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A B S T R A C T   

Eleven Schlumberger array vertical electrical soundings were done at specified places in the Yanbu industrial 
sector, northwest Saudi Arabia, to identify possible seawater intrusion that may influence the shallow ground
water aquifer along the city’s coastline zone. The variations of the resistivity values indicate the subdivision of 
the study area into two zones. These zones are characterized by different VES curve types; the Q-type and the H- 
type which dominate in the western and the eastern zones, respectively. VES data show three geoelectric re
sistivity layers. The first layer is an inhomogeneous layer with a wide range of resistivities correlated to Qua
ternary sediments (ranges from gravel, and sand to silt and clay) of variable lithology and water content. The 
resistivity of the second layer indicates abundant clay with a local change in the lithology to become gravel and 
coarse sand. The third layer shows a sudden and sharp variation of the resistivities; indicating a possible fault 
affected the coastal plain. This faulting system uplifts the basement, which may operate as an impermeable or 
sealing wall to prevent seawater from entering the shallow groundwater aquifer in the west. Most seawater 
intrusion in the studied area is regulated by faulting and lateral lithologic changes.   

1. Introduction 

The water demand is being further increased by continual 
improvement in living conditions in addition to a rise in population 
(Neumann et al., 2015). Groundwater, the principal freshwater source in 
coastal areas, is utilized indiscriminately to meet expanding residential, 
agricultural, and industrial water demands (Hamed et al., 2018). Excess 
groundwater withdrawal disturbs the hydrodynamic equilibrium be
tween freshwater and seawater in the aquifer, pushing seawater upward 
(van Camp et al., 2014). As a result, fresh groundwater resources are 
being depleted in coastal locations (Alfarrah and Walraevens, 2018; 
Werner et al., 2013). The “Ghyben-Herzberg relationship” is a well- 
known mathematical relationship that controls whether seawater 
moves uphill or downward into the coastal aquifer (Narayan et al., 
2007). According to the relationship, the depth of seawater decreases by 
40 m for every meter that the water table rises. When groundwater levels 
drop below the mean sea level, coastal aquifer seawater flows inland, 
reversing the hydraulic gradient (Lee and Cheng, 1974; Nair et al., 
2013). The inland migration of seawater into the coastal aquifer is the 

principal cause of coastal groundwater decrease. Seawater intrusion not 
only hinders the development of the local agricultural and industrial 
sectors but also lowers people’s quality of life (Demirel, 2004). 

Seawater intrusion has been studied extensively in coastal locations 
worldwide (Abdalla, 2016; Allow, 2011; Barlow and Reichard, 2010; 
Felisa et al., 2013; Garing et al., 2013; Manivannan and Elango, 2019; 
Rajaveni et al., 2016; Shammas and Jacks, 2007; Shi and Jiao, 2014; 
Suhartono et al., 2015; Werner and Gallagher, 2006; Zghibi et al., 2013). 
However, there have been few attempts to link these separate researches 
to gain a better knowledge of the seawater intrusion process and asso
ciated corrective actions. The goal of the current effort is to describe the 
numerous aspects that affect seawater intrusion and mitigation tactics. 
Regional and global phenomena including sea level rise, storm surges, 
climate changes, shoreline erosion, coastal floods, etc. affect coastal 
aquifers (Barlow, 2003). Salinization in coastal locations is accelerated 
by human activity (Rapti-Caputo, 2010). Surface water sources are also 
impacted by their interaction with seawater, in addition to the coastal 
aquifers. Due to seawater backwater, rivers and estuaries naturally bring 
seawater and salt to surface water (Oude Essink, 2001; Vijay et al., 
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2011). 
Lithology, geomorphology, structural features, and other geological 

factors regulate coastal aquifer seawater intrusion. The aquifer lithol
ogy, or the makeup of the geological formations, determines how much 
water flows inland from the coastal aquifer (Michael et al., 2013). The 
magnitude of seawater intrusion is directly influenced by the geological 
history of water-bearing formation, hydraulic gradient, pace of 
groundwater extraction, and replenishment (Ammar et al., 2016; 
Barlow, 2003; Choudhury et al., 2001). Various porosity and perme
ability levels in geologic formations have various water-holding capac
ities. Paleo-saltwater may arise when seawater that is flooding inland 
regions becomes stuck in the under-saturated pore spaces (Werner and 
Gallagher, 2006). Clayey layers are typically found in small patches 
along the coast, where they function as barriers to protect the light- 
colored saltwater (Barrett et al., 2002; Cary et al., 2015). In locations 
that do not experience seawater inundation, however, these clay patches 
may grow perched aquifers and assemble freshwater (Yousif and 
Bubenzer, 2012). In such cases, the distribution of clay patches in coastal 
aquifers determines the distribution of freshwater and seawater. The 
coastal groundwater, however, may have a significantly higher salinity 
due to the interaction of freshwater with old trapped seawater and 
saltpans (Ayolabi et al., 2013; Nair et al., 2016). 

Climate change and sea level rise are the main factors regulating 
coastal seawater incursion. The main source of groundwater recharge is 
atmospheric precipitation, but its volume varies across time and space. 
Furthermore, there is significant inter-annual variability in atmospheric 
precipitation. During the rainy season, groundwater levels rise, but in 
summer, evapotranspiration increases multifold, and precipitation de
creases (Rapti-Caputo, 2010; Alarifi et al., 2022a, 2022b). As a result, 
even relatively minor groundwater removal during non-rainy seasons 
may cause seawater intrusion. Thus, dry seasons increase seawater 
intrusion risk compared to rainy seasons. Other aspects of climate 
change that are directly related to seawater intrusion include meteoro
logical drought, storm surges, and coastal erosion (Terry and Falkland, 
2010). Storm surges pose a threat to coastal aquifers by saline coastal 
groundwater and salt-depositing soil by flooding low-lying coastal areas 
with seawater (Rezaie et al., 2019). Because of this, the soil and 
groundwater cannot be used for farming or other purposes. 

Tidal action affects coastal groundwater quality, and many scholars 
have used simulation, field, and experimental methods to study it. Kim 
et al. (2005) discovered that groundwater quality in Kimje, Korea’s 
coastal districts correlates with periodic changes in tidal activities using 
time series analysis. A different study found that tides on Jeju Island, 
Korea, affect the coastal groundwater system up to 3 km inland (Kim 

Fig. 1. Location map of the study area including the measured VES stations and boreholes.  
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et al., 2006). According to studies (Carr and van der Kamp, 1969; 
Nielsen, 1990), the oscillation in tide movement modulates the 
groundwater head in coastal zones, which results in periodic variations 
in the groundwater table. The freshwater-seawater mixing zone is 
directly impacted by such changes in groundwater head (Bear, 1972; 
Strack, 1976; Wang and Tsay, 2001). According to Shalev et al. (2009), 
this variation in the freshwater-seawater interface results in a seawater 
inflow into the pumping wells during the high tide period. 

Seawater intrusion is considered an increasing threat to coastal 
communities causing enormous risks to the coastal environment and 

making the groundwater unsuitable for consumption. Several re
searchers have studied the environmental risks of seawater intrusion 
(Alfaifi et al., 2019, Hussain et al., 2019, Khadra and Stuyfzand, 2018; 
Chang et al., 2018, and Alharbi et al., 2023). The problem of the sali
nization of shallow groundwater aquifers has been recorded in many 
areas along the Saudi Red Sea coast, where the excessive pumping of 
unconfined coastal aquifers by water wells leads to the intrusion of 
seawater (e.g. Mogren, 2015). 

The area of study (Fig. 1) witnesses high-speed urban growth and 
high-speed industrialization, where the city of Yanbu has been 

Fig. 2. Geologic map of the study area (modified after Monnier and Guilcher, 1993).  

Table 1 
Interpretation results of the VES data.  

VES-No Latitude degree (N) Longitude degree (E) Layer-1 Layer-2 Layer-3 

R1 
Ohm.m 

H1 (meter) R2 
Ohm.m 

H2 
(meter) 

R3 H3 

VES-1  23.42049  38.73015  100.7  5.5  3.2  61.0  0.6 — 
VES-2  23.60348  38.92313  607.8  1.5  103.0  28.2  843.4 — 
VES-3  23.70719  38.5252  52.2  5.4  2.4  52.6  0.7 — 
VES-4  23.7774  38.63317  110.1  8.8  20.6  61.4  228.8 — 
VES-5  23.85121  38.72403  122.5  25.4  42.1  15.7  126.5 — 
VES-6  24.03733  38.2966  135.0  0.9  24.3  21.3  4.3 — 
VES-7  24.13811  38.36557  1659.4  2.1  245.3  8.8  11.9 — 
VES-8  24.2536  38.41915  225.0  4.2  29.3  27.9  958.7 — 
VES-9  24.1789  38.06126  79.5  1.7  11.7  16.3  1.2 — 
VES-10  24.24478  38.10904  120.9  6.7  3.9  61.8  803.0 — 
VES-11  24.32832  38.14949  470.4  8.3  13.2  77.2  4463.6 —  
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Fig. 3. Inversion modeling in comparison with field data for Q-type VESes (VES-1, VES-3, and VES-9) that characterize the western zone of the study area and H-type 
VESes (VES-2, VES-4, and VES-8) that characterize the eastern zone of the study area. 

Fig. 4. Correlation of VES-1 with the nearest borehole lithologic log.  
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developed to become the third largest oil refinery center in the world. 
This area has few deep boreholes to study the shallow groundwater 
aquifer, so a vertical electrical sounding (VES) survey using the 
Schlumberger array was conducted on 11 localities (Fig. 1) to determine 
how seawater intrusion affected the shallow coastal aquifer. Many 
countries have employed resistivity-sounding surveys to detect seawater 
incursion and freshwater/saline water interface (Mogren, 2015, Batay
neh, 2006). The high resistivity contrast between the layers saturated 
with seawater and layers saturated with freshwater; makes vertical re
sistivity sounding (VES) effective for coastal seawater intrusion detec
tion. The VES survey in this work was conducted primarily to gather 
data on the underlying lithology, groundwater salinity, and hydro
geological behavior of the aquifers. 

2. The study area 

The study area (Fig. 1) lies along the eastern Red Sea coast west of Al 
Madinah and NW of Jeddah. It has one of Saudi Arabia’s largest and 
oldest marine ports located in this area, which is increasing in 

population and tourism. Recently, the area attracted several develop
ment and industrial projects; where the area plays a major role in the 
kingdom’s gross national income. This area is occupied by the Yanbu 
Industrial City which represents the last station for the raw oil and liquid 
natural gas pipelines. 

The area lies on the “Tihamah” littoral plain (Fig. 2) at the foot of the 
highly dissected Precambrian granitic mountains of Alhijaz. The coastal 
plain is covered by the Quaternary sediments (Fig. 2); mainly gravel, 
sand, silt, and clay. Flash floods from close-lying coastal escarpments 
have deposited terrigenous material in many old wadis, forming most of 
the sediments along the coastline. Parts of the area are covered by 
Sabkha soil and the coastal morphology of the area is characterized by 
an extension of various open bays on its shores referred to as “Sharm”. 
The coastal zone of Yanbu is a dynamic and morphologically unstable 
area (Nofal and Abboud, 2019). The area is bounded from the eastern 
side by basement rocks of Alhijaz mountains and basalt ridge forming 
part of a set of so-called Harrats (lava flows today in an inversion of 
relief), coming from mouths located at a hundred kilometers inside, and 
going back to the old Pleistocene (Monnier and Guilcher, 1993). 

Fig. 5. A map shows the distribution of the true resistivity of the first geoelectric resistivity layer along the study area.  
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3. Data acquisition and processing 

Among all surface geophysical methods, the electrical resistivity 
method has been applied most widely for groundwater investigations. A 
Schlumberger array with 600 m current electrode spacing was used for 
the VES survey in this investigation. In this respect, a total of 11 VES 
stations were conducted along four NNW-SSE profiles, using the Iris 
Syscal-R2 resistivity meter. Fig. 1 depicts the positioning and distribu
tion of the VES spreads. Using IX1D-Interpex software (ver. 3.52, 2013), 
the 1-D inversion approach was used to process the VES field data in 
terms of the layer parameters. With the least root mean square (RMS) 
error between the generated model and the field data, this 1-D inversion 
generates a resistivity model that fits the VES field data. In this respect, 
the initial forward model for each VES was proposed based on the 
available geological and borehole information in the current study. After 
the first forward model was calculated, multiple iterations were applied 
until the RMS fitting error between the observed and calculated data for 
the assumed model. In addition, smooth model inversion was applied 

using a model with the same number of layers as the data points and 
fixed thicknesses related to the electrode spacing. The output is sub
surface geoelectric resistivity layers with their true resistivities, thick
ness, and depths. The interpreted resistivity layers with their true 
resistivities and thicknesses are listed in Table 1. 

4. Results and interpretation 

The interpretation shows that the study area’s subterranean rock 
units’ resistivity varies greatly. Depending on the VES curve type, the 
amount of geoelectrical layers, and their connection to resistivity; geo
electrically, the study region has two zones. The western zone is char
acterized by descending Q-type VES curves (ρ1 > ρ2 > ρ3) that show 
decreasing resistivity with depth. H-type VES curves (ρ1 > ρ2 < ρ3) in 
the eastern zone indicate decreasing resistivity with depth till reaching 
high resistivity bedrock at the bottom. Fig. 3 displays examples of the 
two types of sounding curves along with respective 1-D inversion models 
and data fit. 

Fig. 6. A map shows the distribution of the true resistivity of the second geoelectric resistivity layer along the study area.  
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A correlation between the interpreted VES-sounding layers and the 
available borehole data was conducted (Fig. 4). The correlation shows 
good agreement within the available lithologic information. The first top 
layer is correlated with the Quaternary sediments (gravel, coarse sand, 
silt, and clay) that attain a resistivity of 100 Ohm.m; followed by the 
second layer of sand and clay contaminated by seawater with a re
sistivity of 0.6 Ohm•m (Fig. 4). This shows that lithology, water, clay, 
and salinity determine subsurface rock strata electrical resistance. 

VES data show three resistivity layers. The resistivity of the inter
preted three geoelectric layers (listed in Table 1) is plotted in iso-re
sistivity contour maps to show resistivity dispersion horizontally and 
vertically over the research area (Figs. 5–7). The first layer (Fig. 5) at
tains a thickness, that ranges from 1.5 to 9 m and a wide range of re
sistivities (ranges from 52 to 1650 Ohm.m). The wide range of resistivity 
indicates inhomogeneous Quaternary sediment varied from gravel, and 
coarse sand to silty and clayey soil with different moisture content. This 
layer has significant resistivities toward the east of the study region; 
indicating dry gravel and coarse sand sediments, while the western side 
is dominated by low resistivities; which indicates clayey moist soil. The 
second layer (Fig. 6) shows relatively low resistivities (2.4–28 Ohm.m), 
except for a local rise in the northwestern part where the resistivity 
reaches 240 Ohm.m; indicating a change in the lithology to gravel and 

coarse sand. This layer is composed of silty sand clay-graded gravel and 
coarse sand in some places’ upper parts. The sediments of this layer are 
saturated with saltwater. The third layer (Fig. 7) is geoelctrically divided 
into two zones; the western zone is dominated by its low resistivity 
(1.2–11 Ohm.m) and the eastern zone is characterized by relatively very 
high resistivities that reach 4463 Ohm.m. These findings show a fault, 
which causes a basement uplift, is present in the studied area. In the 
eastern half of the region, the fractured basement uplift may function as 
an impermeable or sealing wall within the shallow aquifer, preventing 
the infiltration of seawater. This explains the very obvious difference in 
the resistivity values between the western and eastern zones; suggesting 
a possible seawater intrusion that may be controlled by a subsurface 
faulting that divides the area into two zones (Fig. 8). 

5. Geoelectrical cross-sections 

Three geoelectrical cross-sections have been constructed throughout 
the study area (Fig. 9). All cross-sections are oriented NE-SW perpen
dicular to the Red Sea’s main direction. Three geoelectrical layers make 
up the subsurface section, according to their cross-sections. Surface dry 
sand, gravel, and silt form the first layer. Wet sand, silt, and clay form 
the second geoelectrical layer while the third layer is represented by 

Fig. 7. A map shows the distribution of the true resistivity of the third geoelectric resistivity layer along the study area.  
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clayey sand soaked with saline water. Basement rocks create the fourth 
geoelectrical layer. The resistivity of the second unit ranges between 9 
and 29 Ω.m, 1.7–13.2 Ω.m in geoelectrical cross-sections a and b 
respectively while not recorded in cross-section c. The third geologic 
unit has resistivities in the range of 4.3–11.9 Ω.m, 1.2 Ω.m, and 0.6–3.2 
Ω.m for cross-sections a, b, and c respectively. The fourth geoelectric 
unit has resistivity values of 958 Ω.m, 803–4464 Ω.m, and 843 Ω.m for 
cross-sections a, b, and c respectively. Structurally, these cross-sections 
reveal a fault with a downthrown side toward the western direction. 

6. Discussion and conclusions 

The Schlumberger array was used to conduct a vertical electrical 
sounding (VES) survey at 11 locations in the Yanbu industrial area to 

collect data on subsurface lithology and groundwater salinity to help 
identify seawater intrusion in the shallow aquifer along the coastal zone. 
The interpretation of the VES data reveal the presence of three distinct 
resistivity layers. The first layer is an inhomogeneous layer with a wide 
large range of resistivities, which is correlated to Quaternary sediments 
of variable lithology ranging from gravel, and sand to silt and clay; 
besides variable water content. The variation of resistivities of the sec
ond layer indicates abundant clayey soil as indicated by its low re
sistivity values; except a local high resistivity in the northern part; 
indicating a local change in the lithology to gravel and coarse sand. The 
resistivity values of the third layer show a sharp and sudden change in 
the resistivity values; indicating a possible structural fault affected the 
coastal plain that may result in a basement uplift. The fractured base
ment uplift in the eastern investigated area may seal seawater from 

Fig. 8. A possible extension of the seawater intrusion into the coastal area around the industrial city of Yanbu.  

E. Ibrahim et al.                                                                                                                                                                                                                                 



Journal of King Saud University - Science 36 (2024) 103110

9

entering the shallow groundwater aquifer. In general, structural faulting 
and lateral lithologic changes have a major role in controlling seawater 
incursion in the research area. A large resistivity contrast between 
seawater that greatly lowers the contaminated zone’s resistivity values 

compared to the uncontaminated zone in current data suggest that the 
VES survey is beneficial for assessing coastal seawater intrusion. To 
safeguard the freshwater in the eastern side of the area, it is recom
mended to reduce the pumping from the shallow wells because the 

Fig. 9. Geoelectrical cross-sections in the area of study. (a) Between VES-1 and VES-2, (b) between VES-6, VES-7 and VES-8, (c) between VES-9, VES-10 and VES-11.  
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primary cause of saltwater intrusion is the over-pumping of fresh 
groundwater from coastal aquifers, which reduces the hydrostatic 
pressure and drawing saltwater into the aquifer. 
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