by the current mathematical
tools in the market, consisting of: Maple, Mathematica, etc. This
issue had already been investigated by Kabir et al. (2011b) to find
the exact solutions of the KS (Kuramoto-Sivashinsky) and the sSK
(seventh-order Sawada-Kotera) equations, as well as in another
study (Kudryashov, 2012) for solving another seventh-order non-
linear differential equation.

On the down side, there are two drawbacks in association with
the modified Kudryashov method. First, even though the method
enables us to extract all the one-periodic and solitary wave solu-
tions, it doesn’t permit us to investigate two-periodic solutions.
Hence, we need to employ more complex methods which have
been developed in the other recent studies (Demina and
Kudryashov, 2010, 2011; Kudryashov et al., 2011). The latter is that
the method does not provide the opportunity of finding all the pos-
sible solutions once there are two or more expansion bunches of
the Laurent series in the general solution. Nevertheless, it is noted
that majority of the other methods are also unable to obtain these
solutions. In such cases, we need to refer to more complicated
methods (Demina and Kudryashov, 2010, 2011; Kudryashov
et al., 2011).
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