
Journal of King Saud University – Science (2011) 23, 293–300
King Saud University

Journal of King Saud University –

Science
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Application of particle swarm optimization

to transportation network design problem
Abbas Babazadeh a,*, Hossain Poorzahedy b, Saeid Nikoosokhan a
a School of Civil Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
b Institute for Transportation Studies and Research, Sharif University of Technology, P.O. Box 11365-9313, Tehran, Iran

Available online 5 March 2011
*

66

E

10

El

Pe

do
KEYWORDS

Transportation;

Network design;

Optimization;

Meta-heuristics;

Particle swarm;

Ant colony
Corresponding author. Te

403808.

-mail address: ababazadeh@

18-3647 ª 2011 King Saud

sevier B.V. All rights reserve

er review under responsibilit

i:10.1016/j.jksus.2011.03.001

Production and h
l.: +98

ut.ac.ir

Universit

d.

y of King

osting by E
Abstract Transportation network design problem (TNDP) aims to choose from among a set

of alternatives (e.g., set of new arcs) which minimizes an objective (e.g., total travel time),

while keeping consumption of resources (e.g., budget) within their limits. TNDP is formulated

as a bilevel programming problem, which is difficult to solve on account of its combinatorial

nature. Following a recent, heuristic by ant colony optimization (ACO), a hybridized ACO

(HACO) has been devised and tested on the network of Sioux Falls, showing that the hybrid

is more effective to solve the problem. In this paper, employing the heuristic of particle swarm

optimization (PSO), an algorithm is designed to solve the TNDP. Application of the algorithm

on the Sioux Falls test network shows that the performance of PSO algorithm is comparable

with HACO.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In transportation planning and development, transportation

network design problem (TNDP) is an important subject in
which certain objective(s) is(are) minimized through choosing
among a given set of projects under resource constraints.
21 61112176; fax: +98 21

(A. Babazadeh).

y. Production and hosting by

Saud University.

lsevier
Objectives are (usually) related to user benefits (or costs),
and constraints are related to various resources which bring
about such benefits at the cost of the operator of the network.

However, solving such a problem requires too much time. For
an n-project case, considering an accept/reject decision for
each project, there are 2n alternative networks which are to
be compared. Assuming that half of the networks may be re-

jected on accounts of resource constraints, and considering
1 min cpu time for evaluating the value of the objective func-
tion for each alternative network, the computation time would

be 2n�1 minutes. For n = 20, for instance, one needs over
1 year computation time to reach the optimum network.

Various approaches have been taken to solve TNDP. Steen-

brink (1974a), Wong (1984), and Magnanti and Wong (1984)
surveyed some earlier algorithms of solving this problem. A
branch and bound algorithm was presented by LeBlanc

(1975) to solve TNDP. Since this algorithm does not perform
well in large scale problems, the need for trade-off between the
solution accuracy and speed of attaining it was felt early in the
development of such solution algorithms.

mailto:ababazadeh@ut.ac.ir
http://dx.doi.org/10.1016/j.jksus.2011.03.001
http://dx.doi.org/10.1016/j.jksus.2011.03.001
http://www.sciencedirect.com/science/journal/10183647

294 A. Babazadeh et al.
There have been several methods to trade-off accuracy with

speed. These are as follows: (a) using system equilibrium flows
instead of user equilibrium (UE) ones (Sheffi, 1985) in the
network loading (Steenbrink, 1974b; Dantzig et al., 1979;
Chen and Sul Alfa, 1991); (b) assuming constant link cost

functions (Boyce et al., 1973; Holmberg and Hellstrand,
1998); (c) relaxation of the integer constraints on decision vari-
ables (Steenbrink, 1974b; Abdulaal and LeBlanc, 1979;

Dantzig et al., 1979); (d) decomposition of the problem
(Steenbrink, 1974b; Dantzig et al., 1979; Hoang, 1982; Solanki
et al., 1998); (e) aggregation of the network by link and node

abstraction or extraction (Haghani and Daskin, 1983); (f)
using an intrinsic approach by defining a surrogate problem
which lacks the complexity of the original one (Yang and Bell,

1998); (g) heuristic procedures (Poorzahedy and Turnquist,
1982; Chen and Sul Alfa, 1991); (h) meta-heuristic (evolution-
ary) procedures, such as genetic algorithm (GA) (Yin, 2000),
simulated annealing (SA) (Lee and Yang, 1994), GA, SA,

and Tabu search (TS) (Cantarella et al., 2002), ant colony
optimization (ACO) (Poorzahedy and Abulghasemi, 2005);
(i) hybrid meta-heuristics, such as hybridized ACO (HACO)

with GA, SA, and TS (Poorzahedy and Rouhani, 2007).
In this paper, an application of a modern evolutionary

method, namely particle swarm optimization (PSO), to solve

the TNDP is presented. The results are compared with those
of the ACO and HACO existing on the same problem network
in the last reference. The reminder of the paper is organized as
follows. The next section is devoted to define the TNDP math-

ematically. In the two subsequent sections, the PSO is de-
scribed in detail, and then adapted to the TNDP.
Computational results are reported in the final section.
2. The TNDP

Let G= (V, A) be a graph representing a transportation net-
work with node set V and arc set A, and define P ˝ {(r, s) e V ·
V : r „ s} as the set of origin–destination (OD) pairs. Each arc

corresponds to a pair (i, j) of the nodes, where i is the tail and j
is the head node of the arc. For each OD pair (r, s) e P, there is
a nonnegative flow rate (travel demand) from r to s, denoted

by drs. In order to simplify the presentation, suppose that G is
strongly connected, that is each node j can be reached from every
other node i by following a directed path in G, and let Krs be the
non-empty set of paths from the origin r to the destination s.

Define A ðA – AÞ as the set of project arcs, and let the deci-
sion vector be y ¼ ðyaÞa2A with ya being the binary project deci-
sion variable, taking values 0 or 1 depending on rejection or

acceptance of any project a 2 A. For a given vector y, define
the decision network G(y) = (V, A(y)) with AðyÞ ¼ A [
fa 2 A : ya ¼ 1g as the set of arcs followed by decision y, and

for each (r, s) e P denote by Krs(y) the set of paths joining r to
s inG(y). For eachpathk e Krs(y), let fkbe theflowof pathk from
origin r to destination s.Moreover, let dak equals 1 if arc a e A(y)

lies on path k, and 0 otherwise.
Assume further that each arc a 2 A [A has a nondecreas-

ing and continuously differentiable travel time function ta(xa):
[0,1) fi [0,1) with xa being the flow rate assigned to arc a.

Then, letting ca be the construction cost of project arc a 2 A,
and considering the total construction cost being limited to
the level of budget B, the TNDP can be illustrated with the

upper level problem, ULP:
½ULP� Min
y

TðyÞ ¼
P

a2AðyÞ
xataðxaÞ

s:t:
P

a2A
caya 6 B

ya ¼ 0 or 1 8a 2 A

xðyÞ is a solution of ½LLPðyÞ�

where x(y) = (xa)aeA(y) is the user equilibrium flow in the deci-
sion network G(y), given as the solution of the lower level (traf-

fic assignment) problem, LLP(y), for given y:

½LLPðyÞ� Min
P

a2AðyÞ

R xa
� taðwÞdw

s:t:
P

k2KrsðyÞ
fk ¼ drs 8ðr; sÞ 2 P

fk P 0 8k 2 KrsðyÞ; 8ðr; sÞ 2 P

xa ¼
P

ðr;sÞ2P

P

k2KrsðyÞ
fkdak 8a 2 AðyÞ

This is a well-known bilevel programming problem, where the

[ULP] seeks a decision vector y for minimizing the total travel
time T(y) of the (assigned) traveler, and the [LLP(y)] is the
traffic assignment model which estimates the traveler flows, gi-

ven the decision y.

3. The PSO

Particle swarm optimization, also called PSO, is a population
based stochastic optimization technique developed by Ken-

nedy and Eberhart (1995) and Eberhart and Kennedy (1995).
PSO mimics the behaviour of flocks of birds, swarms of insects
or schools of fish, in which individuals are called particles and
the population is called a swarm. In a problem space, each par-

ticle is given a position and a velocity. Once a particle finds a
good direction to food, other particles are notified and will be
able to speed toward that, immediately. The particles roam in

the space, convey good positions to each other, and adjust
their own positions and velocities based on these good posi-
tions (Abraham et al., 2006).

PSO is analogous to evolutionary algorithms, like GA, in a
sense that it starts with randomly generated solutions, and
evolves the solution until a desirable one is found. However,

unlike GA, the evolutionary process in PSO only evolves the
positions of the particles, rather than creating new particles
(Shi and Eberhart, 1998a). The main strength of PSO is its fast
convergence, which compares favourably with many meta-

heuristics like GA and SA (Abraham et al., 2006). Moreover,
it may be easily implemented, and requires few parameter set-
tings and computational memory (You, 2008).

PSO has been successfully applied to many areas. Voss and
Feng (2002), Jiang et al. (2007), Yisu et al. (2008) and You
(2008) report some of this applications. This paper describes

an application of such method in solving the TNDP.

3.1. The canonical PSO

The canonical PSO is initialized with a group of random can-
didate solutions as a swarm of particles. Each particle searches
iteratively the new solutions by moving through the problem

space with a velocity adjusted according to both the previous
best solutions of itself and of the swarm. The best solution that
has been monitored by the current particle is typically denoted

by local best, while the best solution that has been discovered

Application of particle swarm optimization to transportation network design problem 295
by the group is denoted by global best. The global best concep-

tually connects all particles together, that is, each particle is
influenced by the best solution in the entire population; the lo-
cal best is used to take into account the ability of each particle
to remember its past personal successes (Voss and Feng, 2002).

Consider a positive integer D as the dimension of the
problem space. The position of the ith particle is represented
by pi = (pij)j=1,. . .,D, where pij is the jth dimensional value for

the ith particle. Also, the rate of the position change (velocity)
is represented as vi = (vij)j=1,. . .,D with vij being the velocity of
ith particle along the dimension j. Consider f(xi): R

D fi R as

the fitness function which measures the quality for the position
of the particle i. Each particle remembers its own best position
so far achieved (the position that gives the best fitness func-

tion) as p�i ¼ ðp�ijÞj¼1;...;D, and the best position so far recorded
by the population represented as p�g ¼ ðp�gjÞj¼1;...;D.

During the iteration time t, the velocity for the jth dimen-
sion of each particle i is updated by (Abraham et al., 2006):

vijðtþ 1Þ ¼ wvijðtÞ þ c1r1ðp�ijðtÞ � pijðtÞÞ þ c2r2ðp�gjðtÞ � pijðtÞÞ;
ð1Þ

where w is called as the inertia weight that was first employed in

the range of 0.9–1.2 (Shi and Eberhart, 1998a), and c1 and c2
are constant values that were originally set to 2 (Eberhart
and Kennedy, 1995). These two constants are multiplied by

the random numbers r1 and r2, respectively, which are used
to maintain the diversity of the population, and are uniformly
distributed in the interval [0, 1] (Abraham et al., 2006). From a
social point of view, as it is described by Voss and Feng (2002),

each particle moves based on its current direction (vi), its mem-
ory of where it found its personal best ðp�i Þ, and a desire to be
like the best particle in the population ðp�gÞ. The new position

of the ith particle is, then, updated by the sum of the previous
position and the new velocity as (Abraham et al., 2006)

pijðtþ 1Þ ¼ pijðtÞ þ vijðtþ 1Þ: ð2Þ

In the PSO, each particle i searches the solution pi in the
problem space with a range [0, pmax] (any other range can be

translated to this range). In order to guide the particles effec-
tively in the search space, the maximum moving distance dur-
ing any iteration must be clamped in between the maximum

range [�vmax, vmax] with 0 < vmax 6 pmax (Abraham et al.,
2006).

The inertia weight w in Eq. (1) affects the convergence

speed of the PSO through controlling the impact of the history
of velocities on the current velocity (Abraham et al., 2006).
The role of this parameter is providing a balance between

the global and local search abilities of PSO; in the sense that
a larger value facilitates global exploration, while a smaller
one tends toward local exploration (Shi and Eberhart,
1998b). Eberhart and Shi (2000) indicated that, initially setting

the inertia weight to a large value and linearly decreasing it
with time has a better performance than using a fixed value.
Abraham et al. (2006) suggested an initial value around 1.2

with gradually reducing towards 0 as a good choice for w.
The parameters c1 and c2 are less critical for convergence of

the PSO (Abraham et al., 2006); instead, they affect how much

the movement of each particle would be influenced by its per-
sonal best and by the global best, respectively. Usually,
c1 = c2 = 2 are used as default values (Abraham et al.,
2006), while the work by Clerc and Kennedy (2002) shows that
using a larger parameter c1 than a parameter c2, but with

c1 + c2 6 4, might have better performance.
Denoting the size of the particle swarm by n, the pseudo

code of the PSO algorithm is illustrated as follows:

– Select the size n, and the other parameters. Set t= 0.
– Initialize the positions pi(0) in [0, pmax] and the velocities
vi(0) in [�vmax, vmax] for all the particles, randomly.

– Set p�i ð0Þ ¼ pið0Þ for i= 1 to n, and
p�gð0Þ ¼ argminðf ðp1ð0ÞÞ; . . . ; f ðpnð0ÞÞÞ.

– While (the end criterion is not met) do

– For i= 1 to n
– For j= 1 to D
– Update vij(t+ 1) and pij(t + 1) according to Eqs.

(1) and (2);
– Next j
– Set p�i ðt þ 1Þ ¼ argmin f ðp�i ðtÞÞ; f ðpiðt þ 1ÞÞÞ;
– Next i

– Set
p�gðt þ 1Þ ¼ argminðf ðp�gðtÞÞ; f ðp1ðt þ 1ÞÞ; . . . ; f ðpnðt þ 1ÞÞÞ;

– t ‹ t + 1;

– End While.

The end criterion is usually one of the following (Abraham

et al., 2006):

� Maximum number of iterations: the algorithm is terminated
after a fixed number of iterations, for example, 100 iterations.

� Number of iterations without improvement: the optimization
process is terminated after some fixed number of iterations,
say 30, without any change of p�g.
� Minimum objective function difference: the difference
between the last obtained objective function and the best fit-
ness value is less than a prefixed threshold. For example,

selecting a threshold of 1e�25, the algorithm will be termi-
nated at iteration t when f ðp�gðt � 1ÞÞ � f ðp�gðtÞÞ < 1e� 25.

4. Adapting the PSO to the TNDP

Employing the PSO for solving TNDP needs some modifica-
tions to the algorithm given in the previous section. First,
the PSO is basically developed for continuous optimization
problems. This is while the TNDP is formulated as a combina-

torial optimization problem in terms of variables y denoted as
jAj-bit binary strings. To adapt the algorithm for this combi-
natorial nature, one may provide some mapping from the

one-dimensional real-valued space to the jAj-dimensional bin-
ary space. This is done here by transforming each real number
pi to its nearest integer in ½0; 2jAj � 1�, and then transforming

the resulting integer into the base-2 number system as an
jAj-bit binary code. To facilitate the presentation, the latter
transformation is illustrated by the function yðpiÞ : ½0; 2jAj�
1� � Z! f0; 1gjAj.

The canonical PSO must also be adapted for the budget
constraint embedded in the [ULP]. In this regard, one may ap-
ply a very simple modification that is assigning an adequately

large fitness value (say M) to any infeasible solution pi, i.e.
f(pi) =M.

The following is a formal statement of the proposed PSO

algorithm:

1 2

296 A. Babazadeh et al.
Step 1. Initialization.
3

9 8

7

4 5 6

Table 1

Arcs

(1, 2), (2

(1, 3), (3

(2, 6), (6

(3, 4), (4

(3, 12),

(4, 5), (5

(4, 11),

(5, 6), (6

(5, 9), (9

(6, 8), (8

(7, 8), (8

(7, 18),

(8, 9), (9

(8, 16),

(9, 10),

(10, 11),

(10, 15),

(10, 16),

(10, 17),
Select the particle swarm size n, the parameters c1 and
c2, the initial and final values of the inertia weight w,
and the maximum velocity vmax.

For i = 1 to n do: initialize (randomly or partially

randomly) the decision variable pi in [0; 2jAj � 1] so

that
P

a2AcayaðpiÞ 6 B; set p�i ¼ pi; initialize mi ran-

domly in [�mmax; mmax].
Set p�g ¼ argminðf ðp1Þ; . . . ; f ðpnÞÞ. Set the iteration

counter t = 0.

Step 2. Updating each particle’s position and velocity.
12

11
10 16

17
18
For i= 1 to n do: generate random numbers r1 and

r2 in [0, 1]; update vi wvi þ c1r1ðp�i � piÞ þ c2r2ðp�g�
piÞ; clamp in vi between the range [�vmax, vmax] as
vi = sign(vi) min(|vi|, vmax); update pi ‹ pi + vi;

clamp pi to the range [0; 2jAj � 1].

Step 3. Calculating each particle’s fitness value.P
14 15

19
For i= 1 to n do: set y= y(pi); if a2Acaya > B then

set f(pi) = M; else, solve the user equilibrium problem
[LLP(y)] to compute T(y), and set f(pi) = T(y).
Step 4. Updating local bests and global best.
23 22

For i= 1 to n do: update p�i argminðf ðp�i Þ; f ðpiÞÞ.
Update p�g argminðf ðp�gÞ; f ðp1Þ; . . . ; f ðpnÞÞ.
Step 5. End criterion.
13 24 21
20

Figure 1 The Sioux Falls network.
Set t= t+ 1. If end criterion is not met, go to Step 2.

Otherwise, y ¼ yðp�gÞ is the best solution found so far
with the objective function value T ðyÞ ¼ f ðp�gÞ. Col-
lect the necessary information, and stop. h
5. Numerical example

In order to demonstrate the capability of the PSO algorithm in
solving the TNDP, it will be applied on the network of Sioux
Falls. This network has 24 nodes and 76 arcs, as shown in

Fig. 1. The parameters of the travel time function taðxaÞ ¼ aaþ
bax

4
a for each arc a = (i, j), and the OD (origin/destination) de-

mands are basically those given in Poorzahedy and Turnquist
Parameters of the travel time functions for the network in

Parameters

a b

, 1) 0.06 0.00000002

, 1) 0.04 0.00000002

, 2) 0.05 0.00001241

, 3) 0.04 0.00000007

(12, 3) 0.04 0.00000002

, 4) 0.02 0.00000003

(11, 4) 0.06 0.00001550

, 5) 0.04 0.00001001

, 5) 0.05 0.00000075

, 6) 0.02 0.00000521

, 7) 0.03 0.00000119

(18, 7) 0.02 0.00000001

, 8) 0.10 0.00002306

(16, 8) 0.05 0.00001157

(10, 9) 0.03 0.00000012

(11, 10) 0.05 0.00000075

(15, 10) 0.06 0.00000027

(16, 10) 0.04 0.00001080

(17, 10) 0.08 0.00001930
(1982), and LeBlanc (1975), and are given in Tables 1 and 2,
respectively.

There are 10 pairs of project arcs ðjAj ¼ 10Þ, of which 5

projects are improvement on existing arcs, and 5 are new arcs.
The parameters of the travel time functions and the construc-
tion costs (in units of money) of the projects 1–10 are given in

Table 3 (Poorzahedy and Abulghasemi, 2005). Considering 10
Fig. 1 (a is given in hours, and b in hours per thousand vehicles).

Arcs Parameters

a b

(11, 12), (12, 11) 0.06 0.00001550

(11, 14), (14, 11) 0.04 0.00001061

(12, 13), (13, 12) 0.03 0.00000001

(13, 24), (24, 13) 0.04 0.00000893

(14, 15), (15, 14) 0.05 0.00001085

(14, 23), (23, 14) 0.04 0.00001020

(15, 19), (19, 15) 0.03 0.00000010

(15, 22), (22, 15) 0.03 0.00000053

(16, 17), (17, 16) 0.02 0.00000401

(16, 18), (18, 16) 0.03 0.00000003

(17, 19), (19, 17) 0.02 0.00000554

(18, 20), (20, 18) 0.04 0.00000002

(19, 20), (20, 19) 0.04 0.00000958

(20, 21), (21, 20) 0.06 0.00001373

(20, 22), (22, 20) 0.05 0.00001130

(21, 22), (22, 21) 0.02 0.00000401

(21, 24), (24, 21) 0.03 0.00000790

(22, 23), (23, 22) 0.04 0.00000960

(23, 24), (24, 23) 0.02 0.00000451

Table 2 Matrix of demands between OD pairs (in thousand vehicles per hour).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 1 1 5 2 3 5 8 5 13 5 2 5 3 5 5 4 1 3 3 1 4 3 1

2 1 0 1 2 1 4 2 4 2 6 2 1 3 1 1 4 2 0 1 1 0 1 0 0

3 1 1 0 2 1 3 1 2 1 3 3 2 1 1 1 2 1 0 0 0 0 1 1 0

4 5 2 2 0 5 4 4 7 7 12 14 6 6 5 5 8 5 1 2 3 2 4 5 2

5 2 1 1 5 0 2 2 5 8 10 5 2 2 1 2 5 2 0 1 1 1 2 1 0

6 3 4 3 4 2 0 4 8 4 8 4 2 2 1 2 9 5 1 2 3 1 2 1 1

7 5 2 1 4 2 4 0 10 6 19 5 7 4 2 5 14 10 2 4 5 2 5 2 1

8 8 4 2 7 5 8 10 0 8 16 8 6 6 4 6 22 14 3 7 9 4 5 3 2

9 5 2 1 7 8 4 6 8 0 28 14 6 6 6 9 14 9 2 4 6 3 7 5 2

10 13 6 3 12 10 8 19 16 28 0 40 20 19 21 40 44 39 7 18 25 12 26 18 8

11 5 2 3 15 5 4 5 8 14 39 0 14 10 16 14 14 10 1 4 6 4 11 13 6

12 2 1 2 6 2 2 7 6 6 20 14 0 13 7 7 7 6 2 3 4 3 7 7 5

13 5 3 1 6 2 2 4 6 6 19 10 13 0 6 7 6 5 1 3 6 6 13 8 8

14 3 1 1 5 1 1 2 4 6 21 16 7 6 0 13 7 7 1 3 5 4 12 11 4

15 5 1 1 5 2 2 5 6 10 40 14 7 7 13 0 12 15 2 8 11 8 26 10 4

16 5 4 2 8 5 9 14 22 14 44 14 7 6 7 12 0 28 5 13 16 6 12 5 3

17 4 2 1 5 2 5 10 14 9 39 10 6 5 7 15 28 0 6 17 17 6 17 6 3

18 1 0 0 1 0 1 2 3 2 7 2 2 1 1 2 5 6 0 3 4 1 3 1 0

19 3 1 0 2 1 2 4 7 4 18 4 3 3 3 8 13 17 3 0 12 4 12 3 1

20 3 1 0 3 1 3 5 9 6 25 6 5 6 5 11 16 17 4 12 0 12 24 7 4

21 1 0 0 2 1 1 2 4 3 12 4 3 6 4 8 6 6 1 4 12 0 18 7 5

22 4 1 1 4 2 2 5 5 7 26 11 7 13 12 26 12 17 3 12 24 18 0 21 11

23 3 0 1 5 1 1 2 3 5 18 13 7 8 11 10 5 6 1 3 7 7 21 0 7

24 1 0 0 2 0 1 1 2 2 8 6 5 7 4 4 3 3 0 1 4 5 11 7 0

Table 4 Particle swarm parameter settings.

Parameter Setting

Population size 10

Number of iterations 8

Initial w 1.2

Final w 0.4

c1 2

c2 2

cmax 512

Table 3 Parameters of the travel time functions and the

construction costs of the project arcs.

Project Arcs Parameters Construction cost

a b

1 (9, 10), (10, 9) 0.02 0.00000037 625

2 (6, 8), (8, 6) 0.01 0.00000156 650

3 (13, 24), (24, 13) 0.02 0.00000268 850

4 (7, 8), (8, 7) 0.01 0.00000035 1000

5 (10, 16), (16, 10) 0.03 0.00000324 1200

6 (7, 16), (16, 7) 0.03 0.00000032 1500

7 (19, 22), (22, 19) 0.01 0.00000004 1650

8 (11, 15), (15, 11) 0.01 0.00000041 1800

9 (9, 11), (11, 9) 0.02 0.00000003 1950

10 (13, 14), (14, 13) 0.01 0.00000016 2100

Application of particle swarm optimization to transportation network design problem 297
projects, there are 210 (=1024) alternative networks. A com-
plete enumeration was used to compute the optimal solution
of the TNDP for any given budget level for checking purposes
(Poorzahedy and Abulghasemi, 2005; Poorzahedy and

Rouhani, 2007). The PSO network design algorithm was
implemented in a program in MATLAB on a Laptop with
Intel Core 2 due 2 GHz processor. In all experiments, the

PSO parameters are set as shown in Table 4.

5.1. Application of PSO algorithm

First the performance of the PSO algorithm will be discussed.
Table 5 shows the results of solving the TNDP for the test
network under various budget levels, as measured by budget

to total construction cost (of the 10 projects), denoted as B/
C. This ratio shows the level of limitation of the budget in
the design problem, a determinant of the level of efforts

needed to solve the problem. Since the PSO is of stochastic
nature, each case has been solved 50 times, as in the case
of Poorzahedy and Rouhani (2007), and the average number
of traffic assignment problems solved (NTAPS) has been re-
ported as the cost of problem solving, which is (almost) di-

rectly proportional to the CPU time of the computer. The
performance of the algorithm is measured by the frequency
of finding the optimal solution in 50 runs of the algorithms

to solve the same problem. The worst and the best objective
function values (OFVs) of the design problem also show the
range of non-optimality of the best solutions found by the

algorithm.
Table 5 shows that NTAPS increases as the B/C increases

from a low value of 0.2 to a mid value of 0.5, and then
decreases until B/C reaches a high value of 0.8, a phenomenon

expected to occur because the level of feasible and dominate
alternative networks has similar variation as the NTAPS. This
result is in accordance with that reported by Poorzahedy and

Rouhani (2007) for application of ACO.

5.2. Comparison of PSO with ACO and HACO

In this section, the performance of the PSO in solving the
TNDP is compared with those of the ACO and the best

Table 5 Performance of PSO algorithm for different levels of B/C.

Row B/C Budget level Average NTAPSa Frequency of finding

the optimal solutiona
Solution OFVs

Besta Worsta

1 0.20 2700 19.1 50 76,297 76,297

2 0.32 4330 19.6 49 70,353 71,180

3 0.45 6000 20.8 48 66,650 67,576

4 0.49 6500 21.1 48 65,465 66,187

5 0.53 7075 25.2 43 64,580 65,064

6 0.63 8330 24.3 48 61,456 62,560

7 0.75 9980 19.5 48 58,839 60,326

8 0.81 10,820 18.5 43 58,829 58,839

a In 50 runs.

Table 6 Performance of PSO, ACO and HACO algorithms (in 50 runs, B/C = 0.625).

Iteration No. Average NTAPS Average OFVa Frequency of finding the optimal solution

PSO ACO HACO PSO ACO HACO PSO ACO HACO

1 10.0 8.6 8.7 65,134 65,134 65,095 12 9 12

2 5.8 5.3 3.9 64,878 64,903 64,595 6 12 12

3 1.5 3.4 2.0 64,637 64,758 64,330 6 7 2

4 1.7 2.1 0.7 64,528 64,663 64,197 2 4 1

5 1.1 2.2 8.4 64,853 64,750 65,631 18 4 20

6 1.6 1.6 0.2 63,654 64,693 63,851 2 4 0

7 1.3 1.2 0.2 63,934 64,794 63,937 1 1 1

8 2.0 0.8 0.1 63,914 64,821 63,924 1 0 0

All 24.3 25.1 24.2 64,452 64,814 64,445 48 41 48

a For all particles.

Figure 2 Comparison of PSO, ACO and HACO regarding

objective function value and computation effort (in 50 runs,

B/C = 0.625).

Figure 3 Comparison of PSO, ACO and HACO algorithms in

probability of finding the optimal solution (in 50 runs,

B/C = 0.625).

298 A. Babazadeh et al.
HACO algorithms presented by Poorzahedy and Rouhani

(2007) for the test network of Sioux Falls. The PSO parameter
values used here are as before, and the ACO and HACO re-
sults are those given in Poorzahedy and Rouhani (2007). To

make the results comparable, the initial solutions of the PSO
are made by the same way as described in this reference.

Three measures of performance are considered in Table 6.

These are average NTAPS, average of OFVs for all particles,
as in Poorzahedy and Rouhani (2007), and frequency of find-
ing the optimal solution. These measures are for 50 runs of
each algorithm, and they are given for each of 8 iterations of
the algorithms, and in total, for B/C = 0.625. This B/C value

is a middle value which requires higher efforts and is exposed
to higher errors. As may be seen in this table, except for iter-
ation 5 of the HACO, all algorithms experience decreasing

NTAPS as iteration number increases. Moreover, it may be
seen that the PSO is comparable with HACO regarding total
NTAPS. Fig. 2 demonstrates the performance of these three

algorithms in the space of effort-accuracy, where the effort is
measured by the average NTAPS, and accuracy is measured
by the average OFV for all particles. Fig. 2 is based on 50 runs
for each algorithm, and it is given for each of 8 iterations of

Table 7 Performance of PSO, ACO and HACO algorithms

for two medium budget levels.

Algorithm B/C Average

NTAPSa
Frequency of

finding the

optimal solutiona

Average of

solution OFVsa

PSO 0.45 20.8 48 66,672

ACO 0.45 25.9 50 66,650

HACO 0.45 29.4 50 66,650

PSO 0.625 24.3 48 61,472

ACO 0.625 25.1 41 61,532

HACO 0.625 24.2 48 61,469

a In 50 runs.

Application of particle swarm optimization to transportation network design problem 299
them for B/C = 0.625, as in Table 6. According to Fig. 2, the
HACO has the least average effort (24.2) and the highest accu-
racy (64,445), while those of ACO has been the most and low-
est ones (25.1 and 64,814, respectively), showing that the

HACO is more effective than ACO in solving the problem.
In comparison with HACO, the accuracy of PSO (64,452) at
a comparable effort (24.3) seems a remarkable performance.

This is particularly so, if one notes that the PSO algorithm
used here is based on the canonical PSO, which points to the
fact that it has the chance of performing better if it is modified

and calibrated to suit the problem better.
Fig. 3 depicts another type of the effort-accuracy diagram

with the accuracy being measured by the odds (probability)
of finding the optimal solution (in 50 runs for B/C = 0.625,

as in Table 6), and the effort being measured as before. The fig-
ure shows that HACO and PSO have the best accuracy levels
(0.96) at comparable effort levels (24.2 and 24.3, respectively).

The accuracy of 0.96 seems a very high performance for the
PSO, when compares it to that of ACO (0.82) which has been
gained at a somewhat higher effort level (25.1).

Table 7 summarizes the results of Table 5 for B/C = 0.625,
and compares them with the respective ones for B/C = 0.45
(another mid-value B/C with less difficulty in finding the opti-

mal solution than B/C = 0.625). As may be seen in this table,
both ACO and HACO algorithms happen to find the optimal
solutions in all 50 runs for B/C = 0.45, while PSO does this in
48 out of 50. In this case, however, PSO has done this with

much lower effort than others (20.8 as compared with 25.9
and 29.4, the average efforts of ACO and HACO, respec-
tively). It is worth pointing out that the number of feasible

alternative networks for B/Cs of 0.45 and 0.625 are 398 and
761, in that order. Table 7 illustrates that the average NTAPS
for the algorithm PSO for B/Cs of 0.45 and 0.625 are 20.8 and

24.3, respectively, which are 5.2% and 3.2% of the total feasi-
ble networks at the respective budget levels.

6. Summary and conclusions

In this paper, the meta-heuristic of particle swarm optimiza-
tion was employed to solve a well-known combinatorial bilevel

programming model, namely the transportation network de-
sign problem. Various kinds of approaches have been pro-
posed to solve this problem. Following two recent attempts

in the solution of this problem by ant colony optimization,
ACO (Poorzahedy and Abulghasemi, 2005) and hybrid ant
colony optimization, HACO (Poorzahedy and Rouhani,
2007), this paper attempted to show the power of the recent

meta-heuristic search, the particle swarm optimization, and
compared it to ACO and HACO. The experiments presented
in this paper on the network of Sioux Falls showed that the
particle swarm algorithm outperforms ACO in that it needs

noticeably less effort to find comparable solutions (in the val-
ues of the objective function), and have a comparable perfor-
mance to HACO in that it gives similar solutions at

comparable effort. These are promising results which encour-
age more experiments in this area to explore the capability
of this new algorithm further in solving the TNDP, and similar

combinatorial problems.

References

Abdulaal, M., Leblanc, L.J., 1979. Continuous equilibrium network

design models. Transportation Research Part B 13, 19–32.

Abraham, A., Guo, H., Lio, H., 2006. Swarm intelligence: founda-

tions, perspectives and applications. In: Nedjah, N., Mourelle,

L.M. (Eds.), Swarm Intelligent Systems. Springer, Netherlands, pp.

18–25.

Boyce, D.E., Farhi, A., Weischedel, R., 1973. Optimal network design

problem: a branch-and-bound algorithm. Environment and Plan-

ning 5, 519–533.

Cantarella, G.E., Pavone, G., Vitetta, A., 2002. Heuristics for the

network design problem. In: Presented at the EWG 2002 (the 13th

Mini Euro Conference), Bari, Italy.

Chen, M., Sul Alfa, A., 1991. A network design algorithm using a

stochastic incremental traffic assignment approach. Transportation

Science 25, 215–224.

Clerc, M., Kennedy, J., 2002. The particle swarm-explosion, stability,

and convergence in a multidimensional complex space. IEEE

Transactions on Evolutionary Computation 6, 58–73.

Dantzig, G.D., Harvey, R.P., Lansdowne, Z.F., Robinson, D.W.,

Maier, S.F., 1979. Formulating and solving the network design

problem by decomposition. Transportation Research Part B 13, 5–

17.

Eberhart, R.C., Kennedy, J., 1995. A new optimizer using particle

swarm theory. In: Proceedings of the Sixth International Sympo-

sium on Micro Machine and Human Science. IEEE Press,

Piscataway, NJ, pp. 39–43.

Eberhart, R.C., Shi, Y., 2000. Comparing inertia weights and

constriction factors in particle swarm optimization. In: Proceedings

of the IEEE International Congress on Evolutionary Computation,

vol. 1. IEEE Press, Piscataway, NJ, pp. 84–88.

Haghani, A.E., Daskin, M.S., 1983. Network design application of an

extraction algorithm for network aggregation. Transportation

Research Record 944, National Research Council, Washington,

DC, pp. 37–46.

Hoang, H.H., 1982. Topological optimization of networks: a

nonlinear mixed integer model employing generalized benders

decomposition. IEEE Transactions on Automatic Control 27, 164–

169.

Holmberg, K., Hellstrand, J., 1998. Solving the uncapacitated network

design problem by a Lagrangean heuristic and branch-and-bound.

Operations Research 46 (2), 247–259.

Jiang,M., Luo, Y.P., Yang, S.Y., 2007. Stochastic convergence analysis

and parameter selection of the standard particle swarm optimization

algorithm. Information Processing Letters 102 (1), 8–16.

Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In:

Proceedings of the IEEE International Conference on Neural

Networks, vol. 4. IEEE Press, Piscataway, NJ, pp. 1942–1948.

LeBlanc, L.J., 1975. An algorithm for discrete network design

problem. Transportation Science 9, 183–199.

Lee, C.K., Yang, K.I., 1994. Network design of one-way streets with

simulated annealing. Papers in Regional Science 32 (2), 119–134.

300 A. Babazadeh et al.
Magnanti, T.L., Wong, R.T., 1984. Network design and transporta-

tion planning: models and algorithms. Transportation Science 18,

1–55.

Poorzahedy, H., Abulghasemi, F., 2005. Application of ant system to

network design problem. Transportation 32, 251–273.

Poorzahedy, H., Rouhani, O.M., 2007. Hybrid meta-heuristic algo-

rithms for solving network design problem. European Journal of

Operational Research 182, 578–596.

Poorzahedy, H., Turnquist, M.A., 1982. Approximate algorithms for

the discrete network design problem. Transportation Research Part

B 16, 45–56.

Sheffi, Y., 1985. Urban Transportation Networks: Equilibrium Anal-

ysis with Mathematical Programming Methods. Prentice-Hall,

USA.

Shi, Y., Eberhart, R.C., 1998a. A modified particle swarm optimizer.

In: Proceedings of the IEEE International Conference on Evolu-

tionary Computation. IEEE Press, Piscataway, NJ, pp. 69–73.

Shi, Y., Eberhart, R.C., 1998b. Parameter selection in particle swarm

optimization. In: Proceedings of the Seventh International Con-

ference on Evolutionary, vol. VII. Springer-Verlag, New York,

USA, pp. 591–600.

Solanki, R.S., Gorti, J.K., Southworth, F., 1998. Using decomposi-

tion in large-scale highway network design with quasi-

optimization heuristic. Transportation Research Part B 32, 127–

140.
Steenbrink, P.A., 1974a. Optimization of Transport Network. John

Wiley, New York, USA.

Steenbrink, P.A., 1974b. Transportation network optimization in the

Dutch integral transportation study. Transportation Research 8,

11–27.

Voss, M.S., Feng, X., 2002. ARMA model selection using

particle swarm optimization and AIC criteria. In: Presented

at the 15th IFAC World Congress on Automatic Control,

Barcelona, Spain.

Wong, R.T., 1984. Introduction and recent advances in network design

models and algorithms. In: Florian, M. (Ed.), Transportation

Planning Models. North-Holland, Amsterdam.

Yang, H., Bell, M.G.H., 1998. Models and algorithms for road

network design: a review and some new developments. Transport

Review 18 (3), 257–278.

Yin, Y., 2000. Genetic algorithm-based approach for bilevel program-

ming models. ASCE Journal of Transportation Engineering 26 (2),

115–120.

Yisu, J., Knowles, J., Hongmei, L., Yizeng, L., Kell, D.B., 2008. The

landscape adaptive particle swarm optimizer. Applied Soft Com-

puting 8 (1), 295–304.

You, P.-S., 2008. An efficient computational approach for railway

booking problems. European Journal of Operational Research 185,

811–824.

	Application of particle swarm optimization to transportation network design problem
	Introduction
	The TNDP
	The PSO
	The canonical PSO

	Adapting the PSO to the TNDP
	Numerical example
	Application of PSO algorithm
	Comparison of PSO with ACO and HACO

	Summary and conclusions
	References

