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University of Granada, Facultad de Ciencias Económicas y Empresariales, Campus Cartuja s/n. C.P., 18071 Granada, Spain
Received 10 November 2014; accepted 7 February 2015
Available online 18 March 2015
KEYWORDS

Statistical quality control;

Monte Carlo simulations;

Capability analysis;

Range;

Relative bias
Abstract Statistical quality control (SQC) is used by companies and industries for many reasons.

For example, the process capability of machines is an important aspect of SQC, which consists in

evaluating the ability of a production process to perform with the required specifications. In other

words, the process capability measures the ability of a process of producing acceptable products

according to the established specifications. The most common indicator used to measure the process

capability is the process capability index, which depends on the process standard deviation. In prac-

tice, the standard deviation is unknown, and the process capability index is thus estimated by using

an estimator of the process standard deviation. In this paper, we describe the most common estima-

tors of the process standard deviation, and define the corresponding estimators of the process

capability index. A bound for the bias ratio of the various estimators is obtained. Monte Carlo sim-

ulation studies are carried out to analyze the empirical performance of the various estimators of the

process capability index. Empirical results indicate that biases can be obtained, specially in the pres-

ence of small samples. We also observe that the estimators of the process capability index based on

sample ranges are less accurate than the alternative estimators.
ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The problem of ensuring the quality of products is a very com-
mon practice in many companies and industries. This issue is a
clear example on the management literature regarding how

managers take decisions based on data (see also Lynch,
2008; Parry et al., 2014). The set of statistical tools used to
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control and improve the quality of products is known as sta-
tistical quality control (SQC), and which involves various
aspects. For example, control charts are used to monitor the

quality of a process and determinate if this process is in a state
of statistical control (in control), which would indicate that the
production has a normal variation. An additional statistical

tool within SQC is acceptance sampling, which consists in
inspecting lots of products with the purpose of deciding
whether they are accepted or not according to the results

derived from the inspection. SQC also involves the capability
analysis, which is the topic discussed in this paper. The
capability analysis indicates if the process has the ability of
producing acceptable products. An introduction to SQC can

be seen in Montgomery (2009).
The process capability index is the main indicator used to

measure the capability analysis. The process capability index

evaluates a production process and indicates if the process is
capable, i.e., it is prepared to produce items with the required
specifications. The capability analysis is considered as a very

important aspect in many manufacturing industries, and for
this reason several researchers have conducted studies related
to capability indices. Relevant references are Anis (2008),

Besseris (2014), Bissell (1990), Boyles (1991), Chan et al.
(1988), Chen and Ding (2001), Chen et al. (2001), Chen et al.
(2003), English and Taylor (1993), Kane (1986), Kotz and
Jhonson (2002), Kotz and Lovelace (1998), Kushler and

Hurley (1992), Luceo (1996), Pearn et al. (1992), Porter
and Oakland (1991), Rodriguez (1992), Somerville and
Montgomery (1996), Spiring et al. (2003), Yeh and

Bhattcharya (1998), etc.
Note that the control charts and the capability analysis

are related concepts. In particular, acceptable products are

produced if the process is capable and in control before the
production begins.

A process capability index is based on specification limits,

also named as tolerances. We assume two-sided specification
limits defined by the lower specification limit (LSL) and the
upper specification limit (USL), and which generally indicate
ranges of acceptance quality characteristics. In other words,

a product is considered as acceptable if its characteristics are
within the specification interval [LSL, USL]. For example,
the specification limits for the volume of bottles may be speci-

fied as 2 liters ±0.05 liters, which indicates that LSL ¼ 1:95
liters and USL ¼ 2:05 liters. One-sided specification limits
can be also defined. For example, the volume of bottles may

have the lower specification limit LSL ¼ 1:95, but not an
upper specification limit (see also Montgomery, 2009, p. 9).

A process capability index is also based on the process stan-
dard deviation, which is denoted as r. In practice, the parame-

ter r is unknown, and the use of an estimator is required in this
situation. Traditionally, the technique used for the estimation
of r consists in selecting m samples with the same size n. Simple

random sampling without replacement is the most common
sampling design used to select the various samples. Note that
the m samples must be obtained when it is known that the pro-

cess is stable. The information collected from these samples is
used for the purpose of estimating r. The most common
estimators used to estimate the process standard deviation

are based on the sample standard deviations and the sample
ranges (see Chakraborti et al., 2008; Chen, 1997; Duncan,
1986; Jones et al., 2001; Luko, 1996; Luko, 1996; Chen,
1997, pp. 229 and 253; Ott, 1975; Vardeman, 1999; Wheeler,
1995; Woodall and Montgomery, 2000).

This paper discusses the estimation of the customary pro-

cess capability index, which is defined as the ratio of the spec-
ification width (USL� LSL) to the width of the process
variability (6r). Note that we consider 6r for the width of

the process variability because it is quite common in practice
to use the criterium of 3r control limits when dealing with con-
trol charts (see Chen, 1997; Montgomery, 2009, p. 184). The

main objective of this paper is to analyze the empirical perfor-
mance of various estimators of the process capability index
and assuming different scenarios.

This paper is organized as follows. In Section 2 we describe

the most common estimators of the process standard deviation
r. In Section 3 we define the customary process capability
index, which in turn is used to define the various estimators

of this index based on the estimators of r described in
Section 2. The main contribution of this paper can be found
in Section 4, where we carry out various Monte Carlo sim-

ulation studies based on different scenarios. For example, we
considered the classical example with data based on the
Normal distribution, but we also considered non-normal data

and off-center processes. The aim of this empirical study is to
analyze the empirical performance of the various estimators of
the process capability index in terms of relative bias and rela-
tive root mean square error. Empirical results indicate that the

various estimators can be biased, specially for small sample
sizes. We also observe that the estimators based on the sample
ranges are less accurate than the alternative estimators. The

use of the Gamma distribution does not have an important
impact on the empirical performance of the various estimators.
This conclusion is also observed when off-center processes are

considered. Finally, the empirical results indicate that the use
of the Uniform distribution has a relevant impact on estima-
tors based on the sample ranges. Finally, in Section 5, the main

conclusions derived from the various Monte Carlo simulation
studies are presented.
2. The customary estimators of the process standard deviation

In this section, we describe the most common estimators of the
process standard deviation used in practice.

Let r be the true standard deviation of a production process.

It is quite common to assume that r is unknown, since it is unli-
kely to know this parameter in practice. In particular, most
control charts are based on estimators of r (see Chakraborti

et al., 2008; Chen, 1997; Jones et al., 2001; Montgomery,
2009, p. 228). In this situation, the process capability index also
requires the estimation of the true standard deviation r.

The unknown parameters related to a process are generally
estimated by using m samples, which must be selected when the
process is believed to be in control. It is also quite common to
assume that the various samples have the same size n. Note

that expressions for the case of samples with different sizes
can be easily derived from the existing literature (see, for exam-
ple, Montgomery, 2009, p. 255). It is also common to use sim-

ple random sampling without replacement for the problem of
selecting the m samples. Note that the problem of selecting the
best sampling design for the selection of the various samples is

also a topic which is beyond the scope of this paper.
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The various estimators of r are based on the values xij col-

lected from the m samples, where xij denotes the observed

value of the quality characteristic for the jth product, with

j ¼ 1; . . . ; n, in the ith sample, with i ¼ 1; . . . ;m, and where
the quality characteristic x follows a Normal distribution.
Note that the normality of the quality characteristic is the cus-

tomary assumption in the context of SQC. In Section 4, we
analyze the impact on the various estimators of the capability
index when data are extracted from alternative probabilistic

distributions.
The first estimator of r is defined as

brR ¼
R

d2½n�
ð1Þ

where

R ¼ 1

m

Xm
i¼1

Ri

is the average of the samples ranges defined as

Ri ¼ maxðxijÞ �minðxijÞ:

The function d2½�� used by the Eq. (1) depends on the sample
size n and its definition can be seen in Chen (1997). The values

of d2½n� for various values of n are tabulated in many references
about SQC. For example, some values of d2½n� can be seen in
Appendix VI from Montgomery (2009). Note that brR is an

unbiased estimator of r (see Duncan, 1986; Luko, 1996;
Wheeler, 1995 and Woodall and Montgomery, 2000).

Woodall and Montgomery (2000) defined the estimator

brR2 ¼
d2½n�
d�2½n�

R; ð2Þ

where

d�2½n� ¼ d22½n� þ
d23½n�
m

� �1=2

and where the values of d3½n�, for various values of n, are gen-
erally tabulated (see for example Appendix VI from
Montgomery, 2009). Note that the estimator brR2 has the prop-
erty of minimizing the theoretical mean squared error among

all estimators of the form cR, with c > 0. For example, the
estimator brR is included in this class of estimators.

A third estimator (brS) of the process standard deviation can
be obtained by using the sample standard deviations. The
estimator brS is defined as

brS ¼
S

c4½n�
ð3Þ

where

S ¼ 1

m

Xm
i¼1

Si

is the average of the sample standard deviations

Si ¼
1

n� 1

Xn
j¼1
ðxij � xiÞ2

 !1=2

;

and where

xi ¼
1

n

Xn
j¼1

xij
denotes the sample mean of the values xij in the ith sample.

The function c4½�� in Eq. (3) depends on the sample size n,
and its definition can be also seen in Chen (1997). The values

of c4½�� are also tabulated for various sample sizes in
Appendix VI from Montgomery (2009).

The last estimator of r considered in this paper is based

upon the pooled sample standard deviation. This estimator is
defined as

brp ¼
Sp

c4½1þmðn� 1Þ� ; ð4Þ

where

Sp ¼
1

m

Xm
i¼1

S2
i

 !1=2

is the pooled sample standard deviation based on samples with
the same size. Note that brS and brp are also unbiased estima-

tors of r (see Montgomery, 2009 p. 253).

3. Estimation of the process capability index

In this section, we first define the customary process capability

index, and this definition is used to define the most common
estimators of this index. The estimators of the process capabil-
ity index are based on the estimators of the true process stan-

dard deviation described in Section 2.
The aim of a capability analysis is to evaluate the ability of

a process to produce products within the specification limits,
which are defined by the lower specification limit (LSL) and

the upper specification limit (USL). The capability analysis
reveals whether the process produces conforming items, i.e.,
the quality characteristics of the products are within the spec-

ification limits. Corrective actions are required otherwise. For
example, a corrective action can be to expand the specification
limits. In addition, an action to improve the quality of the pro-

cess can be also applied. The most common indicator used to
measure the capability analysis of a production process is the
process capability index (Cp), which is defined as the ratio of

the width of the specification limits to the width of the natural
tolerance limits of the process, i.e.,

Cp ¼
USL� LSL

6r
ð5Þ

where 6r is the width of the natural tolerance limits or the true

process variability based on the 3r criterium (see, for example,
Chakraborti et al., 2008; Chen, 1997). Note that one-sided pro-
cess capability indices can be also defined (see, for example,
Montgomery, 2009, p. 352).

The process capability index can give three different conclu-
sions. A value of the process capability index equal to 1 indi-
cates that the process variability is very similar to the

specification limits. In this situation, it is said that the process
is minimally capable, since a small variation on any parameter
of the process can increase considerably the proportion of non-

conforming items. A value of the process capability index less
than 1 indicates that the process is considered unfit to produce
items according to the specification limits, i.e., a significant
proportion of nonconforming items is produced by the pro-

cess, and this implies that the process requires corrective
actions to solve this problem. Finally, it is said that the process
is capable of producing items within specification limits if the
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process capability index is larger than 1. In this situation, it is
clear that the width of the specification limits is larger than the
width of the process variability. Therefore, a larger value of the

process capability index will increase the likelihood that the
process keeps a good proportion of conforming items in the
presence of small changes in the process or specification limits.

Many companies consider a minimum capability index fixed at
4=3, and some of them also have the aim of obtaining a value
of 5=3 for the process capability index.

As mentioned previously, it is important to recall that the
capability analysis must be carried out when the process is
believed to be in control. For obvious reasons, it does not
make sense to perform a capability analysis when the process

is not stable.
From Eq. (5) we observe that the process capability index

depends on both specification limits (LSL and USL) and the

true standard deviation (r). Note that the specification limits
must be given, and they can be determined, for example,
according to laws related to the product. In addition, the spec-

ification limits can be obtained by the company to keep a given
quality on the production process. On the other hand, the true
standard deviation is generally unknown in practice, hence the

estimation of this parameter plays a key role in the calculation
of the process capability index.

Some estimators of r are described in Section 2. The follow-
ing expressions are, respectively, the estimators of Cp based on

the estimators (1)–(4) of r:

bCp:R ¼
USL� LSL

6brR

; ð6Þ

bCp:R2 ¼
USL� LSL

6brR2

; ð7Þ

bCp:S ¼
USL� LSL

6brS

; ð8Þ

and

bCp:P ¼
USL� LSL

6brp

: ð9Þ

The precision of estimators of r is a topic widely discussed in
the literature. The bias and the efficiency of various estimators
of r are discussed by Chakraborti et al. (2008), Chen (1997),

Duncan (1986), Jones et al. (2001), Luko (1996),
Montgomery (2009), pp. 229 and 253, Ott (1975), Vardeman
(1999), Wheeler (1995), Woodall and Montgomery (2000),

etc. We now analyze the bias of the various estimators of Cp

given by expressions (6), (7), (8) and (9). For simplicity, let br
be a given estimator of r. The corresponding estimator of Cp

can be expressed as

bCp ¼
USL� LSL

6br ¼ k�br ; ð10Þ

where

k� ¼ USL� LSL

6
:

In other words, bCp can be expressed as the ratio between the

constant k� and the estimator br. Although the estimator br is

unbiased, the estimator bCp is not unbiased for Cp (see also

Särndal et al., 1992, p.163). However, bCp is approximately
unbiased for Cp under certain conditions, which are described

in Result 1 (see also Särndal et al., 1992, p.176).

Result 1. The bias ratio of the estimator bCp of the capability

index Cp satisfies.

BRð bCpÞ
2
6 RSEðbrÞ2; ð11Þ

where

BRð bCpÞ ¼
Bð bCpÞ

fVð bCpÞg
1=2

is the bias ratio of Cp,

RSEðbrÞ ¼ fVðbrÞg1=2
r

is the relative standard error of br, and Bð bCpÞ ¼ Eð bCpÞ � Cp is

the bias of bCp.

The proof of Result 1 can be seen in the Appendix A.
As discussed by Särndal et al. (1992), p.177, the expression

(11) indicates that if RSEðbrÞ approaches zero as the sample

size increases, the bias ratio of bCp will also approach zero.

Note that it is quite common to have relative standard errors

close to zero when the sample size is large, hence the bias ratio

of bCp is small in this situation.

We can observe that the estimator bCp defined by expression

(10) is a nonlinear function of the observations. Note that vari-

ances of complex statistics, such as bCp, could be not express-

ible by simple formulae (see also Rueda and Muñoz, 2011).
In addition, Wolter (2007), p. 119 indicates that only approxi-
mate results are possible when estimating the variance of non-

linear statistics, and there is a dearth of exact theoretical
results for finite sample sizes. In the case of complex or nonlin-
ear statistics, it is quite common to use traditional techniques

such as jackknife (Deville and Särndal, 1992, p.437, Wolter,
2007, p.151) or bootstrap (Deville and Särndal, 1992, p.442,
Wolter, 2007, p.194) to estimate the variance of the

corresponding estimators. For example, as discussed by
Wolter (2007), p.119, numerous empirical results suggest that
the balanced half-sample method gives desirable estimates of
the true variance of an estimator of a ratio. Consequently,

we thus suggest to use traditional techniques to estimate the

variance of bCp, since this is a simple solution which can pro-

vide satisfactory results. In addition, many statistical software
include packages and tools that implement variance approx-
imation methods, hence the use of them in the practice is quite

simple.
On the other hand, the process capability index Cp assumes

that the process mean (l) coincides with

l0 ¼
LSLþUSL

2
;

where l0 is the midpoint of the interval defined by the spec-
ification limits. It is said that the process is off-center when

l–l0. In this situation, when the process is not centered at
the midpoint of the specification limits, the process capability
index is defined as

Cpk ¼ ð1� kÞCp; ð12Þ
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where

k ¼ jl0 � lj
ðUSL� LSLÞ=2 :

The various estimators of Cpk can be easily defined by using

the various definitions of the estimators of Cp. For example,

the estimator of Cpk based on the pooled sample standard

deviation is defined asbCpk:P ¼ ð1� kÞ bCp:P; ð13Þ

where bCp:P is defined by Eq. (9). We can observe that the

estimator bCpk:P defined by Eq. (13) assumes that the process

mean l is known. If the process mean l is unknown, the
estimator

bl ¼ x ¼ 1

m

Xm
i¼1

xi

can be used for the problem of estimating this parameter.

4. Monte Carlo simulations

In this section, the empirical performance of the various
estimators of the process capability index (Cp) is analyzed

via Monte Carlo simulation studies. Assuming different sce-
narios, the various estimators of Cp are compared in terms

of bias and efficiency. For comparison reasons, the empirical
performance of the various estimators of the process standard

deviation (r) is also analyzed. This topic may be important
because it can help us to interpret the state of the process
and also we can know the situations where the process is con-

sistent. Note that the presence, for example, of a significant
bias on the estimator of Cp can produce a wrong vision of

the process status. In addition, an efficient estimation of the
process capability index is essential to get a good evaluation
of the process. In this section, we analyze the empirical bias

and the empirical efficiency of the various customary estima-
tors of Cp defined by Eqs. (6)–(9).

This simulation study is based on B ¼ 1000 simulation
runs, and it is described as follows. At the first simulation
run, m samples with the same size n are selected from a proba-

bilistic distribution with standard deviation r. These values
may represent the quality characteristic of a given item within
a production process. Various specification limits LSL and

USL are also given. The values of r;LSL and USL are selected
such that different values of Cp are obtained. This information

is used to obtain the true process capability index Cp and the

various estimators of this parameter defined by Eqs. (6)–(9).
This process is repeated B ¼ 1000 times. In this study, we con-
sidered the values m ¼ f10; 20; 30; 50; 100; 1000g, r ¼ f1; 3g
and Cp ¼ f1; 1:5g. The sample sizes n range from 3 to 25 with

step 2, and they are selected under simple random sampling
without replacement.

Normal, Gamma and Uniform distributions are the proba-
bilistic distributions used in this study. The Normal distribution

is considered because this is the theoretical assumption.
Gamma and Uniform distributions are considered to analyze
the impact on the various estimators of the process capability

index when alternative distributions are taken into account.
Finally, we considered off-center processes. In this situation,
the specification limits are selected such that Cpk ¼ f1; 1:5g.
The various estimators of Cp are compared in terms of rela-

tive bias (RB) and relative root mean square error (RRMSE),
where the measure RB analyzes the bias of a given estimatorbCp, and which is defined as

RB ¼ E½ bCp� � Cp

Cp

where

E½ bCp� ¼
1

B

XB
b¼1

bCpðbÞ

is the empirical expectation of the estimator bCp based on

B ¼ 1000 simulation runs, and bCpðbÞ denotes the value of

the estimator bCp at the bth simulation run. On the other hand,

the efficiency of the various estimators is measured by using
the values RRMSE, which are defined as

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE½ bCp�

q
Cp

;

where

MSE½ bCp� ¼
1

B

XB
b¼1
ð bCpðbÞ � CpÞ

2
;

is the empirical mean square error of bCp. Similarly, we com-

puted the values of RB and RRMSE for the various estimators

of r and Cpk. Note that the measures RB and RRMSE are very

common for the problem of comparing the precision of estima-

tors. For instance, such measures have been used by Chen and
Sitter (1999), Deville and Särndal (1992), Muñoz et al. (2014),
Rao et al. (1990) and Silva and Skinner (1995).

The most relevant figures derived from this simulation
study can be seen on the online supplementary material related
to this paper. The interested readers can compare the following

conclusions with the results derived from the supplementary
material.

Assuming the Normal distribution and the problem of
estimating Cp ¼ 1, we observed large biases when n ¼ f3; 5g.
The various estimators are slightly biased when n > 5 and

m ¼ 10, with values of RB around 0:5% in this situation.
The performance of the various estimators is similar when
m–10, but the biases approaches 0 as m increases. The values

of RB of the estimator bCp:R2 are slightly larger than the alter-

native values of RB, specially for small values of m.

Assuming data selected from the Normal distribution, we
observed that the estimators of r ¼ 1 have a good empirical
performance in terms of bias. The estimator brR2 has values

of RB close to �2% when n ¼ 3 and m ¼ 10.
From the simulation results we observed that the values of

RB based on the Gamma distribution are slightly larger than

the values of RB based on the Normal distribution. For exam-

ple, the values of RB of the estimators bCp:R, bCp:S and bCp:P are

about 3:5% when Cp ¼ 1; n ¼ 3;m ¼ 10 and we use the

Gamma distribution, whereas the corresponding values of
RB based on the Normal distribution are about 2%.
Assuming the Gamma distribution, the estimators of r ¼ 1
also have a good empirical performance in terms of bias,

although the estimator bCp:R2 has large biases when both n

and m are small. These results indicate that the impact on
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the various estimators of Cp and r is not relevant if we use the

Gamma distribution instead of the Normal distribution.
An extreme distribution compared to the Normal dis-

tribution is the Uniform distribution. The Uniform dis-

tribution is characterized by the fact that all intervals of the
same length on the distribution’s support are equally probable,
and this property also affects the tails of the distribution. For

data selected from the Uniform distribution and when Cp ¼ 1,

we observed that the biases of the estimators based on the sam-

ple ranges ( bCp:R; bCp:R2; brR and brR2) increase as the sample sizes

n increase, hence we can conclude that the Uniform dis-
tribution has an important impact on the performance of
estimators based on the sample ranges. For small values of
n, the values of RB of the estimators based on pooled sample

standard deviation, in relative terms, are slightly smaller than
the values of RB of the estimators based on the sample stan-
dard deviations, and all of them are close to 0 as n increases.

Finally, we analyze the relative biases when the process is
off-center and data are selected from the Normal distribution.
We observed that the values of RB based on the off-center pro-

cess are similar, respectively, to the values of RB based on the
cases where the process is centered and data are also selected
from the Normal distribution. This issue indicates that the
impact on the various estimators of Cpk and r is not relevant

if we consider off-center processes.

We now analyze the efficiency, in terms of RRMSE, of the
various estimators of Cp and r. As we expected, the various

estimators are generally more efficient as both values of n
andm increase. The gain in efficiency increases when the values
of n are increasing and n is small, i.e., we generally observe that

the impact of increasing the value n is smaller when n is larger
than 11, since the slope of the various curves is smaller in this
situation. We also observed that the estimators based on the

sample ranges are less accurate than its competitors when n
takes large values. An important gain in efficiency is also
obtained as the value of m increases. Assuming the Uniform

distribution, the efficiency of the estimators based on the sam-
ple ranges decreases as the values of n increases.

Monte Carlo simulation studies were also carried out by

using the different combinations derived from the values
r ¼ f1; 3g and Cp ¼ f1; 1:5g. However, similar conclusions

were obtained, and for this reason such results are omitted.

5. Conclusion

This paper discusses the estimation of the process capability
index (Cp) by using the customary estimators of the process

standard deviation (r). The aim of this paper is to analyze
the empirical performance of the various estimators and

assuming different scenarios. For this purpose, Monte Carlo
simulation studies have been carried out, and which are based
upon various values of: (i) the process standard deviation; (ii)
specification limits or, similarly, values of the true process

capability index; (iii) sample sizes n; and (iv) number of sam-
ples m used to obtain the various estimators. We also consid-
ered different probabilistic distributions to analyze the impact

of this issue on the various estimators of Cp and r. Finally, we
considered off-center processes and analyzed the empirical per-
formance of the various estimators in this situation. The
empirical results are compared in terms of bias and efficiency.
First, we observed large biases when n is smaller than 5.
Biases of the various estimators do not suffer from a significant
impact when n is larger than 5. However, the variability of the

biases of the estimator based on the sample ranges is larger in
comparison to the alternative estimators. As we expected, the
various estimators are more efficient as both values of n and m

increase. Figures derived from this paper can be used to ana-
lyze the impact on the various estimators as we increase both
values of n and m. For large values of n, the estimators based

on the sample ranges are less accurate than its competitors.
This issue can be due to the fact that the biases have a large
variability in this situation. We also analyzed the empirical
performance of the various estimators when data are generated

from the Gamma and Uniform distributions. We observed
similar results when the Gamma distribution is considered.
However, we also observed that the Uniform distribution

has an important impact on the performance of the various
estimators based on the sample ranges.

In summary, results derived from the Monte Carlo sim-

ulation studies indicate that the estimators based on the sam-
ple ranges are slightly less accurate than its competitors,
especially as the value of n increases. Such estimators can suf-

fer from a poor performance when the Normal assumption is
not satisfied. In particular, the estimators based on sample
ranges have a very poor performance when using data gener-
ated from the Uniform distribution and n is large. The various

estimators can have large relative biases when the samples sizes
are smaller than 5.
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Appendix A. From the expression (10) we have that bCpbr ¼ k�,

and since br is unbiased, the covariance between bCp and br is

given by

Cov½ bCp; br� ¼ E½ bCpbr� � E½ bCp�E½br� ¼ E½k�� � E½ bCp�E½br� ¼
¼ k� � E½ bCp�r ¼ Cpr� E½ bCp�r ¼ �rðE½ bCp� � CpÞ

In other words, the bias of bCp can be written as

Bð bCpÞ ¼ E½ bCp� � Cp ¼ �
Cov½ bCp; br�

r

Then, we have

Bð bCpÞ
2
¼ Cov½ bCp; br�2

r2
¼ qð bCp; brÞ2Vð bCpÞ � VðbrÞ

r2
;

where qð bCp; brÞ is the linear correlation coefficient between bCp

and br. It is well known that a squared correlation coefficient is

bounded upward by unity, and for this reason we have
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Bð bCpÞ
2
6

Vð bCpÞ � VðbrÞ
r2

;

which is similar to

Bð bCpÞ
2

Vð bCpÞ
¼ BRð bCpÞ

2
6 RSEðbrÞ2:
Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.jksus.2015.
02.002.
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