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Quantitative structure-activity relationships and drug-likeness evaluations were investigated for 33 com-
pounds of 1,2-diazole derivatives as anti-mycobacterium tuberculosis. MLR procedures were used to
obtain QSAR models. The predictivity of the models was estimated using cross-validation with the
leave-one-out method. The results show a high correlation between the experimental and predicted
activity values, indicating the good quality of the QSAR model.
� 2020 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pyrazole (1,2-diazole) is a five-membered heterocyclic ring that
is a lead compound for the design of potent bioactive agents. Given
data represents that pyrazole being heterocyclic planar five-
membered rings have various pharmacological actions (Jamwal
et al., 2013). Pyrazole derivatives have also been reported to show
a wide spectrum of biological activities, including antimicrobial
(Menozzi et al., 2004), anti-inflammatory (Gomez et al., 2007),
anti-tumor (Lin et al., 2007).

QSAR is a predictive tool that uses computer-aided models for
the preliminary evaluation of the activity of chemical compounds
(Belaidi et al., 2000; Boudergua et al., 2019). Drug-likeness is a
qualitative concept used in drug design; this parameter is esti-
mated from the molecular structure before the substance is even
synthesized and tested (Alloui et al., 2018; Zerroug et al., 2019).
The main objective of this work is to build a reliable QSAR
model and to predict the activity of anti-mycobacterium tubercu-
losis for other molecules whose activity is not known.
2. Computational methods

All calculations were performed using the HyperChem soft-
ware 8.0.6 (Hyperchem, 2008) and the Gaussian 09 program
package The geometries of the 1,2-diazole derivatives were fully
optimized using PM3, DFT/B3LYP with the 6-31G and 6-31G++
(d, p) basis sets in Gaussian 09 (Frisch et al., 2009). The calcula-
tion of properties QSAR was performed using the QSAR Properties
module (version 8.0.6), implanted in HyperChem. The software
MarvinSketch (Marvinsketch, 2017) was used to calculate logD
values.

MLR analysis of the molecular descriptors was carried out
using the stepwise strategy in SPSS Version 20 for Windows
(SPSS, 2018). The study of MLR (descendant) based on the
elimination of descriptors until a valid model was obtained
and the MLR procedures based on the forward selection and
backward elimination methods were employed to determine
the best regression models. MLR statistical techniques used
to study the relationship between one dependent variable
(pIC50) of 33 molecules and several independent variables
(descriptors).
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3. Results and discussion

3.1. Geometric and electronic structure of 1,2-diazole

In this section, we report the structural and electronic parame-
ters (distance, valence angle and charge) of the conformation of the
1,2-diazole core in detail (Fig. 1).

The purpose of this study was to calculate the structural and
electronic characteristics using different calculation methods and
determine the similarity between the calculated and experimental
results (Belaidi et al., 2015). The optimized geometric and elec-
tronic parameters of imidazolidine-2,4-diazole obtained using
PM3, Ab initio/HF and DFT are listed in Table 1. The atoms number-
ing in the tables is the same as that in Fig. 1.

For the bond lengths, the difference between the theoretical
results and the experimental values varies from 0.02 Å to 0.07 Å.
For the valence angles, the differences range from 0.57� to
10.56�. The results obtained by the DFT method using the 6-
31G++ (d, p) basis set were most similar to the experimental results
Fig. 1. 3D structure of 1,2-diazole (GaussView 5.0).

Table 1
Calculated bond lengths, valence angles and net atomic charge for 1,2-diazole.

Semi-empirical Ab initio/HF

PM3 6-31G 6-31G++(d, p)

Bond length (Å)
N1–N2 1.35 1.35 1.32
N2–C3 1.35 1.31 1.30
C3–C4 1.41 1.41 1.41
C4–C5 1.39 1.36 1.36
C5–N1 1.39 1.35 1.34

Valence angle (�)
N1–N2–C3 107.18 105.25 105.14
N2–C3–C4 109.00 111.09 111.54
C3–C4–C5 106.74 104.88 103.91
C4–C5–C1 105.88 106.59 106.61
C5–N1–N2 111.18 112.15 112.77

Mulliken atomic charge

Ab initio/HF

6-31G 6-31G++ (d, p)

N1 �0.6542 �0.2629
N2 �0.2627 �0.2222
C3 0.0262 �0.0784
C4 �0.3540 �0.1608
C5 0.1465 �0.0741
(Nygaard et al., 1974); thus, the DFT method was concluded to be
the best method for further study of the structural and electronic
properties of 1,2-diazole and its derivatives.

From DFT/6-31G++ (d, p), N1, N2 and C3 and C5 atoms (Table 1)
have negative Mulliken charges that lead to electrophilic substitu-
tion; while the C4 atom has a positive charge that leads to a pref-
erential nucleophilic site attack.

3.2. Study of the QSAR properties of the 1,2-diazole derivative series

Using the software HyperChem 8.03, we determined seven
physicochemical properties for a series of 33 1,2-diazole deriva-
tives (Table 2) (Monga et al., 2014; Valarmathy et al., 2010; Ali
et al., 2007). The properties evaluated were surface area (SAG),
molar volume (V), hydration energy (HE), octanol/water partition
coefficient (log P), molar refractivity (MR), polarizability (Pol),
and molecular weight (MW) (Table 3). The polarizability values
were generally proportional to the surface area and volume values.
The polarizability and molar refractivity increased with the size
and molecular weight of the pyrazole derivative. This result was
consistent with the Lorentz–Lorenz formula, which relates Pol,
MR, and molecular size (Mignani, et al., 2014). As shown in Table 4,
compound 21, which is functionalized with a bulky radical, has
high Pol (53.09 Å3) and MR (148.35 Å3) values, along with a high
volume and area (1252.18 Å3 and 688.33 Å2) respectively. In con-
trast, compound 1 is the smallest molecule in the series, and shows
low Pol (33.93 Å3) and MR (95.31 Å3) values.

Lipophilicity is a property that has a major effect on the solubil-
ity, absorption, distribution, metabolism, and excretion of a mole-
cule, as well as its pharmacological activity. For good oral
bioavailability, log P should be greater than zero and less than 3
(0 < log P < 3). Drugs with excessively high log P values have low
solubility, while those with low log P values have difficulty pene-
trating lipid membranes (Gargadennec et al., 2005). The log P val-
ues of the compounds in the studied series range from �5.43 to
3.19. Compound 32 has the lowest log P value (�5.43), followed
by compound 15 (�5.12). However, low partition coefficient values
correspond to better gastric tolerance. Compounds 4 and 19, which
have the highest values of 2.43 and 2.81, respectively, could
depend on plasma proteins.
DFT/B3LYP EXP. (Nygaard et al., 1974)

6-31G 6-31G++(d, p)

1.37 1.35 1.35
1.34 1.33 1.33
1.41 1.41 1.41
1.38 1.38 1.37
1.36 1.35 1.36

103.83 104.18 104.10
111.81 111.90 111.90
105.30 104.53 104.50
106.27 106.15 106.40
112.76 113.21 113.00

DFT/B3LYP

6-31G 6-31G++ (d, p)

�0.5087 �0.1580
�0.2187 �0.1580
0.0183 �0.2123
�0.2232 0.0874
0.1293 �0.2567



Table 2
Structures of the 1, 2-diazole derivative series.

Compound R1 R2 R3 R4

1 H

2 CH3

3 CH3

4

5

6

7

8 H

9 H

10 H

11 H

12 H

13 H

14 H

15 H

16 H

17 H H

(continued on next page)
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Table 2 (continued)

Compound R1 R2 R3 R4

18 H

19 H

20 H

21 H

22 H

23 H

24 H

25 H

26 H

27 H

28 H

29 H

30 H

31 H

32 H

33 H
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3.3. Drug-likeness filters and multi-parameter optimization (MPO)

3.3.1. Rules of thumb
We used various ‘rules of thumb’ in MPO methods, namely,

the Lipinski (Lipinski et al., 1997), Veber rules (Veber et al.,
2002), to study the oral bioavailability of the series of diazole
derivatives. We also considered the oldest and most com-
monly used metrics, which are the ligand efficiency (LE) and
the lipophilic efficiency of the ligand (LLE) (Segall, 2012)
(Table 4).



Table 3
QSAR parameters of the 1,2-diazole derivative series.

Compound Molecular surface area
(Å2)

Molar volume
(Å3)

Molecular weight
(amu)

Polarizability
(Å3)

Hydration energy
(kcal/mol)

Refractivity
(Å3)

Log P Log D

1 502.30 840.79 288.35 33.93 �7.63 95.31 1.99 3.02
2 588.54 1003.20 330.43 39.44 �2.82 108.77 2.21 3.99
3 631.42 1106.90 433.34 47.45 �4.81 134.22 1.95 6.45
4 599.44 1074.39 417.89 45.82 �5.00 131.05 2.43 5.38
5 652.84 1171.25 520.22 51.22 �3.93 143.78 0.90 7.80

6 585.49 1001.2 362.43 43.40 �6.12 127.15 1.03 5.41
7 561.27 963.07 371.27 39.63 �3.56 109.64 1.46 4.17
8 595.68 1038.93 397.45 42.47 �15.31 118.71 0.69 2.02
9 558.46 976.94 383.43 40.64 �18.92 113.95 0.66 1.87

10 546.75 960.19 367.43 40.00 �13.76 112.34 1.68 2.18
11 594.05 1037.61 396.47 43.19 �16.80 120.17 0.12 1.86
12 602.13 1054.53 413.45 43.11 �21.24 120.32 �0.33 1.72
13 568.02 940.99 339.35 35.18 �8.89 98.48 �3.13 2.57

14 607.41 1015.79 369.38 37.65 �9.25 104.85 �4.13 2.41
15 645.81 1091.11 399.40 40.12 �9.84 111.23 �5.12 2.25
16 574.40 970.95 359.38 38.89 �7.65 110.30 ��2.06 3.72
17 527.96 869.54 317.35 35.13 �10.38 100.73 –1.73 4.01
18 620.28 1127.96 435.97 49.44 �10.53 138.22 3.19 7.02
19 602.591 1094.48 419.52 47.42 �10.59 133.63 2.81 6.56
20 671.11 1192.79 447.55 50.62 �12.73 141.97 1.27 5.59
21 688.33 1252.18 447.58 53.09 �13.35 148.35 0.28 5.43
22 642.49 1188.04 485.43 52.49 �9.03 145.43 1.96 6.88

23 615.61 1050.98 371.44 42.51 �10.18 121.40 0.36 4.32
24 638.70 1094.50 405.88 44.44 �9.90 126.12 0.14 4.93
25 618.28 1068.27 387.44 43.15 �11.84 123.01 �0.66 4.02
26 648.45 1107.98 416.48 44.36 �15.02 126.62 �4.32 4.17
27 660.25 1129.85 401.46 44.99 �11.33 127.78 �0.63 2.45
28 644.81 1103.65 401.44 44.17 �13.52 123.12 �0.75 3.05
29 669.76 1146.93 435.89 46.10 �13.21 127.84 �0.97 3.05
30 692.54 1187.84 470.33 48.03 �12.95 132.56 �1.20 3.56

31 653.57 1120.47 417.44 44.81 �17.44 124.73 �1.78 2.14
32 679.45 1160.63 446.44 46.01 �18.40 128.34 �5.43 3.22
33 691.95 1181.43 431.47 46.65 �14.96 129.50 �1.74 2.29
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The Lipinski and Veber rules are used to identify compounds
that could pose absorption and permeability problems, with the
Lipinski rule being used most often to characterize drug-like com-
pounds. Compounds that do not exhibit at least two of the criteria
of the Lipinski rules are very likely to present absorption or perme-
ability issues. Lipinski’s rules are: Molecular Weight
(MW) < 500 Da, water partition coefficient (log P) < 5, Number of
Hydrogen Bond Donors (NHD) < 5, number of Hydrogen Bond
Acceptors (NHA) < 10. Veber rules: Rotatable bonds (NBR) < 10
and Polar surface area (TPSA) < 140 Ǻ2.

The parameters relevant to the Lipinski rule are shown in
Table 4. All the studied compounds had lipophilicity values of
log P less than 5 (�5.43 to 3.19); therefore, they should present
acceptable solubility in aqueous and lipid solutions. A negative
value of log P indicates that a compound is very hydrophilic, and
should have good solubility in water, gastric tolerance, and elimi-
nation by the kidneys. Conversely, a positive value of log P indi-
cates that the compound is highly lipophilic, and should exhibit
good permeability across the biological membrane, binding to
plasma proteins, and elimination by metabolism, but low aqueous
solubility and gastric tolerance (Ertl et al., 2000). Among the pyra-
zole derivatives in our series, compounds 15, 26, and 32 have log P
values of �5.12, �4.32, and �5.43, respectively, suggesting that
these compounds would have good solubility and gastric tolerance.
Compound 18, which has the maximum log P value among the
series (3.19), would be assumed to have good permeability across
biological membranes. All the studied compounds had less than 10
hydrogen acceptors (O) and less than 5 hydrogen donors (OH, NH).
Some compounds had molecular weights of less than 500 Da,
indicating that they could easily cross cell membranes. The total
number of violations of the Lipinski rule was tabulated for each
compound; all compounds have either zero or one violation. Thus,
all the compounds meet the Lipinski rule (rule of five), suggesting
that theoretically, they would not present oral bioavailability
issues.

In terms of Veber’s rule, the number of rotational bonds is less
than 10 for all the compounds. The low number of rotational bonds
(reduced flexibility) in the test compounds indicates that these
ligands would change confirmation only slightly during binding
to a protein. All compounds except for 32 have a PSA value lower
than 140 Å2, which predicts good oral bioavailability and the trans-
port through membranes.

The LE and LLG values are also collected in Table 5. The ligand
(LE) efficiency decreases with increasing number of heavy atoms.
Obtaining high ligand efficiency requires compounds with few
heavy atoms; this can be explained by the correlation between
the size of the compound and its physicochemical properties. It
has been suggested that one typical factor contributing to the
decreased LE in larger ligands could be the less favorable binding
entropies for larger and more flexible ligands (Loving et al.,
2012). For example, Table 5 clearly shows that the compounds 1,
10, and 17, which have few heavy atoms, showed efficiencies of
0.309, 0.317, and 0.267, respectively, while compound 21, which
has the greatest number of heavy atoms (34), exhibited a low
ligand efficiency value of 0.215, and may have poor physicochem-
ical and ADME (adsorption, distribution, metabolism, and excre-
tion) properties. On the other hand, the efficiency varied
proportionally with the values of the lipophilicity index pIC50.

LLE provides a means of assessing the affinity of a compound for
its target relative to its lipophilicity. The aim is to increase the



Table 4
Drug-likeness filters and lipophilicity indices of 1,2-diazole derivatives.

Comp. Lipinski rule Veber rule Lipophilicity Indices

MW log P NHD NHA Violations of rule NBR TPSA LE LLE pIC50 N
<500 <5 <5 <10 <10 <140

1 288.35 1.99 1 4 0 3 42.22 0.309 2.8 4.79 22

2 330.43 2.21 0 4 0 3 33.43 0.268 2.58 4.79 25
3 433.34 1.95 0 4 0 4 33.43 0.251 3.44 5.39 30
4 417.89 2.43 0 4 0 4 33.43 0.245 2.66 5.09 29
5 520.22 0.90 0 4 1 4 33.43 0.203 3.89 4.79 33
6 362.43 1.03 0 4 0 4 33.43 0.254 4.06 5.09 28
7 371.27 1.46 0 4 0 3 33.43 0.285 3.63 5.09 25
8 397.45 0.69 3 9 0 7 117.58 0.280 4.91 5.60 28
9 383.43 0.66 4 9 0 6 128.57 0.281 4.76 5.42 27
10 367.43 1.68 3 8 0 6 108.34 0.317 4.22 5.90 26
11 396.47 0.12 5 9 0 6 134.37 0.260 5.08 5.20 28
12 413.45 �0.33 4 10 0 7 137.81 0.270 5.93 5.60 29
13 339.35 �3.13 0 7 0 4 87.73 0.201 6.73 3.60 25
14 369.38 �4.13 0 8 0 5 96.97 0.171 7.43 3.30 27
15 399.40 �5.12 0 9 0 6 106.20 0.236 10.02 4.90 29
16 359.38 �2.06 0 6 0 3 78.20 0.168 5.06 3.00 25
17 317.35 �1.73 1 5 0 3 70.22 0.267 5.93 4.20 22
18 435.97 3.19 2 4 0 5 47.86 0.242 2.01 5.20 30
19 419.52 2.81 2 4 0 5 47.86 0.242 2.93 5.20 30
20 447.55 1.27 2 6 0 7 66.33 0.235 4.11 5.38 32
21 447.58 0.28 2 7 0 8 75.56 0.215 4.96 5.24 34
22 485.43 1.96 1 4 0 6 45.06 0.252 3.82 5.78 32

23 371.44 0.36 2 5 0 4 64.93 0.230 4.24 4.60 28
24 405.88 0.14 2 5 0 4 64.93 0.202 4.76 4.90 29
25 387.44 �0.66 3 6 0 4 85.16 0.222 5.26 4.60 29
26 416.48 �4.32 2 8 0 5 110.75 0.234 9.52 5.20 31
27 401.46 �0.63 2 6 0 5 74.16 0.228 5.53 4.90 30
28 401.44 �0.75 2 7 0 4 94.89 0.200 5.05 4.30 30
29 435.89 �0.97 2 7 0 4 94.89 0.248 6.47 5.50 31
30 470.33 �1.20 2 7 0 4 94.89 0.240 6.7 5.50 32

31 417.44 �1.78 3 8 0 4 115.12 0.221 6.68 4.90 31
32 446.44 �5.43 2 10 0 5 140.12 0.233 10.93 5.50 33
33 431.47 �1.74 2 8 0 5 104.12 0.227 6.94 5.20 32

NBA: number of hydrogen bond acceptors; NBD: number of hydrogen bond donors; NBR: number of rotatable bonds; TPSA: total polar surface area; pIC50: �log (IC50), where
IC50 is the half maximal inhibitory concentration; N: number of heavy atoms.

Table 5
Cross-validation parameters.

Model PRESS SSY PRESS/SSY SPRESS r2 cv r2 adj 6PE

1 2.540 11.888 0.213 0.311 0.773 0.746 0.169
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affinity without increasing lipophilicity at the same time. Since
lipophilicity is the main promissory factor for compounds, LLE-
optimized compounds should be more selective. It has been sug-
gested that LLEs in the range 5–7 or even higher should be targeted
(Hopkins et al., 2004). If LipE is between 5 and 7 or more than 7, the
optimized compounds will be more selective (Pliska et al., 1996).
The LLE values of the compound in this series were found to range
between 2.01 and 10.93. For example, compounds 11, 13, and
33have LLE values of 5–7 (5.08, 6.73, and 6.94, respectively), indi-
cating that these compounds have been successfully optimized. On
the other hand, the LLE values of the compounds 2, 7, and 18are all
less than 5 (2.58, 3.63, and 2.01, respectively). In these cases, the
affinity gain was accompanied by an increase in lipophilicity, mak-
ing them less optimal than the compounds above.

3.3.2. Golden Triangle
The Golden Triangle is a visualization tool that was developed

using in vitro permeability, in vitro clearance, and computational
data to aid medicinal chemists in achieving metabolically stable,
permeable, and potent drug candidates. Analysis of two or more
orthogonal trends, such as permeability and clearance, is known
to be an extremely effective strategy for balancing and optimizing
multiple properties. In particular, molecular weight and log D
impact potency-efficiency calculations, allowing potency, clear-
ance, and permeability to be optimized simultaneously (Johnson
et al., 2009).

Log D and molecular weight (MW) have been identified as prop-
erties that show correlations with permeability and stability. Using
large data sets, compounds with good in vitro permeability and
low clearance have been found to concentrate in the area with a
baseline from log D = �2.0 to log D = 5.0 at MW = 200, and a vertex
between log D = 1.0 and 2.0 at MW = 450. These trends lead to a
triangle-shaped area known as the Golden Triangle; molecules
within this area are low clearance and good permeability (Fig. 2).

Johnson and co-workers reported that molecular weight (MW)
and lipophilicity (log D at pH 7.4) can be used as surrogates of
many different molecular descriptors; this fact has been used to
develop the useful Golden Triangle visualization tool. Compounds
that reside inside the Golden Triangle are more likely to be both
metabolically stable and to possess good membrane permeability
than those outside. The Golden Triangle (Fig. 2) shows that com-
pounds 1, 4, 8, 10, 11, 12, 13, and 14 lie inside the triangle, and thus



Fig. 2. Golden triangle: In vitro permeability and clearance trends across MW and log D.
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should show good permeability and clearance (Beale et al., 2010).
In general, compounds with lower log D and higher molecular
weight molecules fail due to low permeability, while higher
log D and higher MW compounds fail due to elevated in vitro clear-
ance (Johnson et al., 2009).

3.4. Quantitative studies of structure–activity relationships

3.4.1. Construction of the QSAR model
The best QSAR model was develop to explain the correlations

between the physicochemical parameters and the biological activ-
ities (pIC50 values) of the 1,2-diazole derivatives. Various physical
and chemical properties, known as physicochemical descriptors,
as well as the Lipinski and Veber parameters were used as inde-
pendent variables, and were correlated with the biological activi-
ties of pyrazole derivatives using multiple linear regression
analyzes (MLR) to generate the QSAR model. Several QSAR equa-
tions were tested, and the best QSAR models were selected on
the basis of various statistical parameters, namely, the correlation
coefficient R, which measures the degree of linear association
between two variables; the squared correlation coefficient
(R2 > 0.6), which is a relative measure of quality of fit; the standard
error of the estimate, which represents an absolute measure of the
quality of fit; and Fischer’s value (F). F is the Fisher ratio, which
reflects the ratio of the variance explained by the model to the vari-
ance due to the error in the regression. High F values indicate that
the model is statistically significant (Sanmati et al., 2012). The
most statistically significant correlation generated after multiple
regression analysis using the software SPSS is given below, along
with the relevant statistical parameters:

log I=IC50ð Þ ¼ 2:057þ 0:031MR þ 0:305log P� 0:259logD

n ¼ 26 R ¼ 0:887 R2 ¼ 0:786 SE ¼ 0:339 F ¼ 26:993 Q ¼ 2:61
ð1Þ

where n is the number of compounds, R is the coefficient of corre-
lation, F is the Fischer statistic, SE is the standard error of estima-
tion, and Q is the quality of the adjustment or the adaptation.
The values of the variance of the fractions can range between
0 and 1 Only QSAR models with R2 > 0.6 were considered for val-
idation. For example, in the correlation above, the values
R = 0.887 and R2 = 0.786 indicated a strong correlation between
the different parameters (independent variables) and the inhibi-
tory activity of the compound towards enoyl acyl carrier protein
reeducates. The calculated F value of the generated QSAR model
exceeded the F value tabulated by a large margin, indicating the
significance of the regression. In addition, the F-value was found
to be statistically significant at the 95% level for this model. The
positive value of the quality factor (Q) for this OSAR model sug-
gested its high predictive power and its lack of adaptation. The
low standard deviation also demonstrated the accuracy of this
model.

In the model in Eqn (1) the positive coefficient of log P indicates
that increased lipophilicity (hydrophobicity) of the molecules cor-
relates with increased biological activity, while the negative coeffi-
cient of the log D term indicates that more positive molar
refractivity values lead to a decrease in the biological activity;
i.e., the pyrazole nucleus should be functionalized with one or
the other electron or free electronic pairs.
3.4.2. Model validation
The predictive powers of the equations were validated using the

‘‘leave-one-out” (LOO) (Tetko et al., 2001) cross-validation method.
Cross-validation is a convenient and reliable way to test the signif-
icance of a model. Therefore, to validate the final models individu-
ally generated for different activities properties, a one-out method
was used to perform cross-validation In order to test the validity of
the predictive power of the selected MLR model (eq. log (l/IC50)),
the LOO technique was used.

The developed model was validated by calculating the following
statistical parameters: PRESS (sum of predicted residual squares),
SSY (sum of squares of response value), and R2CV (global predic-
tive ability), adjusted R2, PE (predictive error correlation coeffi-
cient), and SPRESS (prediction uncertainty); the values of these
parameters are given in (Table 5).
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PRESS is an important cross validation parameter because it pro-
vides a good approximation of the actual predictive error of the
model. A PRESS value that is lower than the SSY value indicates that
the predictions of the model are better than chance, and can be
considered statistically significant. The obtained PRESS value of
2.540 indicates that the model is statistically significant. In addi-
tion, for a reliable QSAR model, the PRESS/SSY ratio should be less
than 0.4 (Podunavac-Kuzmanovi et al., 2009). As shown in Table 5,
the ratio for the developed model is 0.213. An indication of the per-
formance of the model can be obtained from its R2

CV value (the over-
all prediction capability). To ensure good performance of the QSAR
model, high R2

CV and R2
adj values are essential; values of 0.773 and

0.746 were obtained for the present QSAR model, respectively. SPRESS
Table 6
Experimental, predicted, and residual values of log(I/IC50) for the 1,2-diazole
derivatives.

Number pIC50/Exp. pIC50/Predict. Resid.

1 4.79 4.8208 �0.30780
2 4.79 5.0518 �0.28178
3 5.39 5.1205 0.26955
4 5.09 5.4460 �0.35599
5 4.79 4.7457 0.44340
6 5.09 4.8911 0.19886
7 5.09 4.8033 0.28666
8 5.60 5.4046 0.19540
9 5.42 5.2875 0.13247
10 5.20 5.3172 �0.11723
11 5.60 5.2209 0.37911
12 3.60 3.4739 0.12609
13 3.30 3.4068 �0.10680
14 3.00 3.8669 �0.86692
15 4.20 3.5975 0.60254
16 5.20 5.4743 �0.27432
17 5.20 5.3360 �0.13600
18 5.38 5.3746 0.00539
19 5.24 5.3109 �0.07086
20 5.78 5.3578 0.44219
21 4.60 4.7917 �0.19169
22 4.90 4.7123 0.18774
23 4.90 5.1705 �0.27048
24 4.30 4.8350 �0.53495
25 4.90 4.8061 0.09395
26 5.20 4.9265 0.38431

Fig. 3. Linear regression of the plot of the predicted val
(predictive uncertainty) is another important parameter for the
determination of the uncertainty in the prediction. Lower SPRESS val-
ues indicate better predictive power. The low value of 0.311 indi-
cates the predictive ability of this model is good. The predictive
error of the correlation coefficient (PE) also evaluates the predictive
power of a model. The present model satisfies the condition R > 6PE,
and can therefore be said to have good predictive power. The exper-
imental, predicted, and residual ENR inhibitory activity of 1,2-
diazole and its derivatives were determined using the software SPSS,
and are listed in Table 6.

Fig. 3 shows a plot of the linear regression between the pre-
dicted and experimental values of biological activity of the 1,2-
diazole derivatives. The plot shows a good correlation of
R2 = 0.786. The evaluation set has a good distribution along the
range of values of the training set. Thus, the QSARmodel developed
in the current study can be successfully applied to predict the inhi-
bitory activities of this series of molecules against mycobacterium
tuberculosis.

To investigate the presence of systematic error in the developed
QSAR model, the residuals of the predicted values of the biological
activity (log(I/IC50))were plotted against the experimental values,
as shown in Fig. 4. The propagation of the residuals on both sides
of zero indicates that no systemic error exists.

3.5. Identification of leads

First, it is necessary to identify which of the compounds
obtained at the end of a screening campaign represent lead com-
pounds relevant to the pathology to be treated (Corinne, 2008). A
‘‘lead” molecule is a molecule that will interact with the target to
inhibit, activate, or modify its activity in some way. In order for a
molecule to become a drug candidate, it must additionally possess
ADME-T (absorption, distribution, metabolism, excretion, and tox-
icity) properties suitable for use in humans or animals. The best
leads will then be optimized, taking care to preserve their activity
and drug-likeness while trying to improve their affinity, selectivity,
and permeability. In our case, compounds 11 and 12 were identi-
fied as lead molecules. These compounds present both significant
activity and optimal physico-chemical and biological properties,
which suggests that these molecules will act as effective drugs
with low toxicity.
ues against the experimental values of log (I/IC50).
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4. Conclusion

The present study was performed QSAR analysis to the activity
of a series of 1,2-diazole derivatives. Evaluation of the Lipinski rule
criteria of the 1,2-diazole derivatives indicated that, theoretically,
they should not present oral bioavailability issues. All compounds
of the series except compound 32 also satisfy the first rule of Veber,
i.e., they contain less than 10 rotatable bonds. Compound 10 has
the highest LE (ligand efficiency) value of 0.317, which suggests
that it has good physico-chemical and ADME properties. Com-
pound 15 had the most optimal LipE value in the dataset (10.02).
Compounds 1, 4, 8, 10, 11, 12, 13, and 14 were located in the
Golden Triangle, suggesting that these derivatives should have
good permeability and clearance. Different physicochemical
parameters investigate the biological were evaluated, and it was
found that the partition coefficient (log P), molar refractivity
(MR), and distribution coefficient(logD) can be used to successfully
model anti-tubercular activities of the derivatives. Based on the
different selection methods applied to the studied compounds,
two molecules in the series with good ADME properties were iden-
tified as potential drug candidates.
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