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The Geminiviridae family has become the largest family of plant viruses, with >300 species and nine gen-
era. This classification is based on genome organization, host range and insect-vectors. The capsid struc-
ture of geminiviruses is unique and constructed from twinned icosahedral with 110 duplicates of coat
protein. The function of coat protein in geminiviruses is multidirectional which helps to cause the infec-
tion in wide range of host plants. The begomoviruses is one of the leading genera having �320 species of
family geminiviridae. This review comprehensively describes viral pathogenesis, gene function, host-
virus-vector interactions of geminiviruses and their increasing diversity. Several species of bego-
moviruses and their associated satellites are responsible to cause huge losses. Cotton leaf curlMultan virus
(CLCuMuV) and Tomato yellow leaf curl China virus (TYLCCnV) are leading plant viruses to infect many
alternate hosts. Modern mechanisms have been identified to disclose the hidden aspects of plant geno-
mics. From these mechanisms, genome editing by ‘‘clustered regulatory interspaced short palindromic
repeats” (CRISPR)/CRISPR associated nuclease 9 (Cas9) CRISPR/Cas9 has unfastened the fresh vistas for
crop improvement and functional genomics. This review will be helpful for microbiologists and pathol-
ogists to understand the complex molecular biology of geminiviruses.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the 19th century, typical symptoms of certain viruses were
observed in many tropical and sub-tropical regions of the world.
In the 1970s, a group of single-stranded DNA (ssDNA) viruses were
found associated with typical symptoms, and later this new group
was distinguished as geminiviruses. The earliest record showed
that geminiviruses symptoms were noticed in 752 CE in Japan as
utilized by a Japanese poet (Empress Koken) in his poem. These
plant viruses are insect-transmissible viruses that have become
an economically vital group of plant viruses and cause significant
losses to the production of crops and ornamental plants across
the world. These viruses are responsible for infecting many plants
including monocotyledonous and dicotyledonous plants in tropical
and sub-tropical parts. During the last 20 years, geminiviruses
have caused major epidemics in different regions including African
Cassava mosaic virus (ACMV) in Africa, Bean golden mosaic virus
(BGMV) in America, Cotton leaf curl virus (CLCuV) in Asia, and
Tomato leaf curl virus (TLCV) in Asia, America and in Europe
(Brown et al., 2015).

The genome of geminiviruses is reliant on host RNA poly-
merases for transcription. The ssDNA genome has been replicated
into double-stranded DNA (dsDNA) form, which is determined to
connect with host histone proteins as mini-chromosomes within
the nucleus (Arif et al., 2020). It is quite clear that geminiviruses
are not seed-transmissible, but some are mechanically and graft-
transmissible. Typical symptoms induced by geminiviruses are leaf
enations, leaf curling, distortion of growth, stunted growth, leaf
crumpling, vein swelling, and leaf streaking (Brown et al., 2015).

2. Taxonomy of geminiviruses

The Geminiviridae family has become the biggest family of plant
viruses, with >300 approved species. The family Geminiviridae con-
sists of nine genera, i.e., Becurtovirus, Begomovirus, Capulavirus,
Curtovirus, Eragrovirus, Grablovirus, Mastrevirus, Topocuvirus,
and Turncurtovirus which are classified based on genome organi-
zation, host range, and the type of insect vector (Brown et al.,
2015). International Committee on Taxonomy of Viruses (ICTV)
has proposed a unique nomenclature criteria for classifying and
naming of new geminiviruses (Zerbini et al., 2017). The new pro-
posed guideline is that if full-length nucleotide sequence identity
of freshly recognized geminivirus is <89% using clustral V algo-
rithm (excluding Mastreviruses, which has <75% cut-off parame-
ter) then it could be recognized as fresh specie while the
sequence identity is >89% so it could be recognized as a member
of same species. And for addition of new geminivirus isolate, if
pairwise comparison is <93% it could be a fresh strain of that spe-
cies and if it is >94% then it might be a variant of that strain of the
same species.

3. Genome organization of geminiviruses

Begomovirus is the largest genus belonging to Geminiviridae
family which has �320 species (Zerbini et al., 2017) and its trans-
mission is mediated by an insect vector whitefly (Bemisia tabaci)
(Gilbertson et al., 2015). For the last 30 years, begomoviruses have
become a significant viral pathogen for food, fiber, and ornamental
2

crops worldwide. Some begomoviruses have two ssDNAmolecules,
named as DNA-A and DNA-B, respectively, as their genome. Both
DNA-A and DNA-B are �2.8 kb in length. DNA-A has 5–6 open
reading frames (ORFs), one or two of which are in the virion-
sense, and the other four in the viral complementary sense.
Virion-sense ORFs are (AV1 and AV2) and complementary sense
are (AC1, AC2, AC3, and AC4). Those having only DNA A component
are monopartite begomoviruses while others having both DNA A
and DNA B components are known as bipartite begomoviruses
(Briddon et al., 2010). Monopartite begomoviruses contain only a
single DNA molecule like genome which is similar to DNA A of
bipartite viruses, and movement of the virus is being facilitated
by coat protein (CP) or V2 open reading frame (ORF).

The DNA A typically harbors 6 ORFs including AV1: (recognized
as AR1 and coat protein CP), AV2: (recognized as AR2, AV2 protein
and movement protein MP) on the virion sense strand, AC1: (called
as AL1, replication protein Rep (Nash et al., 2011)), AC2: (called as
AL2, transcriptional activator TraP potential silencing suppressor
(Yang et al., 2007)), AC3: (called as AL3, replication enhancer REn
and act as cell cycle regulator protein (Pasumarthy et al., 2011))
and AC4: (called as AL4 and AC4 protein involved in the movement
of monopartite begomoviruses) on the complementary sense
strand. DNA B has only two ORFs encoding proteins including
BV1: (BR1 and it interact with BC1 for cell–cell movement and
called as nuclear shuttle protein on virion sense strand) and BC1:
(BL1, pathogenicity determents and called as movement protein
MPB on complementary sense strand) which are involved in move-
ment functions.

Proteins encoded by DNA-A are associated with viral DNA repli-
cation, vector transmission, encapsidation, while those encoded by
DNA-B are required in the intercellular and intracellular movement
of viral particles. These proteins have multiple functions including
host gene regulation, virus replication, vector transmission, viral
assembly, and silencing suppression (Priyadarshini et al., 2011).

Genomic studies and Phylogenetic analysis has confirmed that
begomoviruses are divided into two groups, New World (NW)
and Old World (OW) begomoviruses (Brown et al., 2015). This
might have occurred either by the association of betasatellite with
monopartite begomoviruses or by displacement of DNA-B from
OW bipartite begomovirus as demonstrated experimentally for Sri-
lankan cassava mosaic virus (SLCMV). Although, few species of
bipartite begomoviruses exists in the OW and their genome con-
tains only a single component which is homologous to DNA A of
bipartite viruses. A few monopartite begomoviruses can induce
disease lonely in the whole area i.e. Tomato yellow leaf curl virus
(TYLCV) (Scholthof et al., 2011).

The ssDNA 1.3 kb satellites have an association with several OW
monopartite begomoviruses and NW bipartite begomoviruses.
Betasatellites earlier called DNA b have single ORF (bC1), which
was utilized as a suppressor of host gene silencing (Cui et al.,
2005). It has a dramatic effect on enhancing the virulence of
partner begomovirus. The homolog sequence of a begomovirus
determined in betasatellite is stem-loop and TAATATTAC
sequences. The other remaining satellite sequences are not
explicitly associated with helper begomoviruses. Betasatellites
require assistance from helper begomoviruses for encapsidation
and replication, and in some instances, play a vital role in the
establishment of the pathogen in the field. Betasatellites are
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assumed to be unrestrained because they might function and asso-
ciate with more than one helper begomoviruses.

Alphasatellites (�1380 bp) belong to circular ssDNA molecules
which acts as an assistant virus for transmission and encapsida-
tion. Alphasatellites are also known as DNA 1. Alphasatellites are
still perceived as a mystery in plant virology. Their exact function
and occurrence with begomovirus complexes still need to be stud-
ied. Few studies suggest that Alphasatellites have a decisive role in
the suppression of Post-transcriptional gene silencing (PTGS) and
symptoms reduction (Wu and Zhou, 2005; Nawaz-ul-Rehman
et al., 2010; Idris et al., 2011). Alphasatellites supposed to be from
nano viruses because they have 3 conserved regions: (1) a stem-
loop structure with a non-nucleotide (TAGTATT/AC) sequence
which is assimilated with the Nano viridae, this part has ori on
which Rep cleaves DNA to initiate rolling circle replication RCR,
(2) an ORF encoding a Rep protein which has a size of about
36.6 kDa and also has 315 amino acids, (3) a rich region of �200
nucleotides which are known as stuffer sequence.

Independently replicating nano virus-like satellites are com-
monly linked with begomoviruses and their betasatellite com-
plexes, which are known as alphasatellites (formerly accredited
as DNA-1). Till now, three kinds of alphasatellites have been iden-
tified (Rosario et al., 2013). Type one has been known to enrich the
symptoms during co-infection of plants with helper virus and its
betasatellite, proposing that it downregulates the virulence to
some extent (Idris et al., 2011). Type two and three of alphasatellite
are associated with bipartite begomoviruses in the new world
(Brazil, Cuba, and Venezuela) (Paprotka et al., 2010; Romay et al.,
2010).

Betasatellites were firstly discovered in 2000 and after that
>260 full-length betasatellites sequences are available in sequence
databases (Briddon et al., 2008). Analysis of these betasatellite
sequences showed a conserved single complementary sense ORF
(bC1), an adenine-rich region and conserved satellite region which
have sequence similarity with TYLCV of Australia satellite DNA
(Briddon et al., 2003). The bC1 ORF of all the betasatellite mole-
cules is conserved in size and position (Saeed et al., 2005).
4. Gene function and host-virus-vector interactions of
geminiviruses

The geminiviruses not only cooperate regarding synergism and
interference but also interrelate with their transmission vector and
the host plant from where they endure their life cycle. It has been
reported that there are 10–100 viruses for single host species of
plants and animals. It has been reported in many studies that
approximately 1000 different viruses have significant potential to
infect humans (Norrby, 2008). The �47% viruses require a certain
causal agent for causing a serious epidemic in emerging plants.
Apart from a small sequence of �200 nucleotides with high
sequence identity that is called ‘‘common region” (CR), and their
size, the DNA-A and DNA-B components of bipartite bego-
moviruses are completely different from each other.

The replication of CLCuMuB occurs in tomato, tobacco and dat-
ura plant with the existence of helper viruses, which are TYLCV of
Australia, TYLCV of Iran isolate, TYLCV Karnataka and BSTV. The
CLCuMuB infectious recombinant constructs were prepared in
which 35S, or petunia and ChsA promoter segments haves changed
the CLCuMuB bC1 ORF and were labeled as pBinbD C1-35S and
pBin bDC1-ChsA. Normal petunia plants having pBin bD C1-ChsA
with the occurrence of helper virus can cause silencing of GUS,
ChsA has a function in transgenic tobacco and non-transgenic
petunia plants (Kharazmi et al., 2012).

The probability of CLCuMuB encapsidation in TYLCV-Ab coat
protein was tested by an immunocapture Polymerase chain reac-
3

tion and with whitefly mediated transmission of CLCuMuB. But
immunocapture PCR data validated that the CLCuMuB DNA and
TYLCV-Ab coat protein are connected in vivo, so this data was
not satisfactory to confirm that CLCuMuB DNA can be encapsidated
in viral coat protein (Tabein et al., 2013).

A lot of failed efforts to reproduce yellow vein symptoms in
Ageratum conyzoides through re-inoculating the Ageratum yellow
vein virus (AYVV) has confirmed the existence of a supplementary
component that has a responsibility to induce the symptoms.
Many recombinant components were characterized from that dis-
eased host plant A. conyzoides. After discovering the recombinant
component, a unique ssDNA component (having half size of helper
begomovirus) was identified from A. conyzoides host plant which
could reproduce the symptoms in AYVV. Later this component
was recognized as DNA b and afterward named as Betasatellite.
These betasatellites are unique in nature and linked with helper
begomoviruses (Sattar et al., 2013).

There is a vector specificity under the specie level with different
biotypes of whitefly, they confirmed vector specialty of 15 bego-
moviruses linked with B biotype of whitefly rather than other
tested biotypes. This study proved that certain begomoviruses
could be transmitted effectively via the exact biotype of whitefly.
Transmission of plant viruses by insect vector depends on the
length of time on which they associate with the vector. Foregut
and stylet-borne viruses associate quickly with cuticle lining and
their transmission occur within hours or days after acquisition as
shown in Fig. 1. Circulative viruses have acquired into vector
hemolymph, from where they reach to salivary tissues. Once circu-
lative viruses’ infection happens, they remain attached till the
remaining life of the insect vector. Stylet and foregut-borne viruses
require an extended feeding period of insect vectors for the acqui-
sition of the virus from an infected plant to a healthy plant (Gray
et al., 2014).

The TYLCV ssDNA molecules and its coat protein have the abil-
ity with each other invitro but non-availability of virion related
particles. For confirmation of this encapsidation of CLCuMuB in
TYLCV-[Ab] coat protein, whitefly-mediated transmission of
TYLCV-[Ab] and CLCuMuB was tested in tomato plants. Analysis
of Southern blot and PCR reaction showed the unavailability of
both betasatellite DNA and TYLCV-[Ab] in the body of whitefly
and not in test plants which were inoculated with viruliferous
Bemisia tabaci. It is commonly assumed that geminiviruses trans-
mission through insect vectors includes complete virus particles
(Caciagli et al., 2009). So best description for betasatellite transmis-
sion through whitefly is its encapsidation in the virus particle.
TYLCV-Ab has strong potential to encapsidate and trans-replicate
CLCuMuB, but no cognate betasatellite identified in nature having
monopartite begomovirus (Pakniat et al., 2010).

It is quite deceptive that begomoviruses’ genome displays excit-
ing plasticity leading to the capacity for developing the quick
response to change the cropping systems. A plant host in a certain
area can directly or indirectly affect by the vector population of
that area. The density of the whitefly population on the horizontal
leaved cotton variety can be different from hairy leaved cultivars
and eventually affects the selection of a particular biotype of
whitefly (Amrao et al., 2010).

Techniques which are commonly used to detect begomoviruses
are Enzyme-linked immunosorbent assays (ELISA) and
immunoblotting, molecular hybridization, conventional (end-
point) Polymerase chain reaction (PCR) techniques by using speci-
fic primers or restriction length fragment polymorphism (RFLP)
(Martinez-culebras et al., 2001; Davino et al., 2008), quantitative
real-time Polymerase chain reaction (qRT-PCR) for quantification
of viruses (Mason et al., 2008), loop-mediated isothermal amplifi-
cation (LAMP) (Fukuta et al., 2003). The conventional polymerase
chain reaction is extensively used for the detection of bego-



Fig. 1. The demonstration of virus movement within the plant cells by semi-persistent manner. Firstly virus enters into plant cell from insect midgut and later on move to
different physiological sections of plants.
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moviruses. A lot of studies showed drawbacks of this technique
because of low accuracy to determine the number of viruses. Some
plants have a few virus titers which are below the detection limit
by conventional PCR. So, it is necessary to quantify the viruses from
symptomatic and non-symptomatic plants. The quantification and
identification of DNA/RNA viruses by qPCR have removed a lot of
problems, and it is better to use rather than conventional PCR
because of more speedy and accuracy (Mason et al., 2008;
Papayiannis et al., 2010).

Virus-induced gene silencing has become a powerful tool to
study the plant functional genomics, particularly for those plants
that pose complications with genetic engineering. cotton leaf curl
crumple virus based virus-induced gene silencing vector (CLCrV-
VIGS) provides an effective gene silencing tool that can help in
reverse genetics and genomics study of candidate gene of cotton
(Fu et al., 2015; Liu et al., 2015).

Next-generation or deep sequencing can show some compre-
hensions in virus-induced plant defense mechanisms. The VsiRNA
characterization through deep sequencing has been investigated in
some host plants which are, maize plants which showed infection
with Sugarcane Mosaic virus (Xia et al., 2014), apple with Apple
stem grooving virus (Visser et al., 2014), tomato plants through
Tomato yellow leaf curl virus (Yang et al., 2011), rice crop with Rice
stripe virus (Xu et al., 2012). Tomato plants showing infection of
tomato yellow leaf curl Sardinia virus have vsiRNAs accounted
21nt (56%) and (31%) prevailed on the basis of length (Miozzi
et al., 2013). The Cabbage leaf curl virus (CaLCuV) have about 21
and 24 nucleotide vsiRNAs which characterize as 2nd largest seg-
ments of about 20–25 nucleotide reads (Aregger et al., 2012), but
this mechanism has a difference in infections of tomato yellow leaf
curl China virus (TYLCNV) in which 22 nucleotide vsiRNAs added
especially in infected plants of tomato and tobacco. That difference
in distribution size of vsiRNAs recommended a difference of
4

biosynthetic pathways of small interfering RNA (siRNA) in inocu-
lated virus plants.
5. Viral pathogenesis of geminiviruses

The ecology of certain virus emphasizes the virus populations
interrelating with host populations inside the variable environ-
ment, while epidemiology emphasizes the complex association
between virus, host plant and the factors that influence the spread
within hosts. Plant viruses directly or indirectly affect insect vec-
tors by altering the insect’s life cycle, behavior, and fitness
(Jones, 2014).

During the last 20 years, molecular ecological methods con-
tributed significantly to assess the factors allied with viral diseases
of economical crops, i.e., cassava (cassava mosaic virus) and maize
(maize streak virus). These tactics were applied to check the epi-
demic factors associated with viral emerging diseases. These
strategies were employed in Reunion Island to evaluate the epi-
demiology of TYLCV, which was infecting potato crops in the island
since the 1990s. Wild hybrids between indigenous and invasive
species of whitefly B. indica were subsequently categorized over
multiple generations (Péréfarres et al., 2012).

The environmental factors including temperature, relative
humidity, and rainfall play a significant role in the spread of viral
diseases. The intensity of viral disease is regulated by environmen-
tal factors in a certain area. Begomoviruses entirely depend on
insect vectors for successful transmission. That’s why controlling
the insect vector is necessary to manage the virus infection prop-
erly. The rate of rainfall has affected the egg-laying capacity of
insects especially the development of eggs in whitefly is severely
dependent on rainfall. To handle these environmental factors and
its association with insect vectors, a disease predictive model is
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necessary to measure the intensity of viral pathogens (Khan et al.,
2015).
6. Diversity of geminiviruses

Several plant species including major crops, horticultural crops
and weeds have been infected by begomoviruses in China. These
plant species and their associated begomoviruses are: on tomato
as Chinese tomato yellow leaf curl virus (TYLCnV) (He et al., 2004),
tobacco as tobacco curly shoot virus (TbCSV)) (Li et al., 2005),
squash as squash leaf curl Yunnan virus (SLCYNV) (Xie and Zhou
2003), Euphorbia pulcherrima as Euphorbia leaf curl virus
(EuLCGxV) (Ma et al., 2004), and Ageratum conyzoides as Agera-
tum yellow vein China virus (AYVCnV) (Xiong et al., 2007). Until
now, approximately 16 or more begomoviruses with their associ-
ated satellites have been identified in China which are Cotton leaf
curl Multan virus (CLCuMuV), Tomato yellow leaf curl China virus
(TYLCCnV), Squash leaf curl China virus (SLCCV), Tomato leaf curl
Taiwan virus (ToLCTwV), Squash leaf curl Yunnan virus (SLCYNV),
Tomato leaf curl Thailand virus (TYLCTHV), Tobacco curly shoot virus
(TbCSV), Tobacco leaf curl Yunnan virus (TbCLYnV), Euphorbia leaf
curl Guangxi virus (EuLCGxV), Ageratum yellow vein China virus
(AYVCNV), Malvastrum yellow vein virus (MYVV), Stachytarpheta
Fig. 2. The prevalence of begomoviruses in south East Asia is spreading alarmingly. The
from Pakistan. The Chinese CLCuMuV isolates of Far-strain show pairwise nucleotide se

5

leaf curl virus (StaLCuV), Ageratum yellow vein China virus
(AYVCNV), Papaya leaf curl China virus (PaLCuCnV), Corchorus yel-
low vein virus (CoYVV) (https://www.ncbi.nlm.nih.gov/ICTVdb/)
Papaya leaf curl Guangdong virus (PaLCuGdV), Tomato leaf curl
Guangdong virus (ToLCGuV), (He et al., 2008) Tomato yellow leaf
curl Guangdong virus (TYLCGuV) (He et al., 2005) Malvastrum leaf
curl Fujian virus (MaLCFuV) (Yang et al., 2008).

Cotton (genus Gossypium, family Malvaceae) is a major cash
crop in China. The CLCuD has prominent disease symptoms includ-
ing curling of leaves, thickening of large veins, leaf enations and
stunting the growth of plant (Nawaz-ul-Rehman et al., 2009). The
Chinese CLCuMuV isolates show pairwise nucleotide sequence
identities higher than 99% and are >94% identical to their closest
relatives from Pakistan. This suggests that the CLCuMuV-
CLCuMuB has been introduced to China from Pakistan by a single
introduction event (Du et al., 2015) as shown in Fig. 2. CLCuMuV
(Fai [CN: GZ: G6: Hib: 06], EF465535) was found in Guangzhou,
China first time in 2006 by infecting H. rosa sinensis and Hibiscus
sabdariffa in Fujian province of China. The high genetic homoge-
neousness of CLCuMuV in China reveals that its establishment
was by a single founder event. (Mao et al., 2008; Du et al., 2015;
Arif et al., 2018).

During October 2008 and July 2009, few cotton plants were
observed in Nanning city of Guangxi province; these plants
dispersion of Chinese isolates shows higher identity with begomoviruses associated
quence identities 99% and >94% to their closest relatives from Pakistan.

https://www.ncbi.nlm.nih.gov/ICTVdb/
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showed upward leaf curling symptoms and dark thickening of
green veins of leaves, leave enations and stunning the growth of
plants (Cai et al., 2010). Three plants were screened to identify
the existence of geminivirus/begomovirus. DNA was extracted
from symptomatic plants by using CTAB. Universal begomovirus
(Liu et al., 1998) (these primers can amplify the partial intergenic
region and V2 gene) were used in PCR. The PCR products have
amplified a 500 bp which were then cloned and sequenced. Addi-
tional primers were designed to obtain the whole genome of DNA
A on the basis of gained sequence. All the data was submitted to
gene bank to obtain accession number (GenBank Accession No.
GQ924756). The complete sequence of DNA b 1346 bp of the
GX1 isolate was obtained from GenBank. The accession number
for this sequence betasatellite was GQ906588 (Cai et al., 2010).
Symptoms and sequence information has confirmed the presence
of CLCuD in China, and it has a connection with CLCuMuV and
CLCuMuB.

The Plant-to-plant transmission of CLCuMuV-CLCuMuB in
China is supported by the detection of this virus complex in an
increasing number of malvaceous plants propagated by seeds. To
date, CLCuMuV-CLCuMuB has been detected on H. esculentus in
Guangdong in 2008 (Di et al., 2012; Tang et al., 2013), Gossypium
hirsutum in Guangxi in 2010 (Cai et al., 2010) and H. cannabinus in
Hainan province in 2014 (Tang et al., 2015). This plant-to-plant
transmission indicated a biologically meaningful establishment of
CLCuMuV-CLCuMuB in these territories. Unfortunately, historical
details of these events are missing or inconclusive due to the lack
of close surveillance. In addition, whether or not CLCuMuV-
CLCuMuB can establish in other provinces is an epidemiologically
important event which deserves the close attention (Arif et al.,
2021).

The TYLCV has become a destructive pathogen by causing a sev-
ere threat to tomato production. Earlier it was identified in the
Middle East during the 1960s. TYLCV was first time identified in
the industrial city Shanghai, China in March 2006 (Wu et al.,
2006). After that, this pathogen started to report in other provinces
of China (Zhang et al., 2009). Transmission of TYLCV is through an
insect vector whitefly (Bemisia tabaci) (Gennadius) (order Hemi-
ptera: family Aleyrodidae) in a circulative manner. In past studies,
it has been reported that Mediterranean B. tabaci (MED) and
indigenous Asia II 1 B. tabaci could retain TYLCV DNA in their
whole life. However, MED an aggressive B. tabaci can transfer
TYLCV more effectively rather than indigenous Asia II 1 B. tabaci
(Li et al., 2010). The study of (Yang et al., 2017) has compared
the TYLCV complete genome sequences gained from TYLCV
infected tomato, as well as from aggressive MED B. tabaci and Asia
II 1 indigenous B. tabaci. By assessing the frequency of nucleotide
change and the spreading form of mutations, they reported that
the genetic unpredictability of TYLCV was changed in both species
of whiteflies. The prevalence of TYLCV has been confirmed in 6 pro-
vinces of China in the last 5 years (Wu et al., 2006). Continuous
deep monitoring displayed that TYLCV also had a presence in Zhe-
jiang province in 2006. After that, this virus starts to move towards
the northern territories of China including Shandong, Jiangsu,
Hubei and Beijing, where this virus has caused significant losses
to tomato crops (Ji et al., 2008; Tao et al., 2010).

Cultivated and non-cultivated plants are major hosts of bego-
moviruses. The Eclipta prostrata is a widely spread annual weed
in China. During 2005, yellow vein symptoms were seen on E. pros-
trata plants in Guangzhou, Guangdong province of China. Prelimi-
nary analysis of infected plants was carried out by PCR (He et al.,
2005), and PCR fragment of coat protein (CP) proposed the connec-
tion of monopartite begomovirus from these infected plants. G8
virus isolate was cloned from these plants carrying viral symp-
toms. The whole nucleotide sequence of G8 DNA A was 2745
nucleotides. This complete nucleotide sequence revealed typical
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features of the begomovirus genome group. By comparing the
full-length nucleotide sequence of DNA A, it has been confirmed
that G8 and Hn51 isolates have maximum sequence identity with
Alternanthera yellow vein virus (AlYVV) at 95.9% and 94.3% respec-
tively. This was the first report of AIYVV infecting E. prostrata in
Guangzhou, Guangdong province of China (Tang et al., 2013).

Natural incidence of Sweet potato leaf curl virus (SPLCV) was
reported in sweet potato (Ipomoea batatas, family Convolvulaceae)
in China and the United States of America (Briddon et al., 2006).
In 2007, tall morningglory (I. purpurea L.), also known as Pharbitis
purpurea L.), plants displayed begomovirus-like symptoms in the
Fujian province of China. Isolation of total DNA from symptomatic
leaves was carried out by rolling circle amplification (RCA), and
then these samples were cloned and sequenced. Obtained
sequence (GenBank Accession No. FJ515896) compared with other
DNA sequences from NCBI by using BLAST. The whole sequence
displayed the highest nucleotide identity of 92.1% with Jiangsu
SPLCV isolate (GenBank Accession No. FJ176701). These analyses
confirmed the natural incidence of SPLCV in tall morningglory in
China (Yang et al., 2009).
7. Genome editing mechanisms against geminiviruses

Due to fast and unbalanced increase in world population, it is
much necessary to apply the advanced crop improvement tactics
like genome editing mechanism for climate smart sustainable agri-
culture to provide the balanced food having proper nutritional
value, enhanced biotic and abiotic stress tolerance, superior dis-
ease resistance. The identification of fastidiousness genome editing
methods has progressed the plant genetic engineering to innova-
tive statures (Kumar et al., 2020).

In last decade, many hidden aspects of plant genomics have
been unfolded to improve the quality and quantity of crops. Many
fresh and modern mechanisms have been identified to reveal the
hidden aspects of plant genomics. From these mechanisms, gen-
ome editing by ‘‘clustered regulatory interspaced short palin-
dromic repeats” (CRISPR)/CRISPR associated nuclease 9 (Cas9)
CRISPR/ Cas9 has unfastened the fresh vistas for crop improvement
and functional genomics. The CRISPR/Cas9 was implemented from
a naturally occurring genome editing mechanism in bacteria. In
contrasting to earlier generation genome editing tactics like tran-
scription activator like effector nucleases (TALENs) and zinc-
finger nucleases (ZFNs), CRISPR/Cas9 has brought the much easi-
ness in cloning, flexibility in arraying the gRNAs and cost effective-
ness. Many commercial crops have been imperiled to genome
editing via CRISPR/Cas9 and this methods has significant potential
in providing the global food security (Kumar et al., 2020).

For avoiding the multiplication of viruses, several strategies
starting from conventional breeding to molecular tactics have been
used. These methods functioned very well for a short period, and
then viruses degenerate because of numerous reasons including
the multiple infections, from where these viruses synergistically
make interaction with each other, virus propagation and evolution.
One of the significant shortcomings till now is that all molecular
biology techniques are developed to manage only the helper bego-
moviruses but not for its satellites. Although, these satellites might
enhance extra functions to helper begomoviruses but were
ignored. This situation necessitates in establishing a broad
approach which not only helps to control helper begomoviruses
but also associated DNA satellites. For this problem, one compre-
hensive technique CRISPR/Cas9 has been successfully used to man-
age several geminiviruses, but it targets only a single virus-like
earlier techniques which are not applied to check the bego-
moviruses associated complexes with DNA satellites (Iqbal et al.,
2016). They proposed a unique, inimitable, and comprehensive



Fig. 3. Experimental framework to identify 50ends of begomoviral mRNAs utilized by cap-Snatching with RSV. In a co-infected host, RSV snatches the capped RNA leaders
from host mRNAs and co-infected begomovirus.
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program established on multiplexed CRISPR)/Cas9 system, in
which cassette of single guide RNA (sgRNA) is designed to control
complexes of CLCuD and also associated DNA satellites.

The study (Sattar et al., 2019) of has described the significance
of CRISPR/Cas9 via genome editing in cotton. In cotton, the applica-
tion of CRISPR/Cas9 has significant potential to regulate the gene
expression having superior quality traits, to load unique molecular
traits of preferred locus and to confine the plant pathogens. The
application of gene stacking via site specific endonucleases, the
preferred genes can be deployed in close vicinity to precise locus
in cotton genome with less segregation risk. Moreover, these
implementations are monotonous to attain via modern breeding
tactics. But with the CRISPR/Cas based techniques, transgenic cot-
ton can be formed via simply selfing or backcrossing method to
encounter the cotemporary GMOs strategies (Sattar et al., 2019).

The application of genome editing mechanism has transformed
the whole fields of life sciences. The CRISPR Cas/9, a modern gen-
ome editing mechanism has revolutionized the study of hidden
aspects of plants, devasting and beneficial microorganisms and
animals. This method has become an interesting and useful for
microbiologists and pathologists because of its uncomplicated
cloning and tranquil designing. It has become a useful method
for improving the quality and quantity of commercial crops and
most importantly in incorporating the disease resistance in many
plants (Khan et al., 2021). Now a days, a unique technology is
applied to mapp the 50 termini of different begomoviruses with
the help of a heteroviruses. It was concluded from the study of
(Arif et al., 2020) that cap-snatching mechanism was employed
to mapp the 50 termini of viral mRNAs of CLCuMuV, CoYVV, and
RamV by using a Rice stripe virus (RSV) as shown in Fig. 3. They
obtained �53, 30 and 2 unique sequences at 50 ends of
begomoviruses.

The CRISPR Cas/9 mechanism is a widely used method to man-
age the different species of geminiviruses throughout world partic-
ularly in Pakistan. But the main drawback of this method is that it
has potential to target only single species of virus and not helpful
against the complexes of begomoviruses originated from DNA
satellites. Moreover, a cassette of segregated RNA (sgRNA) is devel-
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oped to mark not only CLCuD allied begomoviruses nucleases
(Mishra et al., 2017; Sattar et al., 2019). The application of CRISPR
Cas/9 has accomplished the editing of genome in simple and quite
effective way. It have significant ability in nonspecific editing
because of divergence in guide RNA (gRNA) sequence but this tech-
nology is still in exploration because of its many precincts like:
effectiveness, less mutagenesis, risk of variability in edited gen-
ome, persisted CRISPR Cas/9 activity in upcoming generations,
dependency on invitro regeneration protocols for recovery of
stable plant lines and inadequacy of indorsed targets (Ahmad
et al., 2020). The study of (Agrahari et al., 2020; Sahu et al.,
2020) has described the significance of plant microbe interactions
and its employment in crop protection. They described the post-
genomic period tactics like CRISPR Cas/9 GWAS, NGS in collabora-
tion with marker assisted selection, recombination techniques and
cloning. Different models including spatial immunity model, inva-
sion model and zig-zag model are being executed to apprehend the
plant defense responses against the emerging phytopathogens.
8. Conclusions and future perspective

In this review, we have summarized the complex molecular
biology with host-virus-vector interactions of geminiviruses. Sev-
eral published studies indicated that geminiviruses are responsible
to cause huge significant losses in plants. The plant pathogenic
viruses of family geminiviridae are insect-borne having genomes
entailing of ssDNA fragments encapsidated in distinctive twinned
icosahedral specks. The geminiviruses are currently divided into
nine genera based on their sequence similarity, genome arrange-
ment and insect-vector. These nine genera includes Becurtovirus,
Begomovirus, Capulavirus, Curtovirus, Eragrovirus, Grablovirus,
Mastrevirus, Topocuvirus, and Turncurtovirus. The Genus Bego-
movirus is the largest genus of family Geminiviridae, which has
almost 320 species and its transmission is mediated by an insect
vector whitefly (Bemisia tabaci).

It has been reported in many studies that diversity of bego-
moviruses is increasing in China. There are many factors responsi-
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ble for the development of these begomoviruses and their associ-
ated satellites. Several cultivated and non-cultivated plant species
including crops, horticultural crops and weeds have been infected
by begomoviruses in China. Majority of plant species including
major crops, vegetables and ornamental plants have significant
infection of CLCuMuV and CLCuMuB and TYLCV. It has been esti-
mated that almost 16 or more begomoviruses have been detected
from different provinces of China.

For avoiding the multiplication of viruses, several strategies
starting from conventional breeding to molecular tactics have been
used. These methods functioned very well for a short period, and
then viruses degenerate and cause significant losses. There are sev-
eral mechanisms which are recognized to disclose the concealed
aspects of plant genomics for crop improvement. From these
mechanisms, genome editing by CRISPR/ Cas9 has unfastened the
fresh vistas for boosting the quality and quantity of crops and
reduce the biotic and abiotic stresses. In contradiction to earlier
genome editing tactics including TALENs and zinc-finger nucleases
(ZFNs), the CRISPR/Cas9 has enhanced the easiness in cloning, flex-
ibility in arraying the gRNAs and cost effectiveness. Many commer-
cial crops have been imperiled to genome editing via CRISPR/Cas9
and this method has significant potential in providing the global
food security. From a pathologist’s point of view, safety feature of
biotech products needs supreme importance, and these biotech
products require developed regulatory system to manage the
speedy changes occurred in biotechnology fields.

It has been observed that phenotypes of several plant virus
infection can cause a significant complex by encompassing interac-
tions between host-viral dynamics which are boosted by favorable
environmental conditions. It is very exigence of time to design the
novel experimental methods to understand the complex molecular
biology and pathology of geminiviruses.
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