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Background and Objectives: Missing outcome data are a common occurrence for most clinical research tri-
als. The ’complete case analysis’ is a widely adopted method to tackle with missing observations.
However, it reduced the sample size of the study and thus have an impact on statistical power. Hence
every effort should be made to reduce the amount of missing data. The objective of this work is to provide
the application of different analytical tools to handle missing data imputation techniques through illus-
tration.
Methods: We used Imputation techniques such as EM algorithm, MCMC, Regression, and Predictive Mean
matching methods and compared the results on hepatitis C virus-induced hepatocellular carcinoma
(HCV-HCC) data. The statistical models by Generalized Estimating Equations, Time-dependent Cox
Regression, and Joint Modeling were applied to obtain the statistical inference on imputed data. The
missing data handling technique compatible with Principle Component Analysis (PCA) was found suit-
able to work with high dimensional data.
Results: Joint modelling provides a slightly lower standard error than other analytical methods each
imputation. Accordingly, to our methodology, Joint Modeling analysis with the EM algorithm imputation
method has appeared to be the most appropriate method with HCV-HCC data. However, Generalized
Estimating Equations and Time-dependent Cox Regression methods were relatively easy to run.
Conclusion: The multiple imputation methods are efficient to provide inference with missing data. It is
technically robust than any ad hoc approach to working with missing data.
� 2021 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hepatocellular carcinoma (HCC) is the second leading cause of
cancer-related death in sub-Saharan Africa and Asia (Bray et al.,
2020). It is the sixth common cancer globally (Torre et al., 2015;
European Association For The Study Of The Liver, 2012; Ferlay
et al., 2015). Infection with the hepatitis C virus (HCV) found a
lethal risk factor for the progression of HCC Axley et al., 2018).
The risk of getting infected by HCC is 17 times more in HCV
patients than in non–HCV individuals (Donato et al., 1998). It is
required to have clinical trials on HCC–HCV patients to obtain bet-
ter therapeutic effects. Missing data appeared in the randomized
controlled trial of hepatitis C virus-induced hepatocellular carci-
noma, and it is an overlooked area for robust statistical inference.
It documented in a study that the HCV status was heavily missing
of around 29% among the HIV infected patients (Lewden et al.,
2004). It leads to a biased estimate.

Presence of missing data is acknowledged in the HCV trial
(Garriga et al., 2017). Now the clinical trial, can not be performed
without having repeated measurements, and repeated measure-
ments obtained by follow-up visits raise the chance of missing data
occurrence. Conventionally, the expression signature of the hepa-
tocellular carcinoma collected with longitudinal responses for
biomarkers. Commonly, each patient assigned to one of the ther-
apy; different responses assessed at different time points. It raises
the missing covariate data.

It is necessary to emphasize on a statistical methodology to
impute those missing values to gather additional information from
the longitudinal and survival patterns. It is common in clinical tri-
als and may have a substantial effect on the inferences that can
bedraw from the data. Understanding the cause of missing data
is essential for handling the remaining data aptly. The potential
reasons for missingness could be that the subjects in longitudinal
studies frequently drop out before the survey get completed since
they have moved out of the region, no longer get the personal ben-
efit for participating, died, or do not like the treatment therapy. The
proportion of missing observations may be huge in some studies.
Reason of missingness may be due to aggressive disease and treat-
ment toxicity. The exclusion of participants with missing measure-
ments can have a severe impact on the study results. Measures that
require painful collection procedures or confidential, invasive,
time-consuming coding, and complicated laboratory analysis or
compilation are more likely to be missing.

The objective of this work is to present different missing data
handling techniques. The software used to achieve the objective
2

of this work are carried out usingR CRAN ( https://cran.r-project.
org/) and Statistical Analysis System (SAS).

This work is about presenting different missing data handling
technique through the HCC data. Techniques like last observation
carried forward (LOCF), baseline observation carried forward
(BOCF), handling missing values with multivariate data analysis,
the regression method, predictive mean matching, expectation–m
aximization (EM) algorithm, Markov chain Monte Carlo (MCMC)
method, and generalized estimating equation(GEE) were presented
with the illustrating data.
2. Data description

We used hepatocellular carcinoma dataset to illustrate our mul-
tiple imputation techniques-the dataset used for illustration only.
Due to ethical constraints, the treatment arms were blinded. Mul-
tiple imputation techniques were compared on HCV-HCC patients
data. A total of 160 patients from HCV-related HCC with liver cir-
rhosis and HCV-related cirrhosis without any substantial evidence
of HCC were considered for analysis. The characteristics considered
for the liver cirrhosis study are the Model For End-Stage Liver Dis-
ease (MELD) score[ranges from 20 to 32], age[range 30–65], Gen-
der[Male 140 87:5%ð Þ, Female 20 12:5%ð Þ], Alkaline Phosphate
[range 62–93],SGOT[range 93–141], and SGPR[range 85–155].The
MELD scores are directly proportionate to the severity of the dis-
ease. The data considered in this analysis are MELD score observed
at visit 1, visit 2, visit 3, visit 4 and visit 5, respectively. The original
work was published earlier (Garriga et al., 2017). The therapies
were (I) ’Arm-A’ (n = 80 subjects) or (II) ’Arm-B’ (n = 80 subjects).
The continuous variables were defined as age in years, Alkaline
Phosphate, SGOT, SGPR, and MELD score. Subjects were followed
continuously, and the death status(alive or died) were recorded.
The dataset named as ”datahcv” was uploaded as supplementary
file s1. The missing observations were observed from visit 2 to visit
5 for a few subjects.
3. Methodology

In this section, we will discuss the different statistical design
and similar analytical tools to handle missing values. This dataset
is dedicated to baseline missing data handling techniques.

In the presence of missing observations, and statistical infer-
ence requires to check, assumptions about the process that caused
the missing data, which is also known as missing data mechanism.

https://cran.r-project.org/
https://cran.r-project.org/
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Reasons for missing data can be separated as (I) Patients lost to
follow-up from the study. (II) Data entry errors. (III) Patient denial.
(IV) The severely ill patient was unable to visit the clinic. (V) Faulty
measurement device. (VI) Data not entered or updated, and so
forth. In summary, the missing data mechanisms can be classified
into three categories.

Missing data is said to be missing completely at random if the
missingness does not depend on the observed or unobserved
observations. The examples of this type of missing data would be
data entry errors, accidental deletion of response on a question-
naire and mishandling of laboratory instrument. For example, in
liver transplant study, the criteria for deciding when liver trans-
plantation is required are mainly based on MELD. Let’s assume that
the MELD score is missing for some patients. Then the missing
MELD scores are MCAR if the chance of observing the missing
MELD is independent of the fully observed MELD scores and the
MELD that would have been seen (i.e., the disappeared MELD
scores). Under MCAR, the observed data are a random sample of
all the data. In such scenarios, a complete case analysis may result
in more significant SEs in the model parameter estimates (i.e., loss
of efficiency) in this setting. Still, no bias in the model parameter
estimates is introduced when the data are MCAR. Bias is defined
as the average difference between model parameter estimates
and their true values (Little, 1995; Rubin, 1976).

Data are said to be missing at random (MAR) if, given the
observed data, the probability of missing value does not depend
on the data that are unobserved.

The missing data mechanism is said to be nonignorable or miss-
ing not at random (MNAR) if the failure to observe a value depends
on the amount that would have been found or other missing values
in the data set. MNAR data are most common in longitudinal stud-
ies in which missingness is the result of study dropout, toxicity, or
illness.

If the technique is dependent on the missing data, and the
observed data decides the outcomes, then it is classified as missing,
not at random (MNAR) (Sterne et al., 2009; Dziura et al., 2013). It is
not possible to differentiate the MAR and MNAR by looking at the
observed data. The definition of the missing data is unknown, and
it can, therefore, not be assessed if the observed data can predict
the new data (Little et al., 2012; Morris et al., 2014). In this context,
direct maximum likelihood method provides the unbiased esti-
mates. However, it is not clinically suitable to assume MAR
(Little et al., 2012). Further, the sensitivity analyses are required
to understand the potential impact of the MNAR on the estimated
results (Little et al., 2012; Morris et al., 2014). It is worth mention-
ing that unfortunately, one cannot determine whether missingness
is MNAR or MAR solely based on the data at hand. There are differ-
ent issues to handle the missing data. It is not only about under-
standing the type of missingness. The lost data handling
technique is required to be compatible with the study design.
4. Ad hoc analysis strategy with missing data

4.1. Conventional missing value imputation strategy

The calculated mean value is defined as straightforward to
replace the missing value. This is a quick step to fix the missing
data problem.

Different missing data handling techniques known as the last
observation carried forward (LOCF) (Laird, 1988; Roy et al., 2018)
and baseline observation carried forward (BOCF) (Woolley et al.,
2009). These are ad hoc imputation methods for longitudinal data.
The previously observed data values as an alternative to missing
data are considered. It is a procedure that the idea is to take the
3

already found amount as a replacement for the missing data. When
multiple values are missing in succession, the method searches for
the last observed value.

A complete case analysis can result in biased estimates, ineffi-
cient or unrealistic standard errors. It only analyzes subjects with
available data on each variable. Even though the study has simplic-
ity, it reduces the statistical power and doesn’t use all the informa-
tion. Listwise deletion and Pairwise deletion will not provide any
bias in parameter estimates if the data are MCAR (Roy et al.,
2018). If the data are MAR (not MCAR), then these methods will
produce biased parameter estimates. Simple imputation methods
such as mean imputation provide biased estimates (Woolley
et al., 2009). Instead of imputing a single value for each missing
value, a multiple imputation technique substitutes each missing
observation.These multiply imputed data sets are then analyzed
using standard statistical procedures and pooling the results from
these analyses (Liu-Seifert et al., 2010; Allison, 2001).

A Model could be either the logistic or linear model decided by
the type of response variable (Glasser, 1964).Thereafter, predic-
tions for the incomplete cases are inversely calculated from the fit-
ted model. It serves as the replacements for the missing data.

Stochastic regression is a specific step of the regression imputa-
tion technique. It used through exploring the correlation bias. The
noise of the predictions is incorporated by stochastics regression
modelling (Wallace et al., 2010).
4.2. Software packages for missing value imputation

The indicator method also comes with the regression method. If
the covariate is missing, then each missing value can be replaced
by zero and thereafter extends by the regression model with the
response indicator. Separately, each incomplete observed covariate
can be imputed. The ”mice’ package is useful to work on indicator
method (Buuren and Groothuis-Oudshoorn, 2010).

The data set has an arbitrary missing data pattern, and it is
assumed that the missing data are missing at random (MAR), that
is, the probability that an observation is missing may depend on
Yobs but not on Ymiss. If any liver cirrhosis subject has the missing
observation, the reason for this missing observation might only
depend on their observed meld score observations and not on
unobserved meld score observations. The purpose of this analysis
was to compare the estimates from different imputation tech-
niques namely Fully conditional specification (FCS) regression,
FCS predictive mean matching, Markov chain Monte Carlo (MCMC)
and expectation- maximization (EM) algorithm. The PROC MI pro-
cedure available in Statistical analysis software (SAS) was used to
implement these techniques with statements such as FCS REGRES-
SION, FCS REGPMM, MCMC and EM with nimpute = 50. The
chain = multiple had been used with method = MCMC for each
imputation, and the option INITIAL = EM was used. The means
and standard deviations from the available cases were the initial
estimates for the EM algorithm using proc MI. The correlations
are set to zero. The resulting estimates are used to initiate the
MCMC process. Joint modelling, time-dependent cox model, and
Generalized estimating equations were carried out to examine
the predictors of death in the presence of time-dependent covari-
ate meld score and baseline characteristics such as age, gender,
Alkaline Phosphates, SGPR, and SGOT. The results of joint mod-
elling analysis on 50 imputed datasets were combined to derive
an overall effect in each imputation method: i.e., SAS procedure
proc mianalyze was used to connect the parameter estimates in
each imputation method. Now we illustrated different steps with
multiple imputations. Especially, measures that are compatible
with different study design.
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4.3. Missing value imputation in high-dimensional data

Data generated with several thousands of covariates and the
minimal sample size is known as high dimensional data. Generally,
genomics data comes as high dimensional data. The data reduction
is the main challenge for high dimensional data analysis. It is a task
to reduce several thousand covariates to a minimal number of
covariates. There is a different statistical technique to work with
the data reduction mechanism. The widely used one is the princi-
pal component analysis(PCA). Especially continuous gene expres-
sion covariates can be reduced by PCA. The multiple
correspondence analysis (MCA) reduced the categorical covariates
data. Simultaneously the continuous and categorical variables are
reduced by multiple factor analysis (MFA) (Lin, 2010). Suppose
the number of variables are X ¼ xik½ �. The parameters are contained
with p variables of n individuals. The PCA helped to generate
bXS npð Þ, by specific approximation of X rank S through minimizing

the least square. jjX � bX jj2. It works through singular value decom-
position of X as

bX ¼ U
1
2VT ð1Þ

Conventionally, PCA is used as a data reduction technique. The
only complete case analysis in possible to work with PCA. PCA
works by maximizing the variance by individual-level diversity.
Simultaneously, the Euclidean distance between the individual is
derived. It helps to reduce the matrix size Xnp with n individuals
and p variables.

jjXnp � bXnpjj2 ð2Þ
The PCA is performed by an orthogonal transformation to iden-

tify principal components. It worked by equal a linear combination
of the gene expression levels and are linearly uncorrelated with
each other (Roy et al., 2018). Sometimes, gene expression measure-
ment for some individuals becomes missing. It is difficult to dis-
card those individual’s observations due to missing information.
The challenge is to have PCA compatible with missing data and
perform PCA by imputing missing data. The ”missMDA” package
available in R is suitable to solve the challenge. It helps to under-
stand data visualization (Figure1). But singular value decomposi-
tion (SVD) plays a crucial role in all these data reduction
techniques like PCA, MCA, and factor analysis. Now the arising of
missing data are common in high dimensional data analysis. But
discarding the missing data and perform analysis on complete case
analysis(CCA) is the standard practice. Fortunately, the missMDA
package available in the R system is useful to handle with missing
data obtained from high dimensional data (Ilin and Raiko, 2010;
Josse and Husson, 2016). It is compatible to work with PCA. This
package imputes the missing data. Continuous, categorical, and
mixed continuous and categorical can be attributed by the mis-
sMDA package. There are PCA can be performed into the imputed
data. However, it is to be noted that the variance of the estimator
obtained by PCA may be underestimated. The variability due to the
imputation of missing values is not taken into account through this
imputation. We illustrated the missMDA package application in
handling missing data section in Table 2.
5. Multiple imputation

5.1. Regression method

Sometimes it gets difficult to understand about the actual prob-
ability of missing data. It requires to have missing data process for
each visit by logistics regression having response variable with
each data that is observed or not. Similarly, the independent
4

variables can be linked with the missing data. The regression
model works as a suitable approach in this context (Lee et al.,
2018.) In this method, missing observations for each variable is
imputed using the posterior predictive distribution of the parame-
ters. Let, the continuous variable Yj, is the response observation of

jth patient with missing observations, and the model is defined as
Yj ¼ b0 þ b1X1 þ b2X2 þ . . .þ bkXk ð3Þ

The variable is Yj and the covariates are X1;X2; . . . . . . ;XK .. The
fitted model includes the regression parameter estimates

b̂i ¼ b̂0; b̂1; . . . . . . ; b̂k

� �
and the associated covariance matrix r̂2

j V j,

where Vj is the usual X 0X inverse matrix derived from the intercept
and covariates X1;X2; . . . ;Xk. Where r̂2

j is the estimated variance of

jth patient. The imputation model is defined as follows:
MELD Score Visit5ð Þ ¼ b0 þ b1Ageþ b2AlkalinePhosphate

þ b3Armþ b4BMI þ b5Gender

þ b6SGOT þ b7SGPR

þ b8MELDScore Visit1ð Þ
þ b9MELDScore Visit2ð Þ
þ b10MELDScore Visit3ð Þ
þ b11MELDScore Visit4ð Þ ð4Þ

Where b0 is the intercept and b1; b2; . . . :; b11 are regression coef-
ficients. Multiple imputations in SAS involves three procedures.
The first one is proc MI, in which the user writes the imputation
model to be used and the number of imputed datasets to be pro-
duced (use FCS REG statement in proc MI and nimpute = 50). The
second procedure runs the analytic model of interest (for example,
proc genmod) within each of the imputed datasets. The third pro-
cedure is proc mianalyze, which pools all the estimates (coeffi-
cients and standard errors) across all the imputed datasets and
produce pooled parameter estimates for the model of interest.
5.2. Predictive mean matching method

Multiple imputations is a commonly used method for handling
incomplete covariates as it can provide valid inference when data
are missing at random. Imputation by predictive mean matching
(PMM) borrows an observed value to obtain the imputed values.
It works with parametric imputation with greater robustness. It
depends on being able to correctly specify the parametric model
used to impute missing values, which may be difficult in many
realistic settings (Morris et al., 2014). The variables with missing
observations are imputed using predictive mean matching method.
A linear regression model is estimated and generated a new set of

coefficients b̂ ¼ b̂0; b̂1; . . . ; b̂k

� �
randomly from the posterior pre-

dictive distribution of b̂ ¼ b̂0; b̂1; . . . ; b̂k

� �
. Predicted observations

for observed data are calculated from b̂ ¼ b̂0; b̂1; . . . ; b̂k

� �
where

as the predicted observations for unobserved data are calculated

from b̂ ¼ b̂0; b̂1; . . . ; b̂k

� �
. For each subject with a missing observa-

tion, found the closest predicted observations among the subjects
with observed observation. Randomly selected one of these closest
predicted observations and imputed the observed observation for
the closest predicted observation. This method may be more
appropriate than the regression method if there is a violation of
normality assumption (Lin, 2010). In SAS, FCS REGPMM statement
to be used in proc MI with nimpute = 50.
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5.3. EM algorithm

The EM algorithm is an iterative procedure that finds the maxi-
mum likelihood estimate of the parameter vector by replicating the
following steps: (I). The E-step calculates the conditional expecta-
tion of the complete-data log-likelihood given the observed data
and the parameter estimates and (II) The M-step finds the parame-
ter estimates to maximize the complete-data log-likelihood from
the E-step (Lin, 2010; McLachlan and Krishnan, 2008). In the EM
process, the observed-data log-likelihood is non-decreasing at each
iteration. For multivariate normal data, suppose there are groups
with distinct missing data patterns. Then the observed-data log-
likelihood being maximized can be expressed as

log L hjYobsð Þ ¼
XG
g¼1

logLg hjYobsð Þ ð5Þ

where logL hjYobsð Þ is the observed-data log-likelihood from the gth

group.

log L hjYobsð Þ ¼ �ng

2
log j

X
j � 1

2

X
ig

yig � lg

� �0X�1

g

yig � lgÞ ð6Þ

Where,ng is the number of observations in the gth group, yig is a
vector of observed observations corresponding to observed vari-
ables,lg is the corresponding mean vector, and lg is the associated
covariance matrix.

5.4. Markov Chain Monte Carlo (MCMC) Method

The MCMC simulation shifts the computer for experimental lab-
oratory. It helps to control various conditions to obtain the out-
comes (Carsey and Harden, 2013). It documented that the MCMC
simulation works as a strong tool to perform statistical methods
under different setting with violated assumptions. (Takahashi,
2017). The MCMC method is used to create pseudo random draws
frommultidimensional data and or else intractable probability dis-
tributions through Markov chains. Suppose the data follows the
multivariate normal distribution, data augmentation is applied to
Bayesian inference with missing data by replicating the following
steps: (I) The missing observations for observation j is denoted as
Y j misð Þð and the variables with observed observations by Y j obsð Þð , then
the I-step draws observations for Y j misð Þð from a conditional distribu-
tion Y j misð Þð given Y j obsð Þð . (II) The P-step simulates the posterior pop-
ulation mean vector and covariance matrix of the complete sample
estimates. These new estimates are used in the I-step. If lack of prior
information about the parameters, a non-informative prior is used.
We may use other informative priors as well. In SAS, MCMC state-
ment to be used in proc MI with nimpute = 50.

6. Analysis of imputed data

6.1. Generalized estimating equation

The repeatedly measured observations are always correlated.
The generalized estimating equation(GEE) is technique to deal
with correlated observations. The GEE is well developed and estab-
lished statistical methodology (Zeger et al., 1988). Suppose there is
a sample of i ¼ 1; . . . :;K independent multivariate measurments
and defined as (Halekoh et al., 2006)

Yi ¼ Yi1; . . . :;Yit; . . . :;Yini

� � ð7Þ
Now i shows the cluster of ni observations. The expectation

E Yit ¼ lit

� �
are linked with p-dimensional regression vector xit by

mean-link function (Halekoh et al., 2006)
5

g lit

� � ¼ xTi b ð8Þ

and variance is

VAR Yitð Þ ¼ /ait ð9Þ
Here, / is defined as scale parameter and ait ¼ a lit

� �
is a known

variance function (Halekoh et al., 2006). Now Ri að Þ presented as a
working correlation matrix completely described by the parameter
vector a of length m. Let

Vi ¼ /A1=2
i Ri að ÞA1=2

i ð10Þ
The corresponding working covariance matrix of Yi. Further, the

diagonal matrix is Ai.
It can be estimated as /; âð Þ as the solution of the equation

XK
i¼1

dlT
i

db
Vi Yi � li

� � ¼ 0 ð11Þ

Finally, the covariance matrix can be formulated asP ¼ limk!1K
P�1

0

P�1
0 where

X
0

¼
XK
I¼1

dlT
i

db
V�1

i
dli

db
;
X
1

¼
XK
I¼1

dlT
i

db
V�1

i COV Yið ÞV�1
i

dli

dbT ; ð12Þ

It help to solve work with correlated measurements by statisti-
cal modeling.

6.2. Time dependent cox regression

The cox model with time dependent covariates is defined as

h tjx tð Þð Þ ¼ h0 tð Þexp x tð ÞTb tð Þ
� �

ð13Þ

The baseline hazard function defined as h0 tð Þ.The measurement
of covariates at time t is defined as x tð Þ and regression coefficient is
b tð Þ. The covariates can be defined with different parts. The covari-
ates may be time-independent or dependent. In our example, the
prognostic biomarker is defined as time-dependent covariates. It
is observed as a continuous variable. It is expected that the Prog-
nostic biomarker will carry a time course trajectory over the
follow-up period. The time-varying component helps to get an idea
about covariates at baseline measurement. The regression param-
eter will change over time. The distributional assumption and test
also play a crucial role to define covariates as prognostics marker
or not. However, the distributional assumption may be avoided
through the application of the conditional model by available
information at time point t ¼ s.

hs tjx sð Þð Þ ¼ hs;0exp x sð ÞTbs tð Þ
� �

for s P t ð14Þ
6.3. Joint longitudinal modeling

Time to event analysis help us to identify covariates that are
predictable for death. Now survival analysis can be extended by
the inclusion of time-dependent covariates. It is expected that
the covariates should be error-free. It is relatively easy to promote
the application of joint longitudinal and time to event data mod-
elling in clinical research due to the recent advancement of compu-
tational flexibility. This work aims to explore the relationship
between the imputed longitudinal covariates and explore their
impact of death. Only the application of a longitudinal model
may raise some biased outcomes. Some recent work in the mod-
elling serves to work with multiple time-dependent covariates to
the multiple-endpoint outcome (Nath et al., 2016; Bhattacharjee
et al., 2018; Bhattacharjee, 2019).



Table 2
missMDA imputed values.

TYPE NAME BMI SGOT SGPR

MEAN 5.02 3.00 3.93
COV BMI 0.92 0.01 0.05
COV SGOT 0.01 0.23 �0:01
COV SGPR 0.05 �0:01 0.64
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6.4. Predictive mean matching method

The variables with missing observations are imputed using pre-
dictive mean matching method. A linear regression model is esti-
mated and generated a new set of coefficients

b̂ ¼ b̂0; b̂1; . . . ::; b̂k

� �
randomly from the posterior predictive distri-

bution of b̂ ¼ b̂0; b̂1; . . . ::; b̂k

� �
. Predicted observations for observed

data are calculated from b̂ ¼ b̂0; b̂1; . . . ::; b̂k

� �
whereas the pre-

dicted observations for unobserved data are calculated from

b̂ ¼ b̂0; b̂1; . . . ::; b̂k

� �
. For each subject with a missing observation,

found the closest predicted observations among the subjects with
observed observation. Randomly selected one of these closest pre-
dicted observations and imputed the observed observation for the
closest predicted observation. This method may be more appropri-
ate than the regression method if there is a violation of normality
assumption (Lin, 2010).

6.5. Markov chain monte carlo (MCMC) Method

The MCMCmethod is used to create pseudo random draws from
multidimensional data and or else intractable probability distribu-
tions through Markov chains (Ilin and Raiko, 2010). It is assumed
that the multivariate normal distribution follows for the response
varable, data augmentation is applied to Bayesian inference with
missing data by replicating the following steps: (I) The missing
observations for observation j is denoted as Y j misð Þð Þ and the vari-
ables with observed observations by Y j obsð Þð Þ, then the I-step draws
observations for Y j misð Þð Þ from a conditional distribution Y j misð Þð Þ
given Y j obsð Þð Þ. (II) The P-step simulates the posterior population
mean vector and covariance matrix of the complete sample esti-
mates.These new estimates are then used in the I-step. If the lack
of prior information about the parameters, a non-informative prior
can be used.

7. Results

Table 1 illustrates the baseline characteristics of liver cirrhosis
patients. Table 2 depicts the result of Generalized Estimating
Table 1
Baseline Characteristics.

Characteristics Tumor-Cases Disease Controls
Number of patients (n) 80 80

Sex
Male 70 87:5%ð Þ 70 87:5%ð Þ

Female 10 12:5%ð Þ 10 12:5%ð Þ
Mean age (in years)

Mean 48.63 48.61
(SD) 10.34 10.11

BMI
Mean 18.07 18.56
(SD) (3.82) (4.23)

Alkaline Phosphate
Mean 90.67 92.55
(SD) (17.38) (18.81)

SGOT
Mean 117.6 119.86
(SD) (15.52) (14.58)

SGPR
Mean 123.91 123.31
(SD) (19.9) (20.24)

Meld Score
Median 25 25
(SD) 1.8 1.55
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Equations, Time-dependent Cox Regression, and Joint Modeling
analysis for the data imputed by regression, EM Algorithm, Predic-
tive Mean Matching, and MCMC methods. Longitudinal marker
meld score is associated with increased mortality. Under regres-
sion imputation method, Odds of death is significantly higher for
a unit increase in meld score for Generalized Estimating Equations
[OR 95%ð CI): 1.390 (1.289, 1.500), P-value < 0.001] as well as for
Joint Modeling [HR 95%ð CI): 1.100 (1.061, 1.141), P-value
< 0.001]. However, Time-dependent Cox Regression [HR 95%ð
CI): 1.043 (0.967, 1.125), P-value = 0.272] results were inconsis-
tent with other methods. Under EM algorithm imputation method,
Odds of death is significantly higher for a unit increase in meld
score for Generalized Estimating Equations [OR 95%ð CI): 1.407
(1.306, 1.517), P-value < 0.001] as well as for Joint Modeling [HR
95%ð CI): 1.104 (1.068, 1.141), P-value < 0.001]. However, Time
dependent Cox Regression [HR 95%ð CI): 1.046 (0.967, 1.131), P-
value = 0.258] results were inconsistent with other methods.
Under Predictive Mean Matching imputation method, Odds of
death is significantly higher for a unit increase in meld score for
Generalized Estimating Equations [OR 95%ð CI): 1.402 (1.303,
1.509), P-value < 0.001] as well as for Joint Modeling [HR 95%ð
CI): 1.106 (1.071, 1.143), P-value < 0.001]. (see Fig 1).

However, Time dependent Cox Regression [HR 95%ð CI): 1.045
(0.965, 1.132), P-value = 0.282] results were inconsistent with
other methods. Under MCMC imputation method, Odds of death
is significantly higher for a unit increase in meld score for General-
ized Estimating Equations [OR 95%ð CI): 1.401 (1.297, 1.514), P-
value < 0.001] as well as for Joint Modeling [HR 95%ð CI): 1.107
(1.073, 1.141), P-value < 0.001]. However, Time dependent Cox
Regression [HR 95%ð CI): 1.044 (0.966, 1.129), P-value = 0.273]
results were inconsistent with other methods.

Table 3 represents estimates and standard error for Generalized
Estimating Equations, Time-dependent cox regression, and Joint
Modeling analysis for the data imputed by regression, EM Algo-
rithm, Predictive Mean Matching, and MCMC methods. Under
MCMC missing data imputation method, the estimate (Standard
error) for joint modeling was 0.101(0.015) whereas estimate (Stan-
dard error) for Generalized Estimating Equation was 0.337(0.039)
and estimate (Standard error) for Time-dependent cox regression
was 0.043(0.039). Joint modeling gives slightly lower variation
for parameter estimates as compared to other methods in all the
four imputation methods. (see Table 4).

8. Discussion

The selection of appropriate missing data techniques has a con-
siderable impact on the clinical interpretation of the associated
statistical analysis. Single imputation is a method in which missing
observations are replaced by a unique representation; it may end
up with underestimation of the variability and hence overestima-
tion of test statistics. Multiple imputations impute the missing val-
ues several times, which accounts for the uncertainty and series of
considerations that the correct representation could have taken.
Joint modelling of longitudinal and survival data with missing
covariates can not be ignored. It is tedious to work with missing
observations. The presence of missing data makes it challenging
to analyze, and it generated with biased inference. Now discarding
the missing values and consider only available information for



Fig. 1. Observed and Missing data distribution comparison between died and alive patients.
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analysis leads to a biased estimate. Now model combined with
conventional linear mixed effect for longitudinal responses with
survival outcome is a joint longitudinal survival model. It is possi-
ble to work with maximizing the likelihood method. The listwise
deletion method to get the complete data is valid only under MCAR
conditions, but not for MAR and MNAR situations. More specifi-
cally, when the probability of missingness is dependent on the
unobserved responses and covariates, it requires special tech-
niques to handle such scenarios. A separate modelling mechanism
is necessary to postulate the cases to obtain valid inference for
joint models.

Three main modelling frameworks for missing observations are
(I) Pattern mixture model, (II) Shared parameter model, and (III)
Selection model. However, these models do not take into account
the missingness of the covariates and are mainly concerned with
the response variable. We presented the application of multiple
imputation techniques to obtain the missing observations. Among
several algorithms, we took the support of four methods for data
imputation through the EM algorithm, Regression method, and
MCMC procedure. The Bayesian perspective in the form of EM algo-
rithm for imputation has produced better estimates among those
methods.

The missing data imputations are an established method for
repeatedly measured data. We explored how to make imputed
data and jointly approached with longitudinal and survival data.
7

By avoiding missing data, it is possible to get a biased result and
generate statistical inference. Now data visualization technique is
required to understand the presence of missing data and data
imputation technique requires to provide by looking at the data
compatibility and study design. The core message is that a joint
longitudinal and survival model can be adopted, perhaps even rou-
tinely observed with missing data.

The R package named ”missMDA” is useful to impute missing
data. It is suitable for PCA and MCA. Types of variables data like
categorical, mixed, and continuous can be attributed. Now
through multiple imputations, it is possible to study the variabil-
ity of the results in PCA with other imputation technology. There
are several model selection criteria to understand the presence
of nonignorable missingness. The penalized validation criterion
is useful as a selection modelling approach (Nath et al., 2016).
There are several statistical methods to work with missing data
(Fang and Shao, 2016; Cook and Weisberg, 1982; Zhu and Lee,
2001; Verbeke et al., 2001; Jansen et al., 2003 and Millar and
Stewart, 2007).

The selection of appropriate missing data techniques has a con-
siderable impact on the clinical interpretation of the associated
statistical analysis. Single imputation is a method in which missing
observations are replaced by a single observation which may end
up with underestimation of the variability and hence overestima-
tion of test statistics.



Table 3
Comparison of Model1(Generalized Estimating Equations),Model2(Time dependent Cox Regression) and Model3(Joint Modeling).

Model1 Model2 Model3

Results: Imputation Method - Regression

Variables OR 95%ð CI) HR 95%ð CI) HR 95%ð CI)

Age 1.011 (0.985, 1.039) 0.986 (0.965, 1.008) 0.982 (0.960, 1.004)
Alkaline Phosphate 0.995 (0.982, 1.009) 0.995 (0.983, 1.007) 0.995 (0.983, 1.007)

Arm 0.757 (0.464, 1.237) 0.794 (0.519, 1.213) 0.804 (0.522, 1.237)
BMI 1.034 (0.971, 1.101) 0.991 (0.942, 1.042) 0.995 (0.944, 1.049)

Gender 0.606 (0.272, 1.354) 0.707 (0.373, 1.338) 0.651 (0.338, 1.253)
MELDScore 1.390 (1.289, 1.500) 1.043 (0.967, 1.125) 1.100 (1.061, 1.141)

SGOT 0.999 (0.983, 1.016) 0.988 (0.974, 1.003) 0.988 (0.974, 1.003)
SGPR 0.996 (0.983, 1.009) 1.003 (0.992, 1.014) 1.002 (0.990, 1.014)

Results: Imputation Method - Predictive Mean Matching

Variables OR 95%ð CI) HR 95%ð CI) HR 95%ð CI)

Age 1.014 (0.988, 1.040) 0.987 (0.965, 1.009) 0.982 (0.961, 1.004)
Alkaline Phosphate 0.996 (0.982, 1.010) 0.995 (0.983, 1.007) 0.995 (0.983, 1.007)

Arm 0.744 (0.456, 1.214) 0.793 (0.519, 1.211) 0.818 (0.531, 1.258)
BMI 1.035 (0.972, 1.102) 0.991 (0.942, 1.043) 0.995 (0.945, 1.048)

Gender 0.570 (0.261, 1.246) 0.697 (0.367, 1.326) 0.636 (0.327, 1.239)
MELDScore 1.407 (1.306, 1.517) 1.046 (0.967, 1.131) 1.104 (1.068, 1.141)

SGOT 1.000 (0.984, 1.016) 0.988 (0.974, 1.003) 0.989 (0.974, 1.003)
SGPR 0.996 (0.983, 1.008) 1.003 (0.992, 1.014) 1.002 (0.991, 1.014)

Results: Imputation Method -EM Algorithm

Variables OR 95%ð CI) HR 95%ð CI) HR 95%ð CI)

Age 1.009 (0.983, 1.035) 0.986 (0.964, 1.007) 0.980 (0.959, 1.001)
Alkaline Phosphate 0.996 (0.982, 1.010) 0.995 (0.983, 1.007) 0.995 (0.983, 1.007)

Arm 0.752 (0.459, 1.231) 0.795 (0.520, 1.215) 0.821 (0.536, 1.256)
BMI 1.030 (0.968, 1.097) 0.990 (0.942, 1.042) 0.995 (0.945, 1.048)

Gender 0.629 (0.289, 1.370) 0.714 (0.380, 1.344) 0.656 (0.346, 1.240)
MELDScore 1.402 (1.303, 1.509) 1.045 (0.965, 1.132) 1.106 (1.071, 1.143)

SGOT 0.999 (0.983, 1.015) 0.988 (0.974, 1.003) 0.988 (0.974, 1.002)
SGPR 0.997 (0.984, 1.010) 1.003 (0.992, 1.014) 1.003 (0.991, 1.014)

Results: Imputation Method -MCMC

Variables OR 95%ð CI) HR 95%ð CI) HR 95%ð CI)

Age 1.012 (0.987, 1.039) 0.987 (0.965, 1.008) 0.982 (0.960, 1.003)
Alkaline Phosphate 0.995 (0.981, 1.010) 0.995 (0.983, 1.007) 0.995 (0.984, 1.007)

Arm 0.757 (0.462, 1.240) 0.794 (0.520, 1.214) 0.815 (0.532, 1.247)
BMI 1.035 (0.971, 1.102) 0.991 (0.942, 1.043) 0.997 (0.947, 1.050)

Gender 0.572 (0.263, 1.244) 0.698 (0.367, 1.326) 0.639 (0.329, 1.240)
MELDScore 1.401 (1.297, 1.514) 1.044 (0.966, 1.129) 1.107 (1.073, 1.141)

SGOT 1.000 (0.983, 1.016) 0.988 (0.974, 1.003) 0.988 (0.974, 1.003)
SGPR 0.995 (0.982, 1.008) 1.003 (0.992, 1.014) 1.003 (0.992, 1.015)
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Multiple imputations impute the missing observation several
times, which accounts for the uncertainty and series of observa-
tions that the true observation could have taken. Besides, all four
imputation methods performed well for the estimation of parame-
ters in longitudinal analysis.

The estimates for all the four imputation methods illustrate
consistent results in each statistical analysis like Generalized Esti-
mating Equations, Time-dependent Cox Regression, and Joint
Modeling. Joint modelling provides a slightly lower standard error
than other statistical methods in each imputation.

EM algorithm imputation method provides a slightly lower
standard error in Joint Modeling analysis. Besides, the results of
imputed data using Regression and Predictive mean matching
were found more similar while the results of imputed data using
the EM algorithm and MCMC were found more alike in Joint
Modeling.
8

For Time-dependent Cox Regression, results of Regression and
Predictive mean matching methods were found to have a slightly
lower standard error. For Generalized Estimating Equations, results
of Predictive mean matching and EM algorithm methods were
found to be more similar.
9. Conclusion

In this article, we present efficient ways to work with the miss-
ingness of biomarker having different multiple imputation
methodology and the impact on modelling. The cost to obtain
the complete data is high and complex. It is required to have a
specific method to work with missing data. However, we presented
handling missing data by a parametric approach.



Table 4
Parameter Estimate and standard error for Joint Modeling, Generalized Estimating Equations andTime dependent Cox Regression: A comparison between various imputation
techniques.

Estimate Estimate Estimate Estimate
(Standard (Standard (Standard (Standard
Error) Error) Error) Error)

Model:Joint Modeling

Variables Regression Predictive Mean Matching EM Algorithm MCMC

Age �0.018(0.011) �0.020(0.011) �0.017(0.011) �0.018(0.011)
APhosphate �0.005(0.006) �0.004(0.006) �0.004(0.006) �0.004(0.006)

Arm �0.218(0.219) �0.197(0.217) �0.201(0.219) �0.205(0.217)
BMI �0.004(0.026) �0.005(0.026) �0.004(0.026) �0.003(0.026)

Gender �0.429(0.334) �0.422(0.325) �0.451(0.339) �0.447(0.338)
MELDScore 0.095(0.018) 0.101(0.016) 0.098(0.016) 0.101(0.015)

SGOT �0.011(0.007) �0.012(0.007) �0.011(0.007) -0.011(0.007)
SGPR 0.002(0.006) 0.002(0.005) 0.002(0.005) 0.003(0.005)

Model:Generalized Estimating Equations

Variables Regression Predictive Mean Matching EM Algorithm MCMC

Age 0.011 (0.013) 0.008(0.013) 0.013(0.013) 0.012(0.013)
AAPhosphate �0.004(0.007) �0.004(0.007) �0.004(0.007) �0.004(0.007)

Arm �0.277(0.250) �0.285(0.251) �0.295(0.249) �0.278(0.251)
BMI 0.033(0.031) 0.029(0.031) 0.034(0.032) 0.034(0.032)

Gender �0.500(0.409) �0.463(0.396) �0.561(0.398) �0.559 (0.396)
MELDScore 0.329(0.038) 0.338(0.037) 0.341(0.038) 0.337(0.039)

SGOT �0.000(0.008) �0.001(0.008) �0.000(0.008) �0.000(0.008)
SGPR �0.004(0.006) �0.003(0.006) �0.004(0.006) �0.004(0.006)

Model:Time dependent Cox Regression

Variables Regression Predictive Mean Matching EM Algorithm MCMC

Age �0.013 (0.011) �0.014(0.011) �0.013(0.011) �0.013(0.011)
AAPhosphate �0.005(0.006) �0.005(0.006) �0.005(0.006) -0.005(0.006)

Arm �0.231 (0.216) �0.229(0.216) �0.232(0.216) �0.230(0.216)
BMI �0.009 (0.025) �0.009(0.025) �0.008(0.025) �0.008(0.025)

Gender �0.346(0.325) �0.336(0.322) �0.360(0.327) �0.359(0.327)
MELDScore 0.042(0.038) 0.043(0.040) 0.045(0.039) 0.043(0.039)

SGOT �0.011(0.007) �0.011(0.007) �0.011(0.007) �0.011(0.007)
SGPR 0.003(0.005) 0.003(0.005) 0.003(0.005) 0.003(0.005)
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