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Non-polynomial quadratic spline method based on off-step points is used to develop a numerical algo-
rithm for obtaining an approximate solution of higher even order boundary value problems. For the
employment of the method, decomposition procedure is used. Higher order boundary value problems
are reduced into the corresponding system of second order boundary value problems. Convergence anal-
ysis of the method is also discussed. Seven numerical examples are given to illustrate the applicability
and efficiency of new method. It is also shown that the new method gives approximations, which are bet-
ter than those produced by other existing fourth order methods except higher degree splines.
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1. Introduction

The higher order boundary value problems have been studied as
their mathematical applications are in diversified applied sciences.
Conditions for the existence and uniqueness of solutions of the
higher-order boundary-value problems was discussed in Agarwal
(1986, pp. 89-93). Several numerical algorithms have been devel-
oped to determine the approximate solution of higher-order
boundary-value problems. In this paper, we consider the higher
order boundary value problems of the form

Y =fxy,yV y?y® Ly ) a <x <b,whereN =2,3,4

(M
subject to the boundary conditions
y(@) =i1,y?(@) = Ja,....y°N 2 (a) = Jn,
y(b) = 61,y (b) = 63, ...,y*N"2I(b) = . (2)
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We rewrite the Eq. (1) and (2) as system of second order boundary
value problems:

y1(2)(x) :Fi<x7y‘l7y27"'7yi7"'7yN7y(1])7y(21)7""yE])’"'7y)(\})>7

i=1,2,...,N 3)
subject to the modified boundary conditions;
yi(a) = 2, y;(b) = 8;,i=1,2,...,N. (4)

We assume that, fora <x < b,form=1,2,...,N,i=1,2,...,Nand

) s

—00 < Y < YV < o0t

(i) F;is continous,

(ii) 2 and 2% exist and are continous,
Wm ayy

(iii) % > 0 and |% < C, for some constant C.

These conditions from Keller (1968, (pp. 6-8 and 15-16))
ensure the existence and uniqueness of the solution of the above
boundary value problem (3) and (4).

Here, our aim is to solve the boundary value problems of
fourth, sixth and eighth orders of the form (1) and (2) with
N = 2,3 and 4. There are various methods available in literature
for solving these boundary value problems. For example, non-
polynomial spline technique was used by Siddiqi and Akram
(2007) to determine the solution of eighth-order and Akram
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and Siddigi (2006) to determine the solution of sixth order
boundary value problems. Mestrovic (2007) used modified
decomposition method for the solution of eighth-order boundary
value problems. Islam et al. (2008) used non-polynomial splines
approach to the solution of sixth-order non-linear boundary value
problems of the form (1) and (2). Solution of special sixth order
boundary-value problems was given by Boutayeb and Twizell
(1992). Khan and Khandelwal (2012) used parametric septic
splines and Jalilian and Rashidinia (2010) used nonic-spline for
the solution of non-linear sixth-order two point boundary value
problems.

The above system involves the second order boundary value
problems. Polynomial and non-polynomial spline approach
(Ramadan et al., 2007), quintic non-polynomial spline method
(Srivastava et al., 2011), cubic spline method (Al-Said, 2001),
non-polynomial spline (Jha and Mohanty, 2011; Mohanty et al.,
2017), spline in tension (Mohanty et al., 2005), spline in compres-
sion (Mohanty et al., 2004) were used in previous papers to solve
second order boundary value problems. Here, we use lower degree
non-polynomial quadratic spline for solving system of second
order boundary value problems. This non-polynomial quadratic
spline is based on off-step points.

When linear BVPs are implemented over the method, we get a
linear system of equations which are solved by using LU decompo-
sition method and when non-linear BVPs are implemented we get
a non-linear system which is solved by Block Newton Raphson
method. The outline of this paper is organised into five sections.
In Section 2, consistency relation and in Section 2.1 truncation
error and end equations are discussed. In Section 3, application
of the method to solve the sixth order BVPs is given. Section 4 gives
the convergence analysis of the method. In Section 5, seven
examples are considered to illustrate the accuracy and perfor-
mance of the method presented in the paper.

2. Non-polynomial quadratic spline function
To develop the new method based on off-step points, we divide
the interval [a, b] into n + 1 subintervals, s.t.
A=Xg <Xij2 <X3p < <Xn_12 <Xq=Db.
We introduce a finite set of grid points x; as
xi=a+(i—1/2)h, i=0,1,...,n and h=(b-a)/n.
Let
P;i(x) = a; cos k(x — x;) + bie"®™) + ¢ (5)

be a non-polynomial quadratic spline P; is defined on [a, b] which
interpolates the uniform mesh points x; depends on a parameter
k, reduces to an ordinary quadratic spline in [a,b] as k—0 and
k> 0.

To determine the coefficients a;, b; and c;, we define the follow-
ing interpolatory conditions as

Pi(Xis1/2) :yi+1/z71’§1>(><i) =Qi.P? (Xis12) =Rin12, i=0,1,....1n
(6)
By using the conditions (6) we calculated the coefficients as
1 0 1. 0
a =— PRM/Z sec (j) + EQ‘ei sec (j)
1

b; =&

1 2
Ci =Yiz12 + k—sz/z - EQ:’eZ

where, 0 = kh.

Using the continuity of first derivative, P\™)(x;) = P™ (x;),
m = 0,1 the following consistency relation is derived

Yispn + B1Yic1z + V1Yiv1)2

. (7
= h* (R 32 + PoRisrj2 + PaRiip), i=2,3,...n-1

where,

1 0 . 9
B=g [ez" + [(ei —ef) sm@seci +e%(1 + cos 0 csc 0)

0] o . 0
_e’ Zlez -
e cos()secz} ez sm()secz}
1 0 .
By=—|-1+e"+e* + e"secgfe¥csc07ef'sm(isecg+cos(?secg
9* 2 2 2
2 2

. 0 . 0
+sinfsec= — ez — ez cos 0 csc 0| ez sin 0 sec =

1 . 0 . 0 0
2= [fe” — e sin 0 sec? 5+ e?sin 0 sec= + e secf]

2 2
0.0 0
Y =—¢€ +e sm@seci
o =y
By =yy — )2

Remark 1. Our method reduces to Ramadan et al. (2007) based on
quadratic spline when

1

(alaﬁl7ylaa21ﬁ27y27):(17_2717§7 ) (8)

0| O
| —

2.1. Truncation error

Expanding the scheme (7) by using Taylor series, we obtained
the following truncation error

—3o —
i =lo + By + Py + {w} hy,"

9oy + B4 +
T e R A P
L 272!
3[=2700 — By + 4 =30 — o+ 72 3)
h 231 - 2 g
LBl Bt (9%t Byt y
2441 2%2! :
5[—24300 — B; + 7, =270 — By + 12\ ].5
+h 255 - 2331 Vi
S (72900 + B +71 (81 +Fr+75\] 6
| 2661 244 :
+0(h),i=2,3,...,n—1. ®

For different values of parameters, we get the second as well as
fourth order method. For o, + 8, +7, =1 and o, =y, we get the
second order method. For the choice of parameters
(01, B1, Y1, o2, By Vo) = (1,-2,1,1/12,10/12,1/12) we get the
fourth order method.

Eq. (7) forms a system of (n — 2) linear equations in n unknowns
Yiap,i=1,2,...,n. Thus, we need two more equations, one at
each end of range of integration. These boundary conditions are
obtained by using method of undetermined coefficients.

The equations for second order method are given by Islam et al.
(2006) as
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h’* .
2Yo =3Vt Y3 = 24 [15R12 + 3R32] + O(h4)~,l =1 (10)
h* .
2y, = 3Vn1p2 +VYn3p = 24 [15Rn_1/2 + 3Rn_32] + O(h4)71 =n (11)

error for second order method for
1,-2,1,1/8,6/8,1/8) is given as follows:

The truncation
(ah/jlv’}}]ﬁaZvﬁZﬁyZ) = (

&Ry o), i=1

ti= —LhYY 1 oh’), i=23,...,n-1

—&h'y +o’), i=n

and for fourth order method are obtained as

h’ .
20 =312 + Y32 = 384 [233Ri2 + 63R3/2 — 9Rs )2 + Ryja] + O(h®),i=1

(12)
2
2y = 3Vna2 tVn3p = 334 [233Ry-1/2 + 63Ry 372 — 9Ry5/2 + Ry_712]

+0(h%),i=n.
(13)

The truncation error for the fourth order method is given as
follows:

7oy +O(h), i=1
ti= —ﬁhﬁy§6’+0(h7)~, i=23,...,n-1
sy +O(h"), i=n.

3. Application of the algorithm to the higher order boundary
value problems for N =3

We consider a sixth order boundary value problem i.e N =3 in
(1-2) of the form
YOx) = a(x)y® (x) + bx)y? (x) + c(x)y® (x) + d(x)y® (x)
+e(x)yV(x) +f(x)y(x) +8(x) (14)
subject to boundary conditions
y(@) =21,y (a) = 22,y (@) = 43
y(b) =61,y? (b) = 62, y¥ (b) = &

where /; and §;(i = 1,2, 3) are finite real constants and the functions
a(x),b(x),c(x),d(x),e(x),f(x) and g(x) are continuous on [a,b]. We
decompose the above problem into the system of second order
boundary value problems as follows:

y@(x) = u(x), (15)
u®(x) = v(x), (16)
v?(x) = a(x)v'V (x) + b(x)v(x) + c(x)u'’ (x) + d(X)u(x)
+ex)y(x )+f X)y(x) + g(x).

=F(x.y,u, 0,y u, o) (17)
subject to modified boundary conditions
y(a) =4, y(b) = o1, (18)
u(a) =4z, u(b) = 4, (19)
v(a) =43, v(b) = d5. (20)

Therefore by implementing the scheme (7) on the boundary
value problems (15)-(17), we get the following system of
equations

UYizp + BiYic + V1Yie1)2
= hz(dzui&/z + folli12 + Vzui+1/2)7i =23,...,n-1 (21)

0 Ui-3/2 + Pyli—172 + V1Uiviy2

= W (0032 + By Vi1 + PaVira),i=2,3,...,n — 1 (22)

1 Vizzyp + B1Vic12 + Y1 Vis12
= hz((szifa/z + BoFii1p + 9,Fiap),i=2,3,...,n—-1 (23)

The fourth order method is obtained by using the parameters
(02, B2, 72) = (5,32,5) in the scheme (21)-(23) and replacing

12012712

(23) by the following as:

1 10~ 1
Vi3 + Br1Vicrp + V1 Vise = h <ﬁFi—3/2 +ﬁF1’—1/2 +EF1‘+1/2>~,
i=23,....,n-1

where,

Fisp —F(X Yiozje Uiszp2, Vi3, Vi3 Ui 300 Vi 3/2)
Fiiip _F(vax 1720 Yic1/2: Vic172, Yica jos Ui o0 Vi 1/2)
Fisap _F(x7yl+1/27ul+1/27 Vis1/2:Yi1/2: Ui 25 :+1/2)

Fi—l/z :F(X7Yi71/2aui—l/27 11#1/2,372,1/275!2,1/2, 2);71/2)7

and the finite difference approximations to derivatives are

Yivi2 = Yio3p
Yici == p
=3Yizp T4tz — Yinp2
Visp = oh ;
Yiisp = Wi +3Viap
Yieip = oh )
y Vi h
Vi *7l+1/22h L _E(Riﬂ/z —Ri_3)2).

The fourth order approximations of derivatives involved in the end

Egs. (12) and (13) are as follows:
321 3 1
YVip =~ gJ’o “'63/1/2 +Y32 — EyS/Z “'ﬁ}’wz
h (1) 32 1 3
Y32 :ﬁJ’O Y12+ g)@/z + g}’S/z - ﬁ%/z
h 32 5 9 5
YS/z ~71057° +EJ’1/2 —3Y32 +EY5/2 +ﬁY7/2
h 7 1 89
J/7/2 35YO 3Y1/2 T5Y32 =5 V52t 35720

Here, we derive only the second order method. On combining
(21)-(23), we obtain the vector difference equation for the bound-
ary value problem (15)-(17) as

AWisp 4+ BWi_ 1) + CWinq2 = H; (24)
which are as follows:
aiyy  aip  ai] [Yisp [biyy  biyy biiz] [Yicap
aiy Qi ai Uiz | + | bizi bin  bix Ui_12
aizy  aizy  aiss Vi_3)2 | biz1  bis; biss Vi_1)2
Ciyy Cip Cipz | [ Yir1y2 | hiy
+ | Clyy €y Ciaz | | Uiz | = | hp |,i=2,3,...,n—1
Cizy Cixpp Cisz Vit1)2 | his
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where,

aiyy = =0, aipp = h20627ai13 =0,aiy =0,

. . 2
iy = =00y, Giy3 = h"0p,
. 2
aiz1 = —3ogei 3 + W 0af i35 — L freiip + 575802,
. 2 .
aiz; = *%szcis/z +h%odi 3, — %ﬁzcm/z +84y,C0102,

Qizz3 = =0l — 32—}701201‘73/2 + hzoczb,-,g/ - %ﬁzam/z +%Vzai+1/2;
bivi = —py,bira = h*py, birs = 0,biz =0,

bizy = —fy, bizs = h*p,

bizy = 2hoise 32 + h*Bof i 15 — 2hpsei1)2,

bizy = 2hoic;i 30 + W Bydi 1/ — 2hy,Cii1 2,

bizs = —p; + 2hoza;_3, + hzﬁzbiq/z — 2hy, a2,

Ciyy = —);,Cliz = hzyz,cilg =0,ciy =0,

Clyy = —7);,Claz = hzyz,

cizy = —1hozei s +Thpyei1p +3hyein + hz"/zfm/m
Cizp = *%hfxzcis/z + %hﬁzcm/z + %hychﬂ/z + hzyzdi+1/27
Cizs = —y; — 1hoaai 32 + hByais1 2 + 3hy,aic1 2 + hz“/zbm/z,
hiy =0,

hi =0,

hiz = —hz(‘ngu/z + Ba8i12 + V28ir172)5

i=23,...,n-1.

Now for i =1, we have

BiWi), + CiW3, =Hy (25)
which can be written as
bly1 blyy blis] [¥1) 1y cliz cliz ] [ Y32 hiy
b1y blyy bl | ||+ |clan clyy clys| (U3 | = | b2
b1s; blsy blsz| [ 212 cl3 clsy clsz | |03 hi3
where,
15k 15k
b1y, :3,’9112:T,b113:0,b121:0,b122:3,b123:7,
15 15, 3
b]g] :—ﬂhel/z +ﬂh f1/2 —ﬂhe:;/L

15 15 3
b132 = 7ﬁhC1/2 +ﬁh2d1/2 *ﬁhC3/27

15 15 3
b133 =3 *ﬂhﬂ]/z +ﬂh2b1/2 *ﬂh(h/z,
3 3

cly=-1,clz = ﬂﬂ?lw =0,c13 =0,cl = —1,cl23 =54
15 3 3
cls :ﬂhel/z +ﬂh€3/2 +ﬂh f3/27
15 3 3 5
cl3, :ﬂhﬁ/z +ﬁhC3/2 +ﬂh ds ),
15 3 3 5
Cly3=—1 +ﬂha1/2 +ﬂh(13/2 +ﬂh bg,/z7
K
hi1 =2y, hi2 = 2up, hiz = 20 — ﬂ(15g1/2 +383)2)-
Now for i =n, we have
Aan—3/2 + Ban—1/2 =H, (26)
which can be written as
anyy Aang AMs | | Yooz bnyy bniy bnis | [ Va1 him
anz; anyy  angs Up3p2 | + | bnyy bny  bnys Un_12 | = | hn2
any ansy anss | | Un-sp bny; bny bnss | | Un1p hus

where,

-3 _ 15K°
any = 3,an; = 5,
ang;z = 0,any; =0,

1 2
any, = 3,an,; = %’{7

anz; = — %henq/z + ﬁhzfnq/z - %hen—3/27
ans; = —ﬁhcnq/z + %hzdnq/z - %hcn—3/27
anss = 3 — %hanq/z + %hzbnq/z - %han—3/2
bny; = —1,bny = %,

bnyz = 0,bny; =0,

bny, = —1,bny; = %7

bns; = hey_ 1), + 2 heq ) +23jh2fn—3/27

bizy = B5hew 1)+ Fhea 30+ Z M dn 3,

bnss = =1+ B hay 12 + % han_s) +%h2b”*3/2’
hn = 2y,

hypp = 2uy,

hps = 20, — %(15&171/2 + 3gn,3/2)-

4. Convergence analysis

In this section, we study the convergence analysis of the
second order method developed in Section 2 where
(o1, B1, 71, 02, B2, Y2) = (1,-2,1,1/8,6/8,1/8). The method has the
following form

AW =M (27)
where,

‘B, C, -

A2 Bz Cz
A= (28)

An—l Bn—l Cn—l
An  Bn |

where, A is a triblockdiagonal matrix in which Ai(i=2,3,...,n),
Bi(i=1,2,...,n) and C;(i=2,3,...,n—1) are matrices of order

2x2, W=[wp,wsp,... 7Wn71/2]T where, Wi_12 = D/i—l/27ui—1/2~,
zz,-,l/z]T, i=1,2,...,n and the right hand side vector
M= [ml,mz,...,mn]T, where m; = [m,-l,miz]T,i =1,2,...,n

We also have,
AW =M +T (29)

where W = (W12, W32, ... 7Wn—1/2]T where, Wi_12 = [Vi_1/2, Ui—1/2,
Di1p)",i=1,2,...,n be the exact solution and T = [t;,L;,...,ta]"
where, t;= [}71'71/2 _yi71/27ﬂi—1/2 —Ui-1/2, 7~/i71/2 - 7/i71/z]T, i=12, ...,n
be the local truncation error. From (27) and (29) we have,

AW -W) =T,

AE=T,

E=W -W=1[&,&,....6.1]

Let 0 < R € Z* is the minimum of |a;], |bi|, |ci|, |di, |e;| and [f;].
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Then

1+71+h2(“/2+237)-, j=1

2 .
HCf\Klglgan)El T+, +h* (7, +2), j=2
1479, +3h(ca + B, +37,)R+H’p,R+ AR+ LR, j=3
3o+ h (o +13), j=1

2 .
Al < maxy 3 +ou +h° (2 + 33), j=2

3404 +3h(Bo + B, + 75)R+ MR+ BhR+ BH°R, j=3

Further,
2410,
ICill.. < max ¢ 2+ 1R

1<i<n-1

2+UhR+1NR, j=3
441K,
4l < max 4410
44+ UhR+1RR, j=3

This shows that ||Ci||,, <2 and ||A;|,, <4 for sufficiently small h.
Hence, A is irreducible. Now we have to show that A is monotone.

To show matrix A is monotone first we calculate the sum of
each row of the matrix A.

3 .
Zk:lal]k +bly, j=1

3 ,
> @l +bly, j=2

3 .
Zk:1a13k +bly, j=3

S @it biy+ci, j=1i=1,47,....n-3

3 . . . . .
Sij = Zk:1a12k+b12k+azks j=2,i=258,....n-2
Zi:lai3k+bi3k+d3k7 j=31i=36)9,..,n-1

S any +bny, j=1
Snj = ZizlanZk + ank, ]= 2
S ans+bny, j=3
We have
2+ 81 j=1
Sii=12+8K j=2
2+ 810 (F1p +dip+bip) =0 (fs0 +dsp +bsp), =3

— (0 + By + 1) + 21 (0 + B +72), i=1,4,7,...,n-3, j=1

— (0 + By + 1) + 21 (0 + B +72), i=258..,n-2 j=2
Si={ =0+ By +71) + P03 +di 32 +bi3)
+h? By (fiyjp +dicij2 + i)

029, (Fipr o + divija + bia2), i=369..,n-1 j=3
20, i=1,4,7,...,n -3, j=1
2h%, i=2,58,....n-2, j=2

2 2
%h (fi—}/z +di_z;2 + bi_z)a) +%h (fm/z

+di_12 + b; 1,/2)+%h2(fi+1/2 +dii12 +biy1p), 1=3,6,9,....n—-1, j=3
2+ 181, j=1
Sw=19 24180, j=2

2+ %hz(fn 1/2 + dn—l/’z + bn—l/z) - 2_34h2(fn 3/2 + dn—}/z + bn—B/Z)s .l =3

For sufficiently small h, we can easily show that the matrix A is irre-
ducible and monotone. Therefore, A™! exist and A™' > 0.

Hence,

E[ = 1A [Tl

Now for sufficiently small h, we have
18p, j=1

Sij = %hz, j=2
I8R7R, j=3
Wi=14,..,n-3 j=1

Si=>{h%i=25,....n-2, j=2
WR,i=3,6,....n—1, j=3
18y, j=1

Sij > 8K j=2
18 p*R, j=3

Sy =m [lshz,;iff,24Rh2]—- RR, i=1

S > max[h* h* Rh’] =Rh*i=2,... .n—1

18,18 , 18
Sn = maxiy 15 og

Therefore, we get

18 pr?) = iha,i::n

1 24 i
§<{18ha’ i=1
1 1 _
gg{w, i=23 -1
1 24 -
Sn < { 18RR*’ I=n
Further,
24 i
18h°R’ =1
1 1 —
Eg R i=2,3,...,n-1
24 _
18h°R’ =n
Let A™! = (a;;), then by theory of matrices (Varga, 1962), we get

YiaSi=1,j=1,....n
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Therefore,

* < 1
au < §,
A" = max

1<i<n

i=1,....,nand

N w11 (24
i < s =g (5 1)

n
ITill = maxp |

ITil

The error is given by

. 1 /33
181 = 1A~IITH < (55171

Therefore, using (9) we get ||T|| = O(h*) for second order method.

1 <33> 4 2
E|| < 5 (= |O(h") = O(h").
|IE] 7z \ 9 (h") = O(h™)
Hence, our method is second order convergent. By repeating the
same procedure we can find the bound for error of fourth order
method which is as follows:

_ 1 /33
181 = 1A~ IITH < (55171

Therefore, using (9) we get ||T|| = O(h®) for fourth order method.

Bl < 1 (5 )00H) = e

Hence, our method is also fourth order convergent.

Theorem. The method given by Eq. (7) for solving the boundary value
problem (1), (2) for sufficiently small h has a second as well as fourth
order convergence depending upon the parameters.

5. Numerical Illustrations

We now consider seven numerical examples involving higher
order non-linear and linear boundary value problems along with
two singular problems involving first and third derivatives illus-
trating the efficiency of the presented method. We compared the
results with the existing methods of fourth order. We have also
provided the numerical rate of convergence (p") for the non-
linear singular fourth order BVPs. The numerical rate of conver-
gence is computed using

pr = Iny(E"/E™)

The maximum absolute errors for h=1/8, 1/16 and 1/32 are tabu-
lated in the Tables 1-7.

Table 1

Maximum absolute errors for Example 5.1.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (o2, 2,7,) = (15,19, 75) 1.8041 x 1078 12112 x107° 7.7281 x 107"
Second order method for (02, 83,7,) = (§.5.3) 7.4684 x 1075 1.9008 x 107° 4.7705 x 1077
Wazwaz (2002) 914 x 10°° - -

Table 2

Maximum absolute errors for Example 5.2.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (0, f5.7,) = (15,19, ) 2.6956 x 10°° 23833 x 1077 1.6610 x 1078
Khan and Khandelwal (2012) 3.06 x 10~ 434 x 1077 353 x10°%
Second order method for (o2, 5, 7,) = (§.5,3) 5.8363 x 10° 1.5815x 10> 4.0262 x 10°°
Islam et al. (2008) 23x1073 34x107* 154x1074

Table 3

Maximum absolute errors for Example 5.3.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (02, f5.7) = (15,19, %) 1.8014 x 107”7 1.1957 x 1078 7.5853 x 10710
Khan and Khandelwal (2012) 7.02 x 1076 435 %107 7.87 x 1077
Second order method for (¢, 83,7,) = (§.5.3) 1.1216 x 107 3.1010 x 10°° 7.7930 x 10°°
Khan and Khandelwal (2012) 219x10°* 388 x 1070 -

Table 4

Maximum absolute errors for Example 5.4.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (02, f5,7,) = (15,19, 1) 1.8034 x 1077 1.1971 x 1078 7.5941 x 10710
Second order method for (a2, ,7,) = (§.5.3) 12179 x 1074 3.1046 x 10> 7.8021 x 107
Mestrovic (2007) 143 %1074 - -
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Table 5

Maximum absolute errors for Example 5.5.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (02, 5. 7) = (15,19, %) 3.0468 x 107 27373 x 107¢ 1.8321 x 107”7
Islam et al. (2008) 6.97 x 107* 3.60 x 107° 7.44 x 1077
Second order method for (o2, 5, 7,) = (£.5,3) 330x 1072 9.2908 x 107* 23651 x 107
Islam et al. (2008) 1.23 x 1072 2.80x 1073 1.60 x 1073

Table 6

Maximum absolute errors for Example 5.6.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (a2, 82,72) = (15,13 1%) 8.7479 x 107° 5.2045 x 1077 3.0265 x 107
o 4.0711 4.1040 -
Mohanty et al. (2017) 3.0756 x 107° 1.8795 x 1078 1.1320x 1077
Second order method for (ctz, f5,7,) = (§,§,3) 41197 x 1073 9.1777 x 1074 2.1645 x 1074

Table 7

Maximum absolute errors for Example 5.7.
Our Method h=1/8 h=1/16 h=1/32
Fourth order method for (02, f2,75) = (75,19, 1%) 23953 x 107° 1.4326 x 10~ 8.4006 x 10~°
o 4.0635 4.0920 -
Second order method for (cty, f5,7,) = (§,§,3) 1.005 x 1073 2.2503 x 1074 53021 x 10°°

Example 5.1. Consider the following fourth order non-linear
boundary value problem for 0 <x <4 —e as

¥y (x) = —6exp(—4y(x)), (30)
where,
¥(0)=1,y(4 —e) =In(4),

1 1

yO0) = - Y4 —e) =~

The exact solution of the problem is y(x) = In(e + x). The maximum
absolute errors of the problem (30) are given in Table 1 and results
are compared with (Wazwaz, 2002). Graph between the exact and
the approximate solutions of Example 5.1 for N=16 is shown in
Fig. 1.

Example 5.2. Consider the following sixth order non-linear
boundary value problem as

y© (x) = 20 exp[—36y(x)] — 40(1 +x)® x € [0,1] (31)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 1. Graph of the exact solution versus the approximate solution for N = 16 for
Example 5.1.

where,
1
¥(0)=0,y(1) = g log2,
1

1
) — —_ y@ -
y0) = -5y (1) = -5,
1
4) — (4) -
y90) = -1,y9(1) = - .
The exact solution of the problem is y(x) = { log(1 + x). The maxi-
mum absolute errors of the problem (31) are given in Table 2 and
results are compared with (Khan and Khandelwal, 2012; Islam

et al., 2008). Graph between the exact and the approximate solu-
tions of Example 5.2 for N = 32 is shown in Fig. 2.

Example 5.3. For 0 < x < 1, the sixth order non-linear boundary
value problem is considered as,

YO(x) = exp[-x]y*(x), (32)

where,

Fig. 2. Graph of the exact solution versus the approximate solution for N = 32 for
Example 5.2.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. Graph of the exact solution versus the approximate solution for N = 16 for
Example 5.3.

y(0)=1y( )—eXP( );
2)(0) 1y®(1) = exp(1),
@(0) =1,y%(1) = exp(1).

The analytical solution of the above problem is y(x) = exp(x). The
maximum absolute errors of the problem (32) are given in Table 3
and results are compared with (Khan and Khandelwal, 2012). Graph
between the exact and the approximate solutions of Example 5.3 for
N =16 is shown in Fig. 3.

Example 5.4. For 0 < x < 1, the eighth order non-linear boundary
value problem is considered as,

®(x) = exp[-x]y* (x), (33)
where,
¥(0) = 1,y(1) = exp(1),

@) =1, y(”( ) =exp(1),

@(0) =1,y (1) = exp(1),

©(0)=1,y°(1) = exp(1).

The analytical solution of the above problem is y(x) = exp(x). The
maximum absolute errors of the problem (33) are given in Table 4
and results are compared with (MeStrovic, 2007). Graph between
the exact and the approximate solutions of Example 5.4 for N = 32
is shown in Fig. 4.

Example 5.5. Consider the following sixth order linear boundary
value problem as

©®)(x) + y(x) = 6[2x cos(x) + 5sin(x)],x € [-1,1] (34)

where,

Fig. 4. Graph of the exact solution versus the approximate solution for N = 32 for
Example 5.4.

0.4

031

021

011

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Fig. 5. Graph of the exact solution versus the approximate solution for N = 32 for
Example 5.5.

@(~1) = —4cos(—1) + 2sin(-1),

@(1) = 4cos(1) +2sin(1),

@ (-1) = 8cos(—1) — 12sin(-1),

@ (1) = =8 cos(1) — 125sin(1).
The exact solution of the problem is y(x) = (x> — 1) sin(x). The max-
imum absolute errors of the problem (34) are given in Table 5 and
results are compared with (Islam et al., 2008). Graph between the

exact and the approximate solutions of Example 5.5 for N=32 is
shown in Fig. 5.

Example 5.6. Consider the following non-linear singular fourth
order boundary value problem as

YO + 2y =y 1 O {xisi“éz") - 4} xe1 (35
where,

¥(0) =0, Y( ) sin(1),

y?(0) =0,y (1) = —sin(1).

The exact solution of the problem is y(x) = sin(x). The results of the
problem (35) are given in Table 6 and compared with (Mohanty
et al., 2017). Graph between the exact and the approximate solu-
tions of Example 5.6 for N = 32 is shown in Fig. 6.

Example 5.7. Consider the following non-linear singular fourth
order boundary value problem as

cos(x )+smxcos 2(x),x € ]0,1]

(36)

() + 29000 = +

4
(4) 2,0
Y (x) + xy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6. Graph of the exact solution versus the approximate solution for N = 32 for
Example 5.6.



Shahna, A. Khan/Journal of King Saud University - Science 31 (2019) 737-745 745

Fig. 7. Graph of the exact solution versus the approximate solution for N = 32 for
Example 5.7.

where,

¥(0) = 0,y(1) = sin(1),
y#(0) =0,y?(1) = —sin(1).

The exact solution of the problem is y(x) = sin(x). The results of the
problem (36) are given in Table 7. Graph between the exact and
approximate solutions of Example 5.7 for N = 32 is shown in Fig. 7.

6. Conclusion

In this paper, we developed a non-polynomial quadratic spline
method based on off-step points for solving higher even order
boundary value problems. Advantage of the off-step points is to
solve the higher order singular boundary value problems. We
reduced the given problem into system of second order boundary
value problems. The developed scheme (7) is second as well as
fourth order accurate depending upon the parameters. Comparison
of our method with the existing methods are shown in Tables 1-6
and graphs between exact and approximate solutions of the Exam-
ples 5.1-5.7 are shown in Figs. 1-7 respectively. These results
shows that our fourth order method is far better than the existing
fourth order methods except higher degree splines.
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