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Dexmedetomidine is a very useful anesthetic, and it currently has less improvement in early childhood
surgery. In order to study the effect of dexmedetomidine in improving the complex congenital heart sur-
gery in infants and young children, this paper used machine learning algorithm to improve the image,
and combined MRI (Magnetic Resonance Imaging) images for diagnostic analysis. At the same time, this
paper collected experimental data to carry out algorithm analysis, collected cases to design experiments,
used the method proposed in this paper to conduct research, and recorded the research results. Through
comparative analysis, the algorithm proposed in this study has certain effects. Moreover, it has been
proved that the dexmedetomidine infants have complicated effects in complex anesthesia surgery and
can provide theoretical reference for subsequent related research.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, research reports have found that this product
also has anti-sympathetic properties, maintains hemodynamic sta-
bility and reduces the dose of general anesthesia. Moreover, it has
been widely used in clinical practice and has achieved good anes-
thetic effects. Recent studies have shown that dexmedetomidine is
a clinically valuable alternative to midazolam sedation and
increases the comfort of clinical procedures (Ahmad et al., 2017)
and reduces the risk of postoperative mechanical ventilation seda-
tion (Alhammad et al., 2017).

Dexmedetomidine is used as a preoperative medication and can
be used in children. Moreover, whether administered orally or
intranasally, it provides a satisfactory level of sedation, facilitates
parental separation, and makes the child easy to receive a mask
(Ama and Yassin, 2017), and can also alleviate the sevoflurane
anesthesia during the recovery period (Amorim et al., 2017). How-
ever, for oral or intranasal administration of dexmedetomidine,
which administration method is superior requires more research.
In addition, when it is used for preoperative intravenous adminis-
tration in adults, dexmedetomidine can reduce intraocular pres-
sure during induction of general anesthesia and reduce
intubation pressor response (Chen et al., 2018).

Dexmedetomidine has the characteristics of improving the
pharmacological properties of peripheral and intra-spinal local
anesthesia, and is currently the most potential adjuvant drug
(Schäffer and Otero, 2017). However, there have been many pre-
clinical and clinical studies showing that it is safe and effective
for clinical practice. The highly lipophilic dexmedetomidine is
rapidly absorbed into the cerebrospinal fluid and binds to the
spinal cord alpha 2 receptor to produce an analgesic effect. Numer-
ous studies have shown that dexmedetomidine combined with
local anesthetics can prolong the duration of sensory block, motor
block and analgesia (Frölich et al., 2017) and reduce the onset of
sensory block and motor block in spinal anesthesia. In addition,
for spinal anesthesia, dexmedetomidine combined with local anes-
thetics or intravenous infusion of dexmedetomidine can prolong
the duration of sensory block, motor block and analgesia
(Hussain et al., 2017).

The high incidence of cardiovascular accidents and other com-
plications during perioperative cardiac surgery can lead to
increased patient mortality and prolonged hospital stay. However,
the use of perioperative dexmedetomidine may be beneficial for
the clinical outcome of cardiac surgery. A meta-analysis showed
that dexmedetomidine for perioperative cardiac surgery not only
reduced the risk of postoperative ventricular tachycardia and spu-
tum and atrial fibrillation, but also shortened ICU stay time and
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hospital stay. However, it may increase the risk of bradycardia and
hypotension (Jia et al., 2017). In addition, dexmedetomidine can
reduce the incidence of acute renal failure after cardiac surgery
(Jian-Xin et al., 2017). In addition to inhibiting hemodynamic
responses during endotracheal intubation, dexmedetomidine also
reduces the severity of myocardial ischemia during cardiac surgery
and protects the myocardium. Although dexmedetomidine has
some side effects, it is an effective adjuvant that can be safely
and effectively used in heart surgery.

The application of dexmedetomidine is of great value for neuro-
surgery. Jo et al. (2017) compared dexmedetomidine sedation
techniques and general anesthesia for chronic subdural hematoma
surgery found that the combination of dexmedetomidine sedation
and local anesthesia has a short operation time, low hemodynamic
fluctuation, less postoperative complications, short hospital stay,
and is a safe and effective technique for drilling and drainage of
chronic subdural hematoma. In addition to providing cerebral
hemodynamic stability (Khare et al., 2017), this product can also
prevent sudden increase of intracranial pressure during insertion,
extubation and insertion of skull nails. At the same time,
dexmedetomidine has a certain effect on the occurrence of neuro-
surgery. Küçükebe et al. (2017) retrospectively evaluated the effi-
cacy of dexmedetomidine in 72 patients with paroxysmal
sympathetic hyperactivity (PSH) after neurosurgery and found that
compared with propofol, dexmedetomidine can effectively control
the acute exacerbation of PSH, but it cannot improve the long-term
prognosis of patients. As an adjuvant for postoperative analgesia,
Su et al reported that dexmedetomidine 0.02 lg/kg/h + sufentanil
0.02 lg/kg/h can reduce the number of opioids after neurosurgery,
reduce the incidence of adverse reactions, and improve pain score.

Although dexmedetomidine has not been approved by the FDA
for pediatric patients, clinical studies have shown that it can be
effectively used for sedation in clinical pediatric patients. A
meta-analysis showed that compared with other drugs, intranasal
administration of dexmedetomidine prior to surgery provides
more satisfactory sedation, is prone to separation from parents,
and reduces the incidence of analgesics and nasal irritation and
postoperative nausea and vomiting.
2. Research method

2.1. Convolutional neural network algorithm

The application of dexmedetomidine is of great value for neuro-
surgery. Jo et al. (2017) compared dexmedetomidine sedation
techniques and general anesthesia for chronic subdural hematoma
surgery found that the combination of dexmedetomidine sedation
and local anesthesia has a short operation time, low hemodynamic
fluctuation, less postoperative complications, short hospital stay,
and is a safe and effective technique for drilling and drainage of
chronic subdural hematoma. Compared with other drugs, this
study has inherent advantages, so dexmedetomidine was selected.

The composition of a convolutional neural network is relatively
simple. It consists of an input layer, a convolutional layer, a pooling
layer, a fully connected layer, and an output layer. In order to con-
struct a deeper convolutional neural network, the convolutional
layer and the pooling layer will appear multiple times. The convo-
lutional layer and the pooling layer appear alternately. There is a
convolutional layer and then a pooling layer. Appears many times.
It shows high recognition accuracy in image recognition, and has
good performance and low memory consumption. Therefore, in
this study, a convolutional neural network was selected as the
image recognition algorithm.

The convolutional neural network algorithm is mainly divided
into two processes. The first part is the forward propagation algo-
rithm. The input data is transmitted through the network structure
to obtain the output, and the residual value of the cost function is
obtained. The second part is derived from the cost function, and the
backpropagation modifies the parameters. After that, the two pro-
cesses are repeated continuously, and the residuals with the tags
are continuously reduced until the residuals are reduced to a stable
state, and the network parameters are stable (Li and Liu, 2017).

At the time of data transfer, the actual data is a four-
dimensional array blob, as shown in Fig. 1, which is the number
of pictures N, the number of channels K, the height H of the image,
and the width W of the image. The number of pictures N is the
number of pictures in the smallest batch. After N pictures, the LOSS
is calculated once and then passed back. For the input layer, the
number of channels in the grayscale image is 1, and the channel
in the color map is 3, but for a layer in the middle, the number
of channels is the current number of feature maps. H, W refers to
the height and width of the image. If it is a convolution kernel, it
represents the size of the convolution. In order to ensure the sym-
metry transfer, H and W are equal. The small square in Fig. 1 is the
storage unit for the data. Because the data transfer in a convolu-
tional neural network has both forward and reverse passes, its
value must contain two parts, the normal value of the forward
transfer, and the derivative value of the reverse pass. Different lay-
ers are formed based on the Blob module, and different layers are
combined with each other to form a network (Makhni et al., 2017).

Each convolutional neural network is composed of basic layers,
as shown in Fig. 2, and the input to these layers is the data unit
Blob, and the output is also a Blob. However, the types or numbers
of layers included in different networks are different, and the
results achieved are quite different.

2.2. Hierarchical structure of convolutional neural networks

2.2.1. Input layer
The input layer is the input port of the convolutional neural net-

work, which inputs the original image into the network. For convo-
lutional neural networks with supervised learning, the input
contains the Data, and the corresponding Label (Messeha and El-
Morsy, 2018).

2.2.2. Convolution layer
The convolution layer connects the parts of the input image and

calculates the feature maps associated with the specific convolu-
tion kernel. The resulting output feature map size is 3� 3. The size
of the output value is expressed as (Messeha and El-Morsy, 2018)
(Fig. 3):

Yi ¼
Xk

i¼1

Xk

j¼1

Xij �Wij þ b ð1Þ

If Padding is added, the convolution process is shown in Fig. 4.
The added Padding is 1, that is, a white edge with zero data is
added around the outermost edge of the image If other parameters
are inconvenient, the initial convolution position of the convolu-
tion becomes the position in the graph. The output size will also
be changed accordingly. The relational expression for the size of
the output feature map and the size of the convolution kernel,
the step size, the size of Padding, etc. is as in (Miller et al., 2018):

Nout ¼ Nin � kþ 2P
S

þ 1 ð2Þ
2.2.3. Pooling layer
The Pooling Layer, the down-sampling layer, can reduce the size

of the input image and reduce the number of features, which can
speed up the training. More importantly, the main information of



Fig. 1. Schematic diagram of the data storage unit.

Fig. 2. Connection diagram between data storage unit Blob and layer.

Fig. 3. Schematic diagram of convolution without Padding.

Fig. 4. Schematic diagram of convolution with Padding.
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the window is extracted, which not only satisfies the reduction of
the data dimension, but also retains important information. It is
often followed by a convolutional layer, the window size is also,
and the step size is 2. There are three common ways, namely, Aver-
age Pooling, Max Pooling, and Stochastic-pooling.

For the average pooling, as shown in Fig. 5(a), the forward val-
ues are averaged, and the corresponding expression is (Mohamed
et al., 2018):

Xout ¼
Pk�k

i¼1
Xi

k� k
ð3Þ

Among them, Xout is the output of the Polling layer, Xi is the out-
put of the Pooling layer, k is the window size for down-sampling,
and the default step size is the same as the window.

As shown in Fig. 6(a), when passing in the reverse direction, the
value of diff in the blob is used to directly divide the input value by
the square of the window size k. The value corresponding to each
window is the same, as shown

Xout ¼ Xi

k� k
ð4Þ

In the case of forward propagation, only the maximum value of
the data corresponding to the window is taken as the final result.
That is, the expression is (Shen et al., 2017):

Xout ¼ max
06i6k�k

Xi ð5Þ

When the reverse is transmitted, as shown in Fig. 6(b), the max-
imum value is filled in the original position, and the other values
are 0.

2.2.4. Activation layer
For the activation layer, the mathematical essence is to trans-

form the linear relationship of data into a nonlinear relationship,
which will transform its dimension into a high-dimensional space,
so that the latter can find different features in different dimen-
sions. Its network characteristics emulates biological neurotrans-
mission. The vast neural network system works only 10% to 20%,
and other neurons are inactive. Only when the characteristics of
the training set and the activation function correspond to each
other, a better network structure and network training effect can
be obtained. There are also some activation functions and activa-
tion layers, which are improved based on the RELU activation func-
tion. At the same time, the number of parameters is increased, and
the training time is increased (Yoo et al., 2017).

2.2.5. Dropout layer
The Dropout layer is similar to our activation function, except

that the Dropout layer only works in backpropagation. When back-
propagation, some nodes are activated, some nodes are not acti-
vated, and it is a layer that discards the partial discard connection.



Fig. 5. Pooled layer forward propagation.

Fig. 6. Pooled layer back propagation.
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2.2.6. Fully connected layer
The feature map is output by the convolutional layer or the

down-sampling layer, which is generally a square matrix of
MXM. It is expanded in rows into a one-dimensional column vec-
tor, and each point on the feature vector is connected to each point
of the output vector. Each line represents a weight, then the weight
of the fully connected layer is a matrix of TXNs. For example, hand-
writing recognition, whose output is 10 categories, then T is 10,
and if it is a white cell three classification, it is 3.
Fig. 7. Cardiac M
2.2.7. Decision layer
The decision layer is mainly based on the extracted features of

the convolution layer, the down-sampling layer, the active layer,
and the fully connected layer of the previous stage, and outputs
the input type of the input graph to determine which class the
input belongs to.

The formula of the Softmax function is shown in Eq. (6).

Sj ¼ eaj=
XT

k¼1

eak ð6Þ
RI image.
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Among them, j is the output vector index and T is the dimension
of the output vector. k is the probability vector that converts the
input vector into a group. The type corresponding to the largest
probability value is the output type.
2.2.8. Loss layer
However, in training, a deviation is obtained, which measures

the deviation of the input from the convolutional neural network
Fig. 8. Brain MRI image.

Fig. 9. Feature recogniti
output from its actual label. The function for calculating this devi-
ation is called the loss function. In fact, this loss function is a mul-
tivariate function containing the parameters of the ownership
value W and the offset b variable. In order to minimize the output
of this function, the derivative is reverse-transferred, and W and b
are modified to make the function take the minimum value. Cur-
rently, different networks use different loss functions, such as Soft-
max With Loss, Euclidean Loss, Hinge Loss, and so on.

The mathematical expression for the reverse derivative transfer
is:

d
dx

f g xð Þð Þ ¼ f 0g xð Þð Þg
0 xð Þ ð7Þ

However, the Loss function is a multivariate function. When one
of the variables is valued, it needs to find the partial derivative, and
the above formula is converted into

@

@Wi
L W ;bð Þ ¼ @

@f W;bð Þ
L0 W; bð Þ @

@Wi
f 0W;bð Þ ð8Þ

@

@bi
L W;bð Þ ¼ @

@f W ;bð Þ
L0 W; bð Þ @

@bi
f 0W;bð Þ ð9Þ

Among them, Wi, bi are the weights and offsets that need to be
updated, respectively, L W ;bð Þ is the loss function, and f W;bð Þ is the
input to the loss function. Then, in the next pass, we just need to
replace L W ;bð Þ with the current outer function and replace f W ;bð Þ with
the current outer outer function.

The weight update formula is:

Wo ¼ Wi þ g
@

@W
L W ;bð Þ ð10Þ

The offset update formula is:

bo ¼ bi þ g
@

@W
L W ;bð Þ ð11Þ

Among them, g is the current learning rate, and the learning
rate can be adjusted according to the current training phase or
the characteristics of the training set. Wi, bi are the original weight
and offset parameters respectively, and when updated, they
become new weights Wo and offsets bo.
on of heart images.
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3. Result

The patient opened the right upper extremity venous access and
intravenously infused with compound sodium chloride injection.
Moreover, under the local anesthesia, the left radial artery was
placed and the pressure sensor was connected to monitor the bra-
chial blood pressure. At the same time, the partial pressure of end-
tidal carbon dioxide was maintained at 35–40 mmHg (1 mmHg = 0.
133 kPa). After anesthesia induction, the right internal jugular vein
puncture was performed, and a three-chamber 7F central venous
catheter (depth 1300–15 cm) was placed.

The primary pathway is used for intravenous blood delivery,
one side is used to monitor central venous pressure, and the other
side is used to pump vasoactive drugs. In the D1 group, 0.5 ug/kg
dexmedetomidine (batch number: 1061034, Jiangsu Hengrui
Pharmaceutical Co., Ltd.) was intravenously administered as a
loading dose after induction of anesthesia. The injection was com-
pleted after 10 min, and then the patient was intravenously
infused with O.5Il g/kedh until the surgery was completed. In
the D2 group, the Dex1ug/kg load was intravenously injected
after induction of anesthesia, and the intravenous infusion was
continued for 0.5 g/kg/h to the end of surgery. Group C was intra-
venously infused with the same volume of normal saline at the
Fig. 10. Brain image fe
same rate. Anesthesia maintenance: The patient inhaled 1%–2%
sevoflurane, continued intravenous sufentanil 0.4 ~ O.7ug/kg/h,
and the patient was injected intermittently with atracurium sul-
fonate to maintain muscle relaxation. During the CPB, sevoflurane
was inhaled by artificial heart-lung machine to maintain
anesthesia;

On the basis of this, the heart image of the infant and the image
of the brain of the child are obtained, and the original cardiac MRI
image obtained is shown in the following Fig. 7.

The detected brain image is as follows (Fig. 8).
In order to further study the characteristics of the above images,

the algorithm proposed in this study is used for image processing
to obtain the corresponding improved image, and the results are
shown in the following Figs. 9 and 10.
4. Discussion and analysis

A significant increase in the concentration of catecholamines in
the ischemic region of myocardial ischemia-reperfusion injury
directly affects the myocardium. Moreover, inhibition of nore-
pinephrine reuptake can lead to increased myocardial damage
and loss of physiological myocardial protection mechanisms such
ature recognition.
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as ischemic preconditioning. Norepinephrine not only causes
myocardial damage, but also increases blood endothelin levels,
which is one of the important mediators of myocardial damage.
After myocardial ischemia-reperfusion, the endothelin A (ETA)
receptor is activated, which results in massive release of ET-1
and myocardial damage. Endothelin receptors are present in the
sympathetic nerve endings of the heart, and sympathetic excita-
tion causes a large release of endothelin, which causes damage to
the myocardium. Q2 receptor agonists can reduce the stress
response caused by surgical stimulation and inhibit the release of
central catecholamine. Central sympathetic blockers can exert
myocardial protection by affecting the Q2 receptor, and Q2 recep-
tors are also present in sympathetic nerve endings. Presynaptic Q2
receptor excitation can reduce norepinephrine release.
Dexmedetomidine is a selective receptor agonist that has central
sedative and analgesic effects and reduces catecholamine levels
in peripheral blood. In the myocardial ischemia-eperfusion injury,
whether dexmedetomidine has an effect on endothelin-1 (ET-1)
and norepinephrine has not been reported.

5. Conclusion

Based on the machine learning algorithm, this study combined
with image processing to perform analysis and research that
dexmedetomidine improves the anesthetic effect of infants with
complex congenital heart surgery. Currently, anesthesia for pedi-
atric surgery is generally performed under general anesthesia.
The child has many troubles, discomfort, and separation from the
parents before anesthesia. The intranasal administration of
dexmedetomidine can solve this problem. In the pre-experiment
of this study, the operation of tracheotomy and separation of the
carotid, jugular, femoral, femoral veins was trained, and the float-
ing catheter placement operation was successfully completed,
which greatly reduced the physiological interference to the exper-
imental animals, and greatly helped to reduce the mortality and
improve the success rate of the experiment. At the same time, this
paper collects the heart image of the infant and the original cardiac
MRI image obtained from the brain image of the child, and uses the
proposed algorithm to perform image processing, so as to obtain
the corresponding improved image, and to adopt the proposed
algorithm for image processing, and to obtain the corresponding
improved image. From the research results, the method proposed
in this study has certain validity.
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