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A B S T R A C T

The neutrosophic set serves as a powerful tool for addressing complexity, ambiguity, and managing imperfect
and inconsistent information in the digital world. Graph theory plays a crucial role in determining the shortest
path for neutrosophic sets through graph algorithms. This article introduces a novel algorithm, the bipartite
graph contraction algorithm, to elucidate the graphical aspects within neutrosophic set theory by using score
function for ranking. The proposed bipartite neutrosophic graph contraction algorithm is applied to solve a
single-valued neutrosophic network, where the transportation unit cost is expressed as a trapezoidal single-
valued neutrosophic number and produced the result as 〈(364, 537,694,908); 0.3, 0.7, 0.7〉. A comparative
analysis with an existing algorithm is conducted, and a novel introduction of sensitivity analysis in the realm of
neutrosophic set theory is presented to assess the optimality of the result in neutrosophic transportation prob-
lems.

1. Introduction

Utilizing network models is a highly effective approach for
addressing various decision-related issues, as many problems can be
accurately and efficiently modelled as network optimization problems.
Network analysis and network flow theory constitute a well-researched
area of optimization, with substantial connections to diverse fields such
as combinatorial mathematics, algebraic topology, and circuit theory.
Vella (2005) laid the ground work for introducing topological charac-
teristics to graph theory. Aljanabi and Jasim (2015), published a strat-
egy for solving transportation problems using a modified Kruskal’s
algorithm. Santhi and Eswarasamy (2019), proposed a topological so-
lution to a transportation problem using a topologized graph. Vimala
and Kalpana (2017), introduced the Bipartition Graph concept and
applied it to graph matching and coloring.

According to Zadeh (1965) fuzzy set theory, each element’s level of
involvement in an ambiguity problem is represented by a degree of
membership function. Smarandache (1998) in neutrosophic logic, a
proposition has degrees of membership functions for truth (T), inde-
terminacy (I), and falsity (F). Smarandache (1998) initially formulated
the concept of a neutrosophic probability set and logic. Atanassov and

Atanassov (1999), the extension of a fuzzy set and the intuitionistic
fuzzy set gives rise to the concept of a neutrosophic set and the concept
of a NS serves as a generalization of fuzzy set theory, Atanassov and
Gargov (1989), intuitionistic fuzzy set theory, and Turksen (1986)
interval-valued intuitionisitic fuzzy set theory. Smarandache (2010), NS
involve only truth, indeterminacy, and falsity membership degrees,
encapsulated within the standard or non-standard unit interval [− 0,
1+]. Dijkstra’s (1959) delivered two problems with solutions using
graphs.

In a related context, Ekanayake et al. (2021), utilized the graph
contraction technique for balanced transportation problems to identify
the shortest path in transportation network problems with limited iter-
ations. Furthermore, Johnson et al. (2018), applied the bipartition graph
concept, finding the shortest path for Linear Programming Problems
(LPP) by transforming a bipartite graph with both balanced and un-
balanced TP.

Kavitha and Pandian (2012), investigated the Type II sensitivity
analysis for assignment problems in solid transportation, through illus-
trative examples. Thamaraiselvi and Santhi (2016), proposed a novel
approach to determining the optimal value in a real-world trans-
portation problem within a neutrosophic framework, employing the
VAMmethod. Souhail Dhouib (2021), introduced an innovative method,
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named as Dhouib matrix-TP1, to address a single-valued NTP where
transportation unit costs are represented as trapezoidal neutrosophic
numbers, and supply and demand are treated as unit costs. Wang et al.
(2010), presented a design for SVNS through theoretical proof. Wang
and Zhang (2018), discussed about two SVNS covering rough sets and its
application to decision making problems. Broumi et al. (2016a,b,c,d),
The characteristics of SVN graphs and score functions, as well as their
application in isolated SVN graphs, were elucidated in their works.

Kandasamy et al. (2015), regarding the fundamental definitions,
characteristics, and outcomes associated with neutrosophic sets, spe-
cifically focusing on the definitions of single-valued neutrosophic sets
and bipartite neutrosophic graphs. Broumi et al. (2016a,b,c,d), con-
ducted a theoretical examination in their work, exploring the degree,
order, and size of SVN graphs and detailing their determination through
score functions and ordering based on fundamental definitions. In
another contribution, Broumi et al. (2016a,b,c,d), proposed computa-
tional concepts to address various issues in SVN networks, applying
these concepts to determine the shortest path using a ranking approach.
Additionally, Smarandache (2020), presented a study intended to guide
researchers in implementing score, accuracy, and certainty functions, as
well as calculating a total order on the set of neutrosophic triplets across
various domain and also provided basic information and understanding
of score function implementation in NS theory in detail. Kanchana and
Kavitha (2024), presented about score functions that can be used for
graph algorithms and proposed heuristic incident edge path algorithm
for interval valued neutrosophic transportation problem for finding
minimum cost in uncertain environment.

Smarandache and Pramanik (2016), New trends in neutrosophic
sytems a editorial volume discusses; in practical applications within
engineering and scientific fields, implementing the principle of a neu-
trosophic set proves challenging; The application of the neutrosophic set
concept is particularly complex in natural, engineering, and scientific
domains. Nevertheless, the neutrosophic set idea provides an effective
means of handling uncertain, inadequate, incompatible, and inconclu-
sive data more accurately; Due to this characteristic, neutrosophic set
theory implemented in all fields to rectify the uncertainty.

1.1. Main contribution of the article

Themain objective is to implement the graphical approach within NS
theory via algorithms. While many algorithms are available for finding
the shortest path for transportation networks, only a few have been

applied and verified in the field of NS theory. To fill this gap, an algo-
rithm is proposed and verified through an example. The BNGCA has
been introduced and applied to the TSVNLPP and its running time
complexity is O(m× n× (m+ n) ), also implemented through an
example NTP. Through this technique bipartite neutrosophic graph
effectively addresses the indeterminacy in transportation costs while
ensuring certainty in supply and demand.

When addressing a Neutrosophic Transportation Problem – Type I
(NTP-1), availability and demand are represented as real numbers, while
the cost of conveying a unit quantity of merchandise is represented as a
trapezoidal neutrosophic number. The score function is used to de-
neutrosophicate the trapezoidal neutrosophic number into a crisp
number for the calculation process and the monotonicity and bound-
edness of score and accuracy function is defined in preliminaries.
BNGCA provides a novel approach within the field of NSs, providing
spanning tree assignments for all supply and demand satisfactions. Its
efficacy is validated through comparison with existing methods
(Dhouib, 2021; Thamaraiselvi and Santhi, 2016) in NTP applications.
Additionally, this article introduces sensitivity analysis for NSs, estab-
lishing maximum and minimum boundaries for unit transportation costs
without compromising the optimality, thereby confirming the solution’s
effectiveness. SA offers a novel method for validating NTP solutions,
demonstrating that the proposed method is effective compared to
existing ones.

2. Preliminaries

Definition 1 (Dhouib, 2021): Consider U to be a space of objects.
The set X is neutrosophic, containing an object x defined by X = {〈x : TX,
IX, FX〉,x ∈ U}. The functions representing the degree of truth member-
ship TX, degree of indeterminacy IX, and degree of falsity membership
FX, respectively, in relation to set X, with the conditions 0 ≤ TX, IX, FX ≤

1 and 0− ≤ 〈TX, IX,FX〉 ≤ 3+.
Logically, the NS takes into account points from a real non-standard

or standard subset. However, for practical applications, especially in
technological disciplines, the interval [0,1] is often utilized, because it is
more possible to apply in real-life settings such as engineering and sci-
entific network difficulties.

Definition 2 (Atanassov and Gargov, 1989): Consider U as a uni-
verse of discourse containing global objects denoted by x. A single-
valued neutrosophic set is defined by the global elements of a set X.
The SVNS is represented as X = {〈x : TX, IX,FX〉,x ∈ U}, where TX, IX, FX
are the degrees of truth, indeterminacy, and falsity membership
respectively.

Definition 3 (Dhouib, 2021): Let X = 〈(Xa,Xb,Xc,Xd);TX,IX,FX〉, be a
trapezoidal single-valued neutrosophic number, and the truth, indeter-
minacy, and falsity membership functions X are defined as follows,

μX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

TX
(x − a
b − a

)
, for a ≤ x ≤ b

TX , for b ≤ x ≤ c

TX

(
d − x
d − c

)

, for c ≤ x ≤ d

0, otherwise

(1)

νX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b − x+ IX(x − a)

b − a

)

, for a ≤ x ≤ b

IX, for b ≤ x ≤ c
(
x − c+ IX(d − x)

d − c

)

, for c ≤ x ≤ d

1, otherwise

(2)

Nomenclature

SP Shortest Path
FS Fuzzy Set
IFS Intuitionistic Fuzy Set
NS Neutrosophic Set
NTP Neutrosophic Transportation Problem
TP1 Transportation Problem – Type 1
SVNS Single-Valued Neutrosophic Set
SVN Single-Valued Neutrosophic
SVNLPP Single-Valued Neutrosophic Linear Programming

Problem
BNGCA Bipartite Neutrosophic Graph Contraction Algorithm
TSVNTP Trapezoidal Single-Valued Neutrosophic

Transportation Problem
TSVNN Trapezoidal Single-Valued Neutrosophic Number
TSVNLPP Trapezoidal Single-Valued Neutrosophic Linear

Programming Problem
DM Decision Maker
SA Sensitivity Analysis
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λX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b − x+ FX(x − a)

b − a

)

, for a ≤ x ≤ b

FX, for b ≤ x ≤ c
(
x − c+ FX(d − x)

d − c

)

, for c ≤ x ≤ d

1, otherwise

(3)

Definition 4 (Dhouib, 2021): Let N = 〈(Na,Nb,Nc,Nd);TN, IN, FN〉, and
M = 〈(Ma,Mb,Mc,Md);TM, IM, FM〉, be two TSVNN. Then, the mathe-
matical operations on them are as follows:

M+N =

〈
(Ma + Na,Mb + Nb,Mc + Nc,Md + Nd);

TM ∧ TN, IM ∨ IN, FM ∨ FN

〉

(4)

M − N =

〈
(Ma − Nd,Mb − Nc,Mc − Nb,Md − Na);

TM ∧ TN, IM ∨ IN, FM ∨ FN

〉

(5)

M×N=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈
(Ma×Na,Mb×Nb,Mc×Nc,Md×Nd);

TM∧TN, IM∨ IN,FM ∨FN

〉

, if Md >0,Nd >0

〈
(Ma×Nd,Mb×Nc,Mc×Nb,Md×Na);

TM∧TN, IM∨ IN,FM ∨FN

〉

, if Md <0,Nd >0

〈
(Md×Nd,Mc×Nc,Mb×Nb,Ma×Na);

TM∧TN, IM∨ IN,FM ∨FN

〉

, if Md <0,Nd <0

(6)

M
N
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(
Ma

Nd
,
Mb

Nc
,
Mc

Nb
,
Md

Na

)

;TM∧TN, IM ∨ IN,FM∨FN

〉

, if Md >0,Nd >0

〈(
Md

Nd
,
Mc

Nc
,
Mb

Nb
,
Ma

Na

)

;TM∧TN, IM ∨ IN,FM∨FN

〉

, if Md <0,Nd >0

〈(
Md

Na
,
Mc

Nb
,
Mb

Nc
,
Ma

Nd

)

;TM∧TN, IM ∨ IN,FM∨FN

〉

, if Md <0,Nd <0

(7)

k*M =

{
〈(k*Ma, k*Mb, k*Mc, k*Md);TM, IM, FM〉, if k > 0
〈(k*Md, k*Mc, k*Mb, k*Ma);TM, IM, FM〉, if k < 0 (8)

M− 1
=

〈(
1
Ma

,
1
Mb

,
1
Mc

,
1
Md

)

;TM, IM, FM

〉

where M ∕= 0. (9)

Definition 5 (Dhouib, 2021): Let N = 〈(Na,Nb,Nc,Nd);TN, IN, FN〉 be a

trapezoidal single valued neutrosophic number, and S
(
cijN
)
is its score

function defined by

S
(
cijN
)
=

1
16

× ((Na,+Nb + Nc + Nd)×(TN +(1 − IN)+ (1 − FN) ) (10)

and its accuracy function is

A
(
cNij
)
=
(
min
(

μ
cNij

)
+min

(
ν
cNij

)
+min

(
1 − λ

cNij

))

×
∑m

i=1

∑n

j=1

(
S
(
cijN
)

μ
cNij
+
(
1 − ν

cNij

)
+
(
1 − λ

cNij

)

)

(11)

for i = 1,2, ...,m; j = 1,2, ...,n.
Eq. (10) is used to de-neutrosophication of TSVNN to compare the

edge weights. The boundedness and monotonicity of Eqs. (10) and (11)
are defined as follows;

Monotonicity:

• S
(
cijN
)

increases depending on Na, Nb, Nc,

Nd
(
∵S
(
cijN
)
∝(Na,+Nb + Nc + Nd)

)

• S
(
cijN
)
increases as TN increases and increases as IN, FN decreases

(∵(1 − IN) and (1 − FN))

• A
(
cNij
)
increases as minimum of μ

cNij
, ν

cNij
and 1 − λ

cNij
increases.

• A
(
cNij
)
increases as S

(
cijN
)
is monotonic.

Boundedness:

• S
(
cijN
)
∝(Na,+Nb +Nc +Nd) and Na,Nb,Nc,Nd are not constrained to

[0, 1].

So, we normalize S
(
cijN
)
as Ś

(
cijN
)
=

S(cijN)

max of S(cijN)
∈ [0, 1].

• A
(
cNij
)

is not naturally bounded since adding up minimum of

μ
cNij
, ν

cNij
and 1 − λ

cNij
which give rise to unbound.

Hence, we normalize A
(
cNij
)
as Aʹ

(
cNij
)

=
A
(
cNij
)

maxof A
(
cNij

) ∈ [0, 1].
The score and accuracy functions are normalized to make the

boundedness within the range [0, 1]. Monotonic behaviour of both score
and accuracy remains unchanged before and after normalization. For NS
theory it is not strictly necessary that the accuracy must be within [0, 1]
range. Since, it involves sum of weights, costs, distance, etc., and the
truth, indeterminacy and falsity membership values have the range in
total as [0, 3] (refer definition 1).

Example: Consider the following TSVNN,

N =< (5, 4,6, 7), 0.6,0.8, 0.4 >

(Na = 5, Nb = 4, Nc = 6, Nd = 7; TN = 0.6, IN = 0.8, FN = 0.4)

The score value and accuracy values as follows,
S(N) = 1.925 and normalized score value. Ś

(
cijN
)
= 1.925

2 =

0.9625 ∈ [0,1]
A(N) = 2.0× 1.375 = 2.75 for μN = 0.6, νN = 0.8, and 1 − λN =

0.6.

Aʹ(N) = 0.9167 ∈ [0,1]

Throughout this article we use S
(
cijN
)
before normalization for

changing TSVNN into crisp data only.
Definition 6 (Kandasamy et al., 2015): Let N be a neutrosophic

graph and N is partitioned into two neutrosophic sub graphs N1 and N2
such that.

N1 ∩ N2 = φ and N = N1 ∪ N2. A graph N is said to a bipartite neu-
trosophic graph if N admits a partition into two sub graphs such that
each edge has one end in N1 and another end in N2.

2.1. Parameters of transportation problem

i – number of sources.

M. Kanchana and K. Kavitha Journal of King Saud University - Science 36 (2024) 103567 

3 



j- number of destinations.
xij– the number of products transported from source i to destination j
in units.
xi– total supply of products at source i.
xj– total demand of products at destination j.

2.2. Mathematical formulation

Consider xi as the source and jxj as the destination of the trans-
portation problem. Let us consider the parameters for the problem as xij
the number of products for transportation and the indeterminate cost cXij
the unit cost of quantity transferred from supply to demand. The for-
mation of transportation problem is defined by,

Minimize Z =
∑m

i=0

∑n

j=0
cXij xij

Subject to the supply constraints

xij ≤ ai
∑

xij ≤ ai, ai ≥ 0, (12)

Demand constraints

xij ≤ bi
∑

xij ≤ bj, bj ≥ 0, (13)

xij ≥ 0,∀i, j.

The following proposed algorithm was applied to a balanced TP with
balanced constraints

∑
ai =

∑
bj, with indeterminacy in unit trans-

portation costs and certainty in supply and demand values.

3. Algorithm: Bipartite neutrosophic graph contraction
algorithm (BNGCA)

Step 1: Convert the LPP into a balanced transportation table with
supply and demand. If it is not balanced, then balance the TP by adding
dummy rows or columns to supply or demand, as needed. Use the score
function to de-neutrosophicate the trapezoidal single-valued neu-
trosophic network’s edge weights.

Step 2: Draw a bipartite neutrosophic graph for the balanced TP with
de-neutrosophicated edge weights connecting supply and demand.

Step 3: Choose two minimum unit transportation costs (edge
weights) from the bipartite neutrosophic graph connecting supply and
demand.

Step 4: Pick the least edge weight with maximum supply and de-
mand, and allocate to the respective edge depending on which has the
minimum supply or demand.

Step 5: Remove edges connected to fully satisfied supply or demand
nodes. Ensure the bipartite graph’s structure remains valid after the
removal of edges.

Step 6: Repeat the process from Step 4 until all allocations are made
and no edges remain.

3.1. Illustration

3.1.1. Trapezoidal single valued neutrosophic transportation problem
Let us assume a transportation problem in the shoe manufacturing

process. Initially, the leather needed for making shoes must be collected
from three sources namely O1,O2 and O3, delivered to four
manufacturing industries located in different areas through transports
F1, F2, F3 and F4 respectively. The TP involves trapezoidal neutrosophic
supply, demand, and unit transportation costs, the problem is to calcu-
late the optimum cost of delivering leather to the manufacturing in-
dustries at a minimum transportation cost.

Linear Programming Problem with supply and demand constraints,

Minimize Z =
∑3

i=1

∑4

j=1
cXij xij

Supply constraints

Table 1
Transportation table for the LPP with de-neutrosophicated number.

F1 F2 F3 F4 Supply

O1 2 3 7 10 26
O2 1 3 6 4 24
O3 5 2 3 3 30
Demand 17 23 28 12 80

Fig. 1. Bipartite neutrosophic graph with de-neutrosophicated edge weight.
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Demand constraints
〈

(3, 5, 6,8);
0.6, 0.5,0.4

〉

x11 +
〈

(0,1, 3, 6);
0.7,0.5, 0.3

〉

x21 +
〈
(4, 8,11,15);
0.6,0.3, 0.2

〉

x31 ≤ 17,

〈
(5, 8,10,14);
0.3,0.6, 0.6

〉

x12 +
〈
(5, 7,9, 11);
0.9, 0.7, 0.5

〉

x22 +
〈

(1, 3,4, 6);
0.6, 0.3,0.5

〉

x32 ≤ 23,

〈
(12,15,19,22);
0.6, 0.4,0.5

〉

x13 +
〈
(15,17,19,22);
0.4, 0.8, 0.4

〉

x23 +
〈
(5,7, 8,10);
0.5, 0.4,0.7

〉

x33

≤ 28,

〈
(14,17,21,28);
0.8, 0.2,0.6

〉

x14 +
〈
(9, 11,14,16);
0.5,0.4, 0.7

〉

x24 +
〈
(5,9, 14,19);
0.3, 0.7, 0.6

〉

x34

≤ 12.

3.1.2. De-neutrosophicated TSVNTP
The neutrosophic numbers of unit transportation costs are de-

neutrosophicated using the following equation

S
(
cNij
)
=

1
16

×((Na +Nb +Nc +Nd) × (TN +(1 − IN)+ (1 − FN) ).

The de-neutrosophicated unit transportation costs of TP1 are dis-
played in Table 1. The NTP has been drawn as a bipartite neutrosophic
graph, shown in Fig. 1, to apply the proposed algorithm.

Figs. 2–4 illustrate the procedural steps of the proposed algorithm
and the solution is obtained by BNGCA,

Step 6 forms a spanning tree with bipartite conditions, which pro-
vides the optimum result for the neutrosophic network, and leading to
the final solutions, such as x11 = 3, x12 = 23, x21 = 14, x24 = 10, x33 =

28, x34 = 2 are the optimum solution being a minimum of

3.2. Sensitivity analysis for TSVNTP

The principles applied in the BNGCA for TP1 approach to determine
the cost sensitivity ranges for all basic and non-basic variables in the
considered trapezoidal single-valued neutrosophic transportation allo-
cation problems are sourced from (Kavitha and Pandian, 2012) are as
follows:

Theorem 1. Consider (i, j)th cell as a non-basic cell corresponding to
an optimal SAP solution δij = cij − ui − vj( ≥ 0). If cij +Δij the unsettled

Fig. 2. (a) Step 1, (b) Step 2.

〈
(3, 5, 6,8);
0.6, 0.5,0.4

〉

x11 +
〈
(5,8, 10,14);
0.3, 0.6, 0.6

〉

x12 +
〈
(12,15,19,22);
0.6, 0.4, 0.5

〉

x13 +
〈
(14,17,21,28);
0.8,0.2, 0.6

〉

x14 ≤ 26,

〈
(0, 1, 3,6);
0.7, 0.5,0.3

〉

x21 +
〈
(5,7, 9,11);
0.9,0.7, 0.5

〉

x22 +
〈
(15,17,19,22);
0.4, 0.8, 0.4

〉

x23 +
〈
(9,11,14,16);
0.5, 0.4,0.7

〉

x24 ≤ 24,

〈
(4, 8,11, 15);
0.6,0.3, 0.2

〉

x31 +
〈

(1, 3, 4,6);
0.6, 0.3,0.5

〉

x32 +
〈
(5,7, 8,10);
0.5,0.4, 0.7

〉

x33 +
〈
(5, 9, 14,19);
0.3, 0.7, 0.6

〉

x34 ≤ 30.

∑3

i=1

∑4

j=1
cXij xij = 23{〈(5,8, 10,14);0.3, 0.6,0.6〉 } + 3{〈(3,5, 6, 8);0.6, 0.4,0.5〉 } + 14{〈(0,1,3, 6);0.7, 0.5, 0.3〉 }

+10{〈(9,11,14,16);0.5, 0.4,0.7〉 } + 28{〈(5,7,8, 10);0.5,0.4, 0.7〉 } + 2{〈(5,9, 14,19);0.3, 0.7,0.6〉 }

= 〈(364,537,682,908);0.3, 0.7, 0.7〉.
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cost of cij, then the range of this cost is given by Δij =
[
− δij,∞

)
.

Theorem 2. Consider (i, j)th cell as a basic cell corresponding to an
optimal SAP solution δij = cij − ui − vj( = 0). If cij +Δij is the perturbed
value of cijcij and UiUi is the minimum value of δij for all non-basic cells

in the ith origin, VjVj is the minimum value of δijδij for all non-basic cells
in the jth destination, then in the range of Δij =

[
− ∞,Mij

)
where Mij is

the maximum of
{
Ui,Vj

}
.

Proof of theorem 1. Now, since (i, j)th cell is a non-basic cell and the
perturbed cost cij +Δij is not affected by the current optimal solution to
the problem, δij = cij − ui − vj( ≥ 0). It implies that, Δij ≥ − δij. Therefore,
the range of Δij =

[
− δij,∞

)
. Hence, the theorem.

Proof of theorem 2. Now, we know that cij+Δij is the perturbed
value of cij and the current optimal solution remains optimal δij =
cij − ui − vj( = 0), all non-basic cells in the ith origin and the jth desti-
nation are positive.

Now, attaching Δij with first ui then vj, we have the following:
cis −

(
ui +Δij

)
− vs ≥ 0, (i, s) is non-basic cells, ∀s

crj − ur −
(
Δij + vj

)
≥ 0, (r, j) are non-basic cells, ∀r

Thus, we can conclude, based on the above implications that
Δij ≤ Ui;Δij ≤ Vj.

Now, since we attach one of the MODI indices, ui and vj we take Mij

= maximum
{
Ui,Vj

}
for getting a better range. Therefore, the range of

Δij =
[
− ∞,Mij

)
. Hence, the theorem.

3.2.1. SA for the optimal bipartite neutrosophic network
The analysis is conducted based on theorems outlined in Section 3.2.

Fig. 3. (a) Step 3, (b) Step 4.

Fig. 4. (a) step 5, (b) step 6.

Table 2
Type 1 sensitivity ranges of Δij.

F1 F2 F3 F4 Supply

O1 ( − ∞,5] ( − ∞,2] [ − 2,∞) [ − 5,∞) 26
O2 ( − ∞,5] [ − 1,∞) [ − 2,∞) ( − ∞,5] 24
O3 [ − 5,∞) [ − 1,∞) ( − ∞,2] [ − ∞,5] 30
Demand 17 23 28 12 80

Table 3
Type 1 cost

(
cij
)
Sensitivity ranges.

F1 F2 F3 F4 Supply

O1 ( − ∞,7] ( − ∞,5] [5,∞) [5,∞) 26
O2 ( − ∞,6] [2,∞) [4,∞) ( − ∞,9] 24
O3 [0,∞) [1,∞) ( − ∞,5] [ − ∞,8] 30
Demand 17 23 28 12 80
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As stated in the theorem, Tables 2 and 3 illustrates the type-1 sensitivity
ranges for the unit transportation costs and objective values, specified in
Table 1 for TSVNTP.

3.3. Comparative study between proposed BGNCA and existing methods

Based on these computations, the cost values are expected to range
from 364 to 908, corresponding to the maximum unit transportation
costs outlined in Table 1. Tables 2 and 3 outlines the maximum allow-
able increase in unit transportation costs.The presented algorithm suc-
cessfully addresses the linear programming problem associated with
TSVNTP, sourced from Thamaraiselvi and Santhi (2016) and Souhail
Dhouib (Dhouib, 2021). A comparison was made between the outcomes
generated by BGNCA and the conventional zero-point allocation tech-
nique (Thamaraiselvi and Santhi, 2016), as well as Dhouib-Matrix-TP1
(Dhouib, 2021). The BGNCA proves to be highly advantageous,
providing solutions within a limited iterations for TP1. Moreover, it is
both easily comprehensible and straightforward to implement.

Comparison between the existing methods and proposed BNGCA:
The neutrosophic basic feasible solution method – 〈(370,543,694,
938);0.3,0.7,0.7〉

b Zero-point allocation by VAM – 〈(364,537,694,908);0.3,0.7,0.7〉
c Dhouib-Matrix-Tp1 – 〈(370,537,683,908);0.3,0.8,0.8〉
d Proposed BNGCA for TP1 – 〈(364,537,694,908);0.3,0.7,0.7〉

Fig. 5 depicts the visual representation of membership functions for
truth, indeterminacy, and falsity in the context of TSVNTP. The illus-
tration suggests that, by appropriately managing budget constraints, DM
can achieve optimal cost ranges spanning from 364 to 908, based on the
membership degrees of truth, indeterminacy, and falsity.

4. Results and discussion

The proposed BNGCA for obtaining the optimal solution in LPP is
both distinctive and effective. Its simplicity makes it easily compre-
hensible, while the computational process efficiently determines the
indeterminacy transportation cost of the TSVNN. This method, BNGCA,
is applicable to all indeterminacy transportation costs in SVNLPP that
satisfy the conditions of a bipartite graph. Comparatively, the optimal
neutrosophic solution 〈(364,537,694,908);0.3, 0.7, 0.7〉 outperforms
the Dhouib-matrix-TP1 (Dhouib, 2021). The analysis indicates that the
total minimum unit transportation cost falls between values greater than
364 and less than 908, and between values higher than 537 and less than
694.

The degrees of truth, indeterminacy, and falsity membership are as
follows:

μX(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.3
(

a − 364
537 − 364

)

, for 364 ≤ a ≤ 537

0.3 , for 537 ≤ a ≤ 694

0.3
(

908 − a
908 − 694

)

, for 694 ≤ a ≤ 908

0, otherwise

νX(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
537 − a+ 0.7 (a − 364)

537 − 364

)

, for 364 ≤ a ≤ 537

0.7, for 537 ≤ a ≤ 694
(
a − 636+ 0.7 (908 − a)

908 − 694

)

, for 694 ≤ a ≤ 908

1, otherwise

Fig. 5. Graphical representation of membership functions of TSVNTP.
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λX(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
537 − a+ 0.7 (a − 364)

537 − 364

)

, for 364 ≤ a ≤ 537

0.7, for 537 ≤ a ≤ 694
(
a − 694+ 0.7(908 − a)

908 − 694

)

, for 694 ≤ a ≤ 908

1, otherwise

where μX(a) × 100 is the degree of truthfulness, and a is the total cost,
In the referenced article (Thamaraiselvi and Santhi, 2016), the

author employed the penalty and zero-point methods to determine the
optimal cost. However, Souhail Dhouib challenged these assumptions
and presented results using the DhouibMatrix-TP1 approach, which
debunked the earlier findings (Dhouib, 2021). In contrast, the proposed
BNGCA algorithm for NTP1 achieves the optimal value with minimal
iterations, verified through sensitivity analysi. SA ensures that the
allocated values in cells are accurate and the outcome is optimal.

The SA calculates the maximum cost range for all cells in TP1,
revealing that the optimal cost remains unchanged within these limits.
Additionally, the optimal values adhere to the critical conditions of
trapezoidal neutrosophic numbers. According to the SA, the optimum
value obtained by BNGCA is lower than that of DhouibMatrix-TP1. This
difference becomes evident when conducting SA on the optimal cost
transportation table in (Dhouib, 2021), where the unit transportation
cost of cell (1, 1) in Table 1 fluctuates as [4,∞) from [2,∞), contrary to
the actual unit transportation cost.

5. Conclusion

The fundamental challenge in network problems is identifying the
most economical and efficient path, known as the Shortest Path, from
among various options. To address the need for minimizing both time
complexity and cost, the bipartite neutrosophic graph contraction al-
gorithm was proposed within the framework of the trapezoidal single-
valued neutrosophic transportation problem network. This algorithm
introduced a novel approach to the neutrosophic sets and demonstrated
its effectiveness through practical network problem. Although, the score
function used for de-neutrosophication was discussed for monotonicity
and boundedness. Since it is not necessary that, the score and accuracy
should be bounded between [0, 1]; because we use the costs, distance,
time etc., as weights for NTP-1 as we were using score function for
ranking. Eventhough, the monotonicity and boundedness were dis-
cussed for the purpose of neutrosophic arithmetic procedural problems.

A comparative analysis of BNGCA has highlighted its efficiency,
showing that it produces high-quality results with minimal iterations.
Specifically, BNGCA for TP1 has proven to be a simpler and more effi-
cient solution compared to existing methodologies, offering significant
improvements in both simplicity and performance also, the proposed
method is applicable for type II NTP. To validate the optimal solution
〈(364,537,694,908);0.3, 0.7, 0.7〉’s robustness and effectiveness,
sensitivity analysis was introduced as a novel approach to assessing
results in neutrosophic set theory. By conducting SA without altering the
optimal results, it improved the reliability and validity of the network
problem analysis. This approach introduced a new dimension to result
verification in the field of neutrosophic set theory, providing a more
robust framework for evaluating the outcomes of network problems. The
sensitivity report confirmed that the optimal solution remains un-
changed within defined ranges, reinforcing the stability and reliability
of the proposed method in solving network problems.

6. Future work

The proposed method will be applied to interval-valued neu-
trosophic set network problems also in type II neutrosophic trans-
portation problem to identify the optimum solution. Additionally, future

research will explore its application in Super Hyper Graphs and Neu-
trosophic Super Hyper Graphs.

CRediT authorship contribution statement

M. Kanchana: Writing – review & editing, Writing – original draft,
Methodology, Formal analysis, Conceptualization. K. Kavitha:
Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

The authors declare heartfelt thanks for the review comments and
guidance for this article.

Funding

This research received no external funding from anywhere.

Data availability statement

The data used for this paper analysis has been included and cited
within this paper. The digraphs are drawn manually according to the
proposed algorithm.

References

Aljanabi, K.B.S., Jasim, A.N., 2015. An approach for solving transportation problem
using modified Kruskal’s algorithm. Int. J. Sci. Res. 4 (7), 2426–2429.

Atanassov, K.T., Atanassov, K.T., 1999. Intuitionistic Fuzzy Sets. Physica-Verlag HD.
Atanassov, K.T., Gargov, G., 1989. Interval-valued intuitionistic fuzzy sets. Fuzzy Set.

Syst.. 31 (3), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4.
Broumi, S., Bakali, A., Talea, M., Smarandache, F., 2016a. Isolated single-valued

neutrosophic graphs. Neutrosophic Sets Syst. 11, 74–78.
Broumi, S., Bakali, A., Talea, M., Smarandache, F., 2016b. Computation of shortest path

problem in a network with SV-trapezoidal neutrosophic numbers. In: International
Conference on Advance Mechatronics and Systems. (ICAMechS), Melbourne, VIC,
Aust, pp. 417–422. https://doi.org/10.1109/ICAMechS.2016.7813484.

Broumi, S., Talea, M., Bakali, A., Smarandache, F., 2016c. Single valued neutrosophic
graphs. J. New Theory 10, 86–101. https://doi.org/10.5281/zenodo.50940.

Broumi, S., Talea, M., Smarandache, F., Bakali, A., 2016d. Single valued neutrosophic
graphs: Degree, order, and size. In: 2016 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 2444–2451.

Dhouib, S., 2021. Solving the single-valued trapezoidal neutrosophic transportation
problems through the novel Dhouib-Matrix-TP1 heuristic.Math. Probl. Eng. 2021 (1),
1–11. https://doi.org/10.1155/2021/3945808.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1
(1), 269–271.

Ekanayake, E.M.U.S.B., Daundasekara, W.B., Perera, S.P.C., 2021. Solution of a
transportation problem using bipartite graph. Global J. Sci. Front. Res. 21 (1), 55–68.

Johnson, B.O., Akwu, A.D., Ebelechuku, O.C., 2018. Superiority of graph theoretic
approach to Vogel’s approximation method in solving unbalanced transportation
problem. Int. J. Sci. Innov. Math. Res. 6 (5), 19–29. https://doi.org/10.20431/2347-
3142.0605003.

Kanchana, M., Kavitha, K., 2024. Heuristic incident edge path algorithm for interval-
valued neutrosophic transportation network. Contemp. Math.. 5 (2), 2016–12013.
https://ojs.wiserpub.com/index.php/CM/article/view/4152.

Kandasamy, W.B.V., Ilanthenral, K., Smarandache, F., 2015. Neutrosophic Graphs: A
New Dimension to Graph Theory. Europanova, Belgium.

Kavitha, P., Pandian, P., 2012. Type II sensitivity analysis in solid assignment problems.
Mod. Appl. Sci. 6 (12), 22–26. https://doi.org/10.5539/mas.v6n12p22.

Santhi, R., Eswarasamy, K.M., 2019. Topological solution of a transportation problem
using topologized graph. IAETSD J. Adv. Res. Appl. Sci. 6 (6), 30–38.

Smarandache, F., 1998. Neutrosophy: Neutrosophic Probability, Set, and Logic.
American Research Press, Rehoboth.

Smarandache, F., 2010. Neutrosophic set–a generalization of the intuitionistic fuzzy set.
J. Defense Resour. Manage. 1 (1), 107–116.

Smarandache, F., 2020. The score, accuracy, and certainty functions determine a total
order on the set of neutrosophic triplets (T, I, F). Neutrosophic Sets Syst. 38, 1–14.

Smarandache, F., Pramanik, S., 2016. New Trends in Neutrosophic Theory and
Applications. Pons Editions, pp. 187–231.

M. Kanchana and K. Kavitha Journal of King Saud University - Science 36 (2024) 103567 

8 

http://refhub.elsevier.com/S1018-3647(24)00479-8/h0005
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0005
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0010
https://doi.org/10.1016/0165-0114(89)90205-4
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0020
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0020
https://doi.org/10.1109/ICAMechS.2016.7813484
https://doi.org/10.5281/zenodo.50940
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0035
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0035
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0035
https://doi.org/10.1155/2021/3945808
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0045
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0045
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0050
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0050
https://doi.org/10.20431/2347-3142.0605003
https://doi.org/10.20431/2347-3142.0605003
https://ojs.wiserpub.com/index.php/CM/article/view/4152
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0065
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0065
https://doi.org/10.5539/mas.v6n12p22
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0075
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0075
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0080
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0080
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0085
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0085
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0090
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0090
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0095
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0095


Thamaraiselvi, A., Santhi, R., 2016. A new approach for optimization of real-life
transportation problem in neutrosophic environment. Math. Probl. Eng. 2016, 1–9.
https://doi.org/10.1155/2016/5950747.

Turksen, I., 1986. Interval-valued fuzzy sets based on normal forms. Fuzzy Set. Syst.. 20
(2), 191–1120. https://doi.org/10.1016/S0165-0114(86)90077-1.

Vella, A.A., 2005. Fundamentally topological perspective in graph theory. Thesis.
Waterloo, Ontario, Canada.

Vimala, S., Kalpana, S., 2017. Topologized bipartite graph. Asian Res. J. Math. 4 (1),
1–10.

Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R., 2010. Single valued
neutrosophic sets. Infinite Study.

Wang, J., Zhang, X., 2018. Two types of single valued neutrosophic covering rough sets
and an application to decision making. Symmetry 10 (12), 710. https://doi.org/
10.3390/sym10120710.

Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8 (3), 338–353. https://doi.org/10.1016/
S0019-9958(65)90241-X.

M. Kanchana and K. Kavitha Journal of King Saud University - Science 36 (2024) 103567 

9 

https://doi.org/10.1155/2016/5950747
https://doi.org/10.1016/S0165-0114(86)90077-1
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0115
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0115
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0120
http://refhub.elsevier.com/S1018-3647(24)00479-8/h0120
https://doi.org/10.3390/sym10120710
https://doi.org/10.3390/sym10120710
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X

	Sensitivity analysis and application of single-valued neutrosophic transportaion problem
	1 Introduction
	1.1 Main contribution of the article

	2 Preliminaries
	2.1 Parameters of transportation problem
	2.2 Mathematical formulation

	3 Algorithm: Bipartite neutrosophic graph contraction algorithm (BNGCA)
	3.1 Illustration
	3.1.1 Trapezoidal single valued neutrosophic transportation problem
	3.1.2 De-neutrosophicated TSVNTP

	3.2 Sensitivity analysis for TSVNTP
	3.2.1 SA for the optimal bipartite neutrosophic network

	3.3 Comparative study between proposed BGNCA and existing methods

	4 Results and discussion
	5 Conclusion
	6 Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Funding
	datalink5
	References


