
Journal of King Saud University – Science (2011) 23, 413–417
King Saud University

Journal of King Saud University –

Science
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Fractional variational iteration method via modified

Riemann–Liouville derivative

Naeem Faraz a,*, Yasir Khan a, Hossein Jafari b, Ahmet Yildirim c, M. Madani d
a Modern Textile Institute, Donghua University, 1882 Yan’an Xilu Road, Shanghai 200051, China
b Department of Mathematics and Computer Science, University of Mazandaran, P.O. Box 47416-1467, Babolsar, Iran
c Ege University, Science Faculty, Department of Mathematics, 35100 Bornova, Turkey
d Chemical Engineering Department, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, Iran
Received 3 July 2010; accepted 29 July 2010
Available online 5 August 2010
*

E

ya

eg

10

El

Pe

do
KEYWORDS

Variational iteration method;

Modified Riemann–Liouville

derivative;

Mittag–Leffler function
Corresponding author. Tel.

-mail addresses: nfaraz_mat

hoo.com (Y. Khan), jafari@

e.edu.tr (A. Yildirim).

18-3647 ª 2010 King Saud

sevier B.V. All rights reserve

er-review under responsibilit

i:10.1016/j.jksus.2010.07.025

Production and h
: +86 21

h@yahoo

umz.ac.ir

Universit

d.

y of King

osting by E
Abstract The aim of this paper is to present an efficient and reliable treatment of the variational

iteration method (VIM) for partial differential equations with fractional time derivative. The frac-

tional derivative is described in the Jumarie sense. The obtained results are in good agreement with

the existing ones in open literature and it is shown that the technique introduced here is robust, effi-

cient and easy to implement.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Mathematics is the art of giving things misleading names. The
beautiful and at first look mysterious name the fractional calcu-
lus is just one of those misnomers which are the essence of math-

ematics. Differential equations of fractional order appear more
and more frequently in various research areas and engineering
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applications. For example nonlinear oscillation of earthquake
can be modeled with fractional derivatives (He, 1998), the

fluid-dynamic traffic model with fractional derivatives (He,
1999) can eliminate the deficiency arising from the assumptions
of continuum traffic flow. Based on experimental data frac-
tional partial differential equations for seepage flow in porous

media are suggested in He (1998), and many differential equa-
tions and fractional differential equations have recently proved
to be valuable tools to the modeling of many physical phenom-

ena (Achouri and Omrani, 2009; Yildirim and Momani, 2010;
Koçak and Yildirim, 2009; Yildirim and Gülkanat, 2010;
Podlubny, 1999; Diethelm and Ford, 2002; Miller and Ross,

2003; Achouri et al., xxxx; Barari et al., 2008; Ghotbi et al.,
xxxx; Barari et al., xxxx; Fouladi et al., 2010; Faraz et al., xxxx;
Khan, 2009; Khan et al., xxxx; Khan and Austin, 2010). Differ-
ent fractional partial differential equations have been studied

and solved including the space-time fractional diffusion-wave
equation (Khan et al., xxxx; Wu and Lee, 2010; Das, 2009),
the fractional telegraph equation (Momani, 2005), the

fractional Kdv equation (Momani, 2005), the space and time
fractional Burgers equations (Mustafa Inc., 2008) and the
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space-time-fractional Fokker–Planck equation (Yildirim,

2010). In recent times, Jumarie (1993) proposed a new modified
Riemann–Liouville left derivative. Jumarie’s modified deriva-
tive was successfully applied in the stochastic fractional models
Jumarie, 2006, fractional Laplace problems (Jumarie, 2009) etc.

He’s variational iteration method (He, 1999; He et al.,
2010) based on the use of restricted variations, correction func-
tional and Lagrange multiplier technique developed by Inokuti

et al. (1978). This method does not require the presence of
small parameters in the differential equation, and provides
the solution (or an approximation to it) as a sequence of iter-

ates. The method does not require that the nonlinearities be
differentiable with respect to the dependent variable and its
derivatives. This technique is, in fact, a modifying of the gen-

eral Lagrange multiplier method into an iteration method,
which is called correction functional. The method has been
shown to solve effectively, easily, and accurately a large class
of nonlinear problems, generally one or two iterations lead

to high accurate solutions. In this technique, the equations
are initially approximated with possible unknowns. A correc-
tion functional is established by the general Lagrange multi-

plier which can be identified optimally via the variational
theory. The method provides rapidly the convergent successive
approximations of the exact solution. Besides, the VIM has no

restrictions or unrealistic assumptions such as linearization or
small parameters that are used in the nonlinear operators.

The basic idea described in this paper is expected to be fur-
ther employed to solve other linear as well as nonlinear prob-

lem in fractional calculus.

2. Basic definition

We give some basic definitions and properties of the fractional
calculus theory which are used further in this letter

Definition 2.1. Jumarie is defined the fractional derivative
(Jumarie, 2009) as the following limit form

fðaÞ ¼ lim
h!0

Da½fðxÞ � fð0Þ�
ha ð2:1Þ
This definition is close to the standard definition of deriva-
tives, and as a direct result, the ath derivative of a constant,
0 < a < 1 is zero

Definition 2.2. Fractional integral operator of order a P 0 is
defined as

0I
a
xfðxÞ ¼

1

CðaÞ

Z 0

x

ðx� nÞa�1fðnÞdn; a > 0; ð2:2Þ

Definition 2.3. The modified Riemann–Liouville derivative
(Jumarie, 2009) is defined as

0D
a
xfðxÞ ¼

1

Cðn� aÞ
dn

dxn

Z 0

x

ðx� nÞn�aðfðnÞ � fð0ÞÞdn; ð2:3Þ

where x 2 ½0; 1�, n� 1 6 a < n and n P 1.

Definition 2.4. Fractional derivative of compounded functions

(Jumarie, 2009) is defined as

daf ffi Cð1þ aÞdf; 0 < a < 1 ð2:4Þ
Definition 2.5. The integral with respect to ðdxÞa (Jumarie,

2009) is defined as the solution of the fractional differential
equation

dy ffi fðxÞðdxÞa; x P 0; yð0Þ ¼ 0; 0 < a < 1 ð2:5Þ

Lemma 2.1. Let fðxÞ denote a continuous function (Jumarie,

2009) then the solution of the Eq. (2.5) is defined as

y ¼
Z x

0

fðnÞðdnÞa ¼ a
Z x

0

ðx� nÞa�1fðnÞdn; 0 < a 6 1 ð2:6Þ

For example fðxÞ ¼ xc in Eq. (2.6) one obtainsZ x

0

ncðdnÞa ¼ Cðaþ 1ÞCðcþ 1Þ
Cðaþ cþ 1Þ xaþc; 0 < a 6 1 ð2:7Þ

Definition 2.6. Assume that the continuous function
f : R! R, x! fðxÞ has a fractional derivative of order ka,
for any positive integer k and any a; 0 < a 6 1; then the follow-

ing equality holds, which is

fðxþ hÞ ¼
X1
k¼0

hak

ak!
fakðxÞ; 0 < a 6 1: 0 < a 6 1 ð2:8Þ

On making the substitution h! x and x! 0 we obtain the

fractional Mc-Laurin series

fðxÞ ¼
X1
k¼0

xak

ak!
fakð0Þ; 0 < a 6 1 ð2:9Þ
3. Fractional variation iteration method (FVIM)

To describe the solution procedure of the fractional variational
iteration method, we consider the following fractional differen-
tial equation:

@a

@ta
uðx; tÞ ¼ K½x�uðx; tÞ þ pðx; tÞ; t > 0; x 2 R;

uðx; 0Þ ¼ fðxÞ; a > o ð3:1Þ

where K½x� is the differential operator in x, fðxÞ and pðx; tÞ are
continuous functions. According to the VIM, we can construct

a correct functional for Eq. (3.1) as follows

unþ1ðx; tÞ ¼ unðxÞ þ Ia k
@a

@ta
uðx; tÞ � K½x�uðx; tÞ � pðx; tÞ

� �� �
;

unþ1ðx; tÞ ¼ unðxÞ þ
1

CðaÞ

Z t

0

ðt� nÞa�1kðnÞ

@a

@na uðx; nÞ � K½x�uðx; nÞ � pðx; nÞ
� �

dn; ð3:2Þ

Using Eq. (2.6), we obtain a new correction functional

unþ1ðx;tÞ¼unðxÞþ
1

Cðaþ1Þ

�
Z t

0

kðnÞ @a

@nauðx;nÞ�K½x�uðx;nÞ�pðx;nÞ
� �

ðdnÞa:

ð3:3Þ

It is obvious that the successive approximations uj; j P 0 can

be established by determining k, a general Lagrange’s multi-
plier, which can be identified optimally via the variational the-
ory. The function ~un is a restricted variation which means

d~un ¼ 0. Therefore, we first determine the Lagrange multiplier
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k that will be identified optimally via integration by parts. The

successive approximations unþ1ðx; tÞ; n P 0 of the solution
uðx; tÞ will be readily obtained upon using the obtained La-
grange multiplier and by using any selective function u0. The

initial values are usually used for selecting the zeroth approx-
imation u0. With k determined, then several approximations
ujðx; tÞ; j P 0, follows immediately. Consequently, the exact
solution may be obtained by using

uðxÞ ¼ lim
n!1

unðxÞ: ð3:4Þ
4. Applications

In this section we shall illustrate the FVIM by following

examples.

Example 4.1. Consider the following one-dimensional linear
inhomogeneous fractional wave equation

@auðx; tÞ
@ta

¼ 1

2
x2 @

2uðx; tÞ
@x2

; 0 < x < 1; t > 0; 1 < a 6 2

uð0; tÞ ¼ 0; uð1; tÞ ¼ 1þ sinh t;

uðx; 0Þ ¼ x: utðx; 0Þ ¼ x2: ð4:1Þ

To solve Eq. (4.1) by means of FVIM, we construct a correc-

tional functional which reads

unþ1ðx; tÞ ¼ unðxÞ þ
1

Cð1þ aÞ

�
Z t

0

kðnÞ @aunðx; nÞ
@na � x2

2

@2unðx; nÞ
@x2

� �
ðdnÞa

ð4:2Þ

Imposing the stationary condition ðd~un ¼ 0Þ on the correc-
tional functional,

@akðnÞ
@na ¼ 0; and 1þ kðnÞjn¼t ¼ 0: ð4:3Þ

The generalized Lagrange multiplier can be identified by the
above equations,

kðnÞ ¼ �1: ð4:4Þ

Substituting Eq. (4.4) into the functional Eq. (4.2) yields the
iteration formulation as follows

unþ1ðx; tÞ ¼ unðxÞ �
1

Cð1þ aÞ

�
Z t

0

@aunðx; nÞ
@na � x2

2

@2unðx; nÞ
@x2

� �
ðdnÞa: ð4:5Þ

From the initial value, we can derive

u0ðx; tÞ ¼ xþ x2t;

u1ðx; tÞ ¼
x2Cð2Þ

Cð2þ aÞ t
aþ1;

u2ðx; tÞ ¼
x2Cð2Þ

Cð2þ 2aÞ t
1þ2a;

u3ðx; tÞ ¼
x2Cð2Þ

Cð2þ 3aÞ t
1þ3a;

..

.
ð4:6Þ

Therefore the solution is
uðx;tÞ¼xþx2tþ x2Cð2Þ
Cð2þaÞt

aþ1þ x2Cð2Þ
Cð2þ2aÞt

1þ2aþ x2Cð2Þ
Cð2þ3aÞt

1þ3a . . .

uðx;tÞ¼xþx2t 1þ 1

Cð2þaÞt
aþ 1

Cð2þ2aÞt
2aþ 1

Cð2þ3aÞt
3a . . .

� �

uðx;tÞ¼xþx2tEa;2ðtaÞ ð4:7Þ
where Ea;2ðtaÞ denotes two-parameter Mittag–Leffler function.
Result obtained in Eq. (4.7) is exactly the same result, obtained
by Momani (2005).

Example 4.2. Consider the two-dimensional inhomogeneous
wave equation

@auðx; y; tÞ
@ta

¼ @
2uðx; y; tÞ
@x2

þ @
2uðx; y; tÞ
@y2

; 0 < a 6 1

uð0; y; tÞ ¼ 0; uð2p; y; tÞ ¼ 0;

uðx; 0; tÞ ¼ 0; uðx; 2p; tÞ ¼ 0;

uðx; y; 0Þ ¼ sin x sin y; ð4:8Þ

The correctional functional for Eq. (4.8) can be constructed as

unþ1ðx; y; tÞ ¼ unðx; yÞ þ
1

Cð1þ aÞ

Z t

0

kðnÞ @aunðx; y; nÞ
@na

�

� @
2~unðx; y; nÞ
@x2

� @
2~unðx; y; nÞ
@y2

�
ðdnÞa ð4:9Þ

Making the correction functional stationary, the Lagrange

multiplier can be identified as

kðnÞ ¼ �1: ð4:10Þ

Substituting value of Lagrange multiplier in the Eq. (4.9), we
get the following iteration formula

unþ1ðx; y; tÞ ¼ unðx; yÞ �
1

Cð1þ aÞ

Z t

0

@aunðx; y; nÞ
@na

�

� @
2~unðx; y; nÞ
@x2

� @
2~unðx; y; nÞ
@y2

�
ðdnÞa: ð4:11Þ

Beginning with an initial approximation u0ðx; y; tÞ ¼ uðx;
y; 0Þ ¼ fðxÞ ¼ sin x sin y, we obtain the following first order
approximation solution

u1ðx; y; tÞ ¼ sin x sin y� 1

Cð1þ aÞ

Z t

0

@au0ðx; y; nÞ
@na

�

� @
2~u0ðx; y; nÞ
@x2

� @
2~u0ðx; y; nÞ
@y2

�
ðdnÞa

¼ sin x sin y� 1

Cð1þ aÞ

�
Z t

0

sin x sin y
Cð1Þ

Cð1� aÞ n
�a þ 2 sin x sin y

� �
ðdnÞa

¼ � 2ta sinx sin y

Cð1þ aÞ : ð4:12Þ

Similarly, we have

u2ðx; y; tÞ ¼ u1ðx; y; tÞ �
1

Cð1þ aÞ

�
Z t

0

�2 sinx sin y� 4 sin x sin y

Cðaþ 1Þ na

� �
ðdnÞa

¼ 4t2a sinx sin y

Cð1þ 2aÞ ;

u3ðx; y; tÞ ¼ �8 sin x sin y
t3a

Cð3aþ 1Þ ;

..

.
ð4:13Þ
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The solution in a series form is given by

uðx; y; tÞ ¼ sin x sin y� 2 sin x sin y
ta

Cðaþ 1Þ þ 4 sin x sin y
t2a

Cð2aþ 1Þ

� 8 sin x sin y
t3a

Cð3aþ 1Þ . . . ;

uðx; y; tÞ ¼ sin x sin y
X1
m¼0

ð�2taÞm

Cðmaþ 1Þ ¼ sin x sin yEað�2taÞ ð4:14Þ

One can see that obtained result is good agreement of existing
one in the literature (Jumarie, 2009).
5. Conclusion

Variational iterationmethod has been known as a powerful tool
for solving many functional equations such as ordinary, partial
differential equations, integral equations and fractional differ-

ential equations. In this article, we have presented an new form
of variational iteration method having integral w.r.t. ðdnÞa. The
present work shows the validity and great potential of the vari-
ational iteration method for solving linear and nonlinear frac-

tional partial differential equations. Both examples show that
the results of the variational iteration method having integral
w.r.t. ðdnÞa are in excellent agreement with those obtained by

classical VIM or other methods present in open literature.
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