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Background: This study aimed to examine the role of Artemisia annua in kidney functions in gentamicin-
induced nephrotoxicity in mice.
Methods: In this study, 15 mice were used and divided into four groups. Each group has four mice; the
first group is considered a control group with three mice due to receiving normal saline. Group II consists
of an extract of Artemisia annua, group III consists of gentamicin, and Group IV consists of a combination
of Artemisia annua and gentamicin. This process was continued for 15 days. All the mice were induced,
and serum was extracted and used for biochemical parameters such as Creatinine, Urea, Uric acid,
TNF-a, MDA, GSH, and Catalase (CAT) levels—additionally, histological and quantitative real-time PCR
(qRT-PCR) analysis.
Results: The results of this study confirmed biochemical values such as creatinine, Urea, and UA values
showed a positive association (p<0.05), and showed a nominal association with histological analysis
(p > 0.05). The Gentamicin group has a strong association with COX-2, NF-jB, and TGF-b genes (p < 0.05).
Conclusion: This study confirms gentamycin has a role in kidney functions with nephrotoxicity in mice
and the protective effect of Artemisia annua.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Asteraceae plant family includes Artemisia annua L. (A.
annua), which is native to Asia (primarily China, Japan, and Korea)
after being imported to Poland, Brazil, Spain, France, Italy, Roma-
nia, the United States, and Austria, it was domesticated. Herbalists
in China have been using it to cure various conditions since ancient
times (Lee et al., 2023). Only artemisinin, a sesquiterpene trioxane
lactone with an endoperoxide bridge required for bioactivity, is
found in A. annua. Artemisinin and its derivatives demonstrated
anticancer efficacy in human and animal cancer cell lines by
inhibiting cell growth, inducing apoptosis, and inhibiting angio-
genesis and metastasis (Salaroli et al., 2022).

The kidneys play several essential roles in the body. Their pri-
mary function is to regulate the fluid equilibrium of the body by fil-
tering and secreting metabolites and minerals from the blood and
excreting nitrogenous waste combined with water as urine. The
kidneys control the body’s blood pressure, glucose metabolism,
and red blood cell production. The kidneys filter approximately
180 L of blood daily, roughly four times the amount that passes
through any other organ. As a result, circulating pollutants can
cause tissue damage in the kidneys. There is a high morbidity
and mortality rate among those suffering from renal disease, mak-
ing it the ninth largest cause of death worldwide. One of the most
prevalent drug or toxin-induced kidney diseases is nephrotoxicity.
Aminoglycoside antibiotics, chemotherapeutic agents, chemical
reagents, and heavy metals are potent therapeutic drugs that can
harm the kidneys and result in acute renal failure. Aside frommed-
ications, other factors such as aging, diabetes, hypertension, liver
disease, and oliguria can cause acute renal failure. Medicinal herbs
containing nephroprotective compounds can prevent and treat
nephrotoxicity (Wannes and Tounsi 2022).

Gentamicin is a potent aminoglycoside antibiotic for gram-
negative bacterial infections (Krause et al., 2016). Gentamicin, pre-
sumably through the transition of free radicals, ends up causing
cellular damage to the kidney, liver, and organs of hearing or bal-
ance or the auditory nerve (Noorani et al., 2011; Pai et al., 2012).
The most common gentamicin adverse effect is toxicity towards
the renal system, which builds up in the nephron’s epithelial cells
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(Erdem et al., 2000). This was demonstrated further by increasing
the formation of oxygen radicles, nephron-oxidative lipid degrada-
tion, and renal nitrogen monoxide synthesis (Kopple et al., 2002).

Currently, the utilization of plant-origin medicines has attracted
researchers as their plentiful availability of bioactive components
and very low to no side effects compared with synthetic drugs.
Several studies have been conducted on the protective effects of
medicinal herbs on the liver and kidney (Jacob Jesurun and
Lavakumar 2016). Consequently, several preliminary and clinical
trial researches have concentrated on antioxidants or medicines
with the promise antioxidative, anti-inflammatory, and nephron-
protective activities in the last ten years (Cao et al., 2019; Elfaky
et al., 2019; Medić et al., 2019). Research has revealed that the
antioxidant compounds existing in medicinal plants or herbs could
preclude gentamicinintigate nephrotoxicity containing; Aegle mar-
melos L (A. marmelos) (Kore et al., 2011). Abutilon indicum L (A. indi-
cum) (Jacob Jesurun and Lavakumar 2016). Boerhavia diffusa L. (B.
diffusa), Phyllanthus Embilica L, (P. Embilica) (Olaleye et al., 2010).
Ficus racemose L (L. F. racemose) (Gowda and Swamy 2012). Tribulus
terrestris (T. terrestris). Further, it is documented a wide range of
crude herbal extracts provide a rich supply of potentially beneficial
novel components for treating renal issues (Abdel-Kader et al.,
2016).

Artemisia annua is a plant species indigenous to East Asia,
specifically China, Korea, and Mongolia (Rath et al., 2004). Artemi-
sinin, an antimalarial compound, was isolated from the plant’s
extract and has since gained widespread recognition. Artemisinin
and its derivatives are useful in treating viral, bacterial, fungal,
and malarial infections (Lappan and Peacock 2019). Previously,
artemisinin and its product were subjected to therapies for treating
respiratory disorders such as asthma and certain tumors through
powerful anti-inflammatory effects. Not only the substances that
were isolated but also an extract of the plant has been shown to
have anticancer, anti-obesity (Efferth et al., 2001), and anti-
rheumatoid arthritis effects (Efferth et al., 2001). Based on this evi-
dence of Artemisia annua health advantages, we used a male mouse
model of C57/BL6J gentamicin nephrotoxicity to investigate Arte-
misia annua influence on kidney and liver function activity.
2. Materials and methods

2.1. Chemicals

Gentamicin (80 mg/2 ml), was obtained locally, SPIMACO, Saudi
Arabia, as were reduced glutathione (GSH), trichloroacetic acid,
thiobarbituric acid (TBA), bovine serum albumin (BSA), and Brad-
ford reagent from Sigma Aldrich Chemical Company (St. Louis,
MO, U.S.A).

2.2. Experimental design with animals

C57/BL6J pathogenic free male mice weighing 20–25 g were
approved by the Institutional Review Board of King Fahd-Medical
Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
All of the experiments were carried out at the biology department
of the University College of Turabah. All mice were fed standard
granulated food and kept in standard conditions (22–24 �C, 50–
70% humidity, and a 12-hour light/dark cycle) (C1310, Altromin,
Heidenau, Germany).

2.3. Artemisia annua preparation

The leaves of Artemisia scoparia were collected from Wadi Tur-
abah at Turabah city southwestern of Saudi Arabia. An authentic
person from the biology department, The University of Taif, Saudi
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Arabia, identified the plant. The leaves were cleaned with clean
water, dried darkly, and roughly ground. The cold extract was used
to get the crude extract, which was generated by placing 200 g
powders in 500 ml of 95% ethanol in a clean glass jar for seven days
at room temperature before filtering. The solvent was evaporated,
and the resultant dried extracts were weighed and kept in a refrig-
erator at four �C till used.

2.4. Experimental design

Mice were randomly divided into four experimental groups
(n = 4 in each group).

Group-1: The control group- received normal saline for a con-
secutive span of 15 days as positive control.
Group-2: Artemisia annua extract (1%) orally for a consecutive
span of 15 days as positive control, (Eteng et al., 2013).
Group-3: Gentamicin 80 mg/kg intraperitoneally for a consecu-
tive span of 15 days as negative control, (Avdagić et al., 2008).
Group-4: Gentamicin+ Artemisia annua for a consecutive span of
15 days.

2.5. Sample collection

Diethyl ether was used to euthanize the animals 24 h after the
last drug administration, and blood samples were taken from the
jugular vein. Serum was isolated from blood samples by centrifu-
gation at 1500 rpm for 10 min at four �C and stored at 20 �C until
analysis. After that, the animals were slaughtered, and the kidney
and liver organs were harvested. The kidneys and liver were
washed with saline and fixed in 10% phosphate-buffered formalin
for histological studies. The kidneys and liver were immediately
cleaned in ice-cold saline and cut in half. For biochemical estima-
tion, one portion was homogenized (1/10 w/v) in ice-cold Tris-
HCl buffer (0.1 M, pH 7.4) and stored in the refrigerator at 20 �C.
The other part was kept in liquid nitrogen at -80 �C for real-time
PCR experiments. The Bradford technique was used to determine
the protein content of all homogenates samples, with BSA serving
as the standard (Bonjoch and Tamayo 2001).

2.6. Serum biochemical assays

The serum in the ordinary vial was sorted in a cooled centrifuge
at 4 �C for fifteen minutes. The technique of determining serum
creatinine described earlier was used, and the method of determin-
ing serum urea used was the approach of utilising commercial kits.
The amount of serum uric acid (UA) was determined by the use of
the Fossate et al. (the enzymatic colorimetric method), although
with some minor adjustments (Fossati et al., 1980) using kits pro-
vided by (Biodiagnostic, Giza, Egypt). Additionally, we have exam-
ined TNF-a, MDA, GSH, and Catalase (CAT) levels as described in
our recent publication (AlThobaiti 2023) using kits and reagent
provided by (Glory Science Co., Hangzhou, China).

2.7. Quantitative real-time PCR and gene expression analysis

Trizol reagent was used to extract total RNA from 15 mice used
in this study (Invitrogen, Life Technologies, Carlsbad, CA, USA).
Extracted genomic ribonucleic acid was quantified with NanoDrop
(Alsaif et al., 2022), and finally, reverse transcription was carried
out using the kit (Fermentas, MA, USA.). ABI SYBR kit and 7500
ABI RT-PCR equipment were used for quantitative real-time PCR
(qRT-PCR). The complete protocol and relative gene expression
were calculated as per (Song et al., 2022). The typical temperature
profile consisted of a high of 95 �C for 5 min, followed by lows of 56
and 72 �C for 30 s each in 45 cycles. Afterward, the Ct for each sam-
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ple is calculated by deducting the Ct for -actin from the Ct for each
sample. The target gene’s elevated signals were normalized by the
housekeeping gene b-actin. 2 -DDCT methods were used to the
analysis of amplification data (Livak and Schmittgen 2001).

2.8. Histopathological examination of renal tissues

Tissue cells were fixed with 10% formaldehyde before being
dehydrated in escalating graded ethanol, cleaned with xylene,
and finally embedded in paraffin. Following that, hematoxylin
and eosin dye were used to stain paraffin slices of kidney cut to
a thickness of 5 micrometers with a microtome (hemotoxin and
eosin).

2.9. Statistical analysis

The mean and standard deviation were used to represent all
results. A one-way ANOVA test conducted multiple comparisons
between groups, followed by the LSD test for biochemical parame-
ters and the Dunnett T3 test for real-time RT-PCR findings. SPSS
statistics programme was used for statistical analyses (SPSS; ver-
sion 20). Shapiro-Wilk and Levene tests confirmed variance nor-
mality and homogeneity. The P-value threshold for statistical
significance between groups was established at 0.05. Graphs were
created using version 8.0.2 of GraphPad Prism on Windows.

3. Results

3.1. Biochemical analysis

The results confirmed a significant association with Creatinine,
Urea, Uric Acid, and glutathione (p < 0.0001); both TNF-a and MDA
Fig. 1. List of biochemical parameters examined in this study. Data shown as mean ± SE
analysis was done with One-way ANOVA, Tukey’s post hoc test multiple comparisons.
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levels showed a nominal association, and CAT showed a negative
association. Fig. 1 describes the biochemical parameters present
in mmol/l for all seven parameters. The mean of serum parameters
such as creatine (2.23 ± 0.09), urea (36.98 ± 1.44), UA (10.13 ± 0.4),
TNF-a (636.83 ± 24.8) and MDA (49.15 ± 1.91) levels were found to
be high in the group-III. Finally, GSH (4.89 ± 0.17) and CAT
(200.12 ± 6.89) levels were found to be high in the control group
(group-I).

3.2. Histopathological analysis

Fig. 2 depicts the results of a microscopic examination of kid-
neys, which showed that the control and RA treatment groups
had renal corpuscles with glomeruli (G) surrounded by capsular
space within the renal cortex (see text). The broad capsular gap
surrounding G was seen in the gentamicin group (white arrow-
head), as was degradation and separation of the tubular epithelium
(black arrow), hyaline cast (black arrow), and edema in the intesti-
nal tissue (white arrow). Last, gentamicin-treated groups displayed
PT and DT in addition to intact G, with modest congestion in both
glomerular capillaries and intestinal blood vessels (shown by
arrowheads). H&E staining was present in all areas; Bar = 50 lm.

3.3. qRT-PCR analysis

The expression of COX-2, NF-jB, and TGF-b genes was detected
by qRT-PCR analysis, shown in Figs. 3–5. The COX-2 gene nega-
tively affects both the control and RA groups. However, the gen-
tamicin group showed a positive association. In contrast, the
combination of gentamicin and RA-treated groups showed a nega-
tive association with brown stains in the renal corpuscles and
tubular epithelium (Fig. 3). The NF-jB gene, on the other hand,
** p < 0.01, *** p < 0.001 and **** p < 0.0001 vs. gentamicin treated group. Statistical



Fig. 2. a–d: Photomicrograph of renal cortex of control group and RA treated group showing intact renal corpuscles with glomeruli (G) surrounded with capsular space
(arrow heads) in addition to normal proximal (PT) and distal convoluted tubules (DT), whereas, gentamicin treated group showed G surrounded by wide capsular space (black
arrow head), degeneration and separation of tubular epithelium (white arrow), hyaline cast (black arrow) and edema in the interstitial tissue (white arrow head). Finally,
gentamicin treated group showed PT and DT in addition to intact G with mild congestion in both glomerular capillaries and interstitial blood vessels (arrow heads). All 2a-2d
Stains show H&E, Bar = 50 lm.

Fig. 3. a–d: The COX-2 gene in control and RA treated groups showed negative association, where in gentamicin treated group showed increase and combination of
gentamicin and RA treated groups showed decrease in COX-2 expression in both renal corpuscles and tubular epithelium with brown stain.

Fig. 4. a–d: NF-jB gene shows mild expression in control group, negative expression in RA treated group, diffuse positive expression in gentamicin group and weak positive
expression in combination of gentamicin and RA treated groups.

Fig. 5. a–d: Display the renal cortex of control group shows mild positive expression in TGF-b, negative association in RA treated group, significant increase in gentamicin
treated group and in combination of gentamicin and RA treated groups, it shows significant decrease [IHC, Bar = 50 lm].
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exhibits mild expression in the control group, negative association
in the RA-treated group, diffuse positive expression in the gentam-
icin group, and finally, weak positive expression in the gentamicin
and RA-treated groups (Fig. 4). TGF-b was found to have a mildly
positive expression with renal cortex in controls, a negative associ-
ation in the RA-treated group, a significant increase in the
gentamicin-treated group, and decreased levels when the gentam-
icin and RA-treated groups were combined (Fig. 5).
4

4. Discussion

The biochemical parameters including Creatinine, Urea, Uric
acid, TNF-a, MDA, GSH and CAT parameters, were studied in this
study. Anova analysis confirmed a positive association with Crea-
tinine, Urea, UA, and GSH (p < 0.05). The histological analysis
showed intermediate results obtained in the four groups. However,
staining was present in all areas; Bar = 50 lm. Finally, qRT-PCR
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analysis showed COX-2 gene was positively associated with the
gentamicin group, diffuse positive expression in the gentamicin
group in the NF-jB gene, and a significant increase in the
gentamicin-treated group in the TGF-b gene.

The kidneys play a crucial role in human health by filtering the
blood and eliminating metabolic byproducts and harmful waste.
Nephrotoxicity refers to the rapid decline in kidney function due
to the toxic action of medications and other substances. Nephro-
toxicity refers to the detrimental effect of substances on renal func-
tion. Nephrotoxicity can occur due to several different pathways,
such as those involving the kidneys’ tubules, glomeruli, crystals,
inflammation, and inflammatory responses. Molds and fungi,
cancer-causing chemicals like cisplatin, antibiotics like aminogly-
cosides, and metals like lead, arsenic, and mercury are all potential
causes of nephrotoxicity. Both inherited, and environmental fac-
tors have been linked to renal failure. Extrinsic variables include
cardiovascular disease, obesity, diabetes, sepsis, lung failure, and
liver failure.

In contrast, intrinsic factors are conditions like glomeru-
lonephritis, polycystic kidney disease, tubular cell death, and
stones that affect kidney function (Pathan). Involvement of the kid-
ney in the metabolism of pharmaceuticals and other xenobiotics
leads to nephrotoxicity. Since administering nephrotoxic medica-
tions is inevitable in healthcare, drug-induced nephrotoxicity
remains a significant issue. According to numerous studies,
between 1.8% and 16% of all acute renal failures (Dubiwak et al.,
2022; Osman et al., 2022). The most common laboratory findings
in drug-induced nephrotoxicity are Creatinine, Urea, and UA. The
kidneys were tested by measuring urea and creatinine in the blood.
These two values change when kidney nephrons are severely
injured (Rahmat et al., 2014).

Gentamicin is an aminoglycoside antibiotic used to treat Gram-
negative bacteria infections; however, nephrotoxicity and hepato-
toxicity have been described as significant side effects, with ROS
being the primary culprits in both cases. Up to 50% of patients
experience nephrotoxicity in therapeutic doses, whereas toxic
doses may cause lifelong kidney impairment. The kidneys are in
charge of filtering and regulating the blood, among other things.
The liver controls various critical processes, including detoxifica-
tion, toxin removal, and the metabolic and biotransformation of
multiple chemicals (Khalil et al., 2022).

However, its clinical value is limited due to its severe effects on
renal and liver functioning (Khalil et al., 2022). To put it simply,
oxidative stress occurs when a tissue lacks antioxidants and an
abundance of reactive oxygen species (ROS), more often known
as free radicals. Drug-induced oxidative stress causes oxidative
stress because it increases the production of free radicals at a
higher rate than antioxidants can neutralize them. Increased
expression of genes involved in inflammatory signaling, such as
NF-kB and cytokines, contributes to this occurrence (Elsayed
et al., 2022; Khalil et al., 2022). In particular, oxidative stress and
inflammation triggered by GTN have been associated with its tox-
icity (Rho and Yoon 2017; Laaroussi et al., 2021). This ultimately
results in cell apoptosis. Induction of hepatotoxicity by gentamicin
has been documented by several prior researchers, with symptoms
including hepatocyte degeneration and necrosis (Lukiswanto et al.,
2022; Wijayanti et al., 2023).

The current study results were found to be engaging with gen-
tamicin as well as Artemisia annua. The results fluctuated based on
the groups and parameters used in this study.
5. Conclusion

In Conclusion, gentamicin and a combination of Artemisia annua
and gentamicin showed elevated and associated levels with
5

biochemical parameters such as Creatinine, Urea, UA, and GSH.
qRT-PCR analysis showed a strong association in the gentamicin
family. This study confirms gentamycin has a role in kidney func-
tions with nephrotoxicity in mice and the protective effect of Arte-
misia annua.
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