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Characteristic between species is an important feature of animal investigation and preservation. For tur-
tles, different analysis is possibly respected implements for identification. Shell shape is an essential com-
ponent of analysis and classification in turtles and can be simply styled and measured by conformal
geometric (CG). Here, we focus on the shell shape of a Southeast Asian leaf turtle by utilizing CG
approaches. CG approaches recognized important differences in shell shape of turtles by using the con-
vexity part of the shell structure. The symmetry of the sail shape in this type of turtles is a very important
recognition. Therefore, we introduce a symmetric differential operator using its roots to study the shell
shape. 2D printing tool paths are recognized for these shells.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The turtle shell is made up of various bony components, usually
called after related bones in new vertebrates, and a sequence of
keratin sautes (a thickened bony plate on a turtle’s shell) which
are furthermore exclusively entitled. Some of those bones that cre-
ate the upper of the shell are changed from surface to another. Our
study is based on the convex part of the shell structure of a turtle,
which is called the carapace involving of the animal’s hardened
ribs welded with the dermal bone. The progress (growth) of the
turtle’s shell is unique because of how the carapace characterizes
changed backs and ribs (Romer, 1956; Zangerl, 1969; Lyson et al.,
2013; Cordero, 2017).

The geometry of the shell can be explained in two dimensions,
the mechanism is essentially three dimensional: the center of grav-
ity G is formulated not only by the central cross-section but by the
whole body. Therefore, the structure must be involved in solid
cylinder planar discs to imply convex, homogenous three-
dimensional objects with just one stable and equilibrium may
occur (Abelson and Andrea, 1986).

In this work, our contribution is to deliver a new geometric rep-
resentation of the shell shape of a Southeast Asian turtle by
utilizing CG method. This method accepted important differences
in shell shape of turtles, like the symmetry, stability and equilib-
rium of shells. The method is based on formulating a symmetric
differential operator using its roots to study the shell shape. 2D
printing tool paths are recognized for these shells. We shall use
Wolfram Mathematica 11.2 and the Javascript conformal map
viewer to code our algorithm.

2. Related works

Domokos and Varkonyi (2007) introduced a geometric structure
of the turtle shell in three steps: (i) transverse, this step is in a polar
coordinate system; (ii) longitudinal, this step is describing side-
and top-view contours of the shell; (iii) 3D- representing, this step
is a surface model combining a series of horizontal and vertically
scaled versions of the main transverse section, coinciding the lon-
gitudinal contours. They established the model parameters to sep-
arate measured turtle shapes, and then to control the equilibrium
class of the 3D-model

P a; r;jð Þ ¼ p0

cos að Þ ; a 2 �p
2
;
p
2

h i
;

where P is the polar system, p0 is a scaling factor and j is the con-
tour of the cross-section with radius r.More generalization of the
above construction is given by Krauss et al. (2009). They added
other factors such as length, viscosity and a geometric factor e to
recognize the zigzag structure.
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Zhang et al. (2012) studied the dynamical representation of the
shell by using optimization and numerical methods (2-DFinite ele-
ment model). P2 is a two-dimensional problem (Dirichlet problem)
P 2� Dð Þ : lxx x; yð Þ þ lyy x; yð Þ ¼ u x; yð Þ in X;

l ¼ 0 on @X;

�

Fig. 2. Shapes of turtle shell.
where X is a connected open region in the x; yð Þplane whose bound-
ary @X is a smooth domain (in our model, we shall suggest the open
unit disk), and lxxand lyy represent to the second derivatives with
respect to x and y, respectively. Fig. 1 shows the structures of the
turtle shell for Domokos and Varkonyi (2007) and Zhang et al.
(2012) respectively.

Djumas et al. (2016) established a new method by utilizing a
geometric topological method (topological interlocking). The idea
is based on the segmentation of solid materials into particularly
aimed, discrete matching units which interlock in 3-D to form an
assembly. In this method, each component is controlled by the
geometry of its neighbouring components, given that the assembly
a tool to have load-bearing mechanical integrity without the need
for connectors or folders. A global control in the form of a frame,
angle ties or tension supports is required to keep the general
structure.

Recently, by using statistical methods in data science (such as
segmentation, hypothesis, etc.), Hosseini et al. (2019) and Van Le
et al. (2019) provided a 3-D geometrical structure of the shell.
Ferreira and Werneburg (2019), based on 3D reforms method in
geometry, they proposed a theoretical model for a turtle with a
complete shell. The significant stage toward the accepting the
growth of those muscles in turtles. Finally, Brejcha et al. (2019)
studied the color of the skin based on the Fourier analysis of some
spatial distributions. The Fourier analysis of such a function (u) is
given by the formula
u xð Þ ¼
X1
n¼�1

Kn e2pi
n
Tð Þx ¼

X1
n¼�1

û gnð Þ e2pign xDg:

We note that there are three original shapes for the turtle shell,
Diamond shell, Leaf shell and Flap shell (see Fig. 2), where other
types are hybrids of these three types. Our study focuses on the leaf
turtle shell.
Fig. 1. Geometric methods which are given in Domokos and Varkonyi (2007) and
Zhang et al. (2012) respectively.
3. Methodology

In this section, we illustrate some important concepts that will
be used in the sequel.

3.1. DDO

We deliver the new DDO in the open unit disk. Let K be the class
of analytic function formulated by

u zð Þ ¼ zþ
X1
n¼2

unz
n; z 2 U ¼ z : jzj < 1f g: ð1Þ

This class of analytic functions provides the geometric construc-
tion of any conformal mappings (Duren, 1983). This class involves
the special class of analytic functions called the univalent func-
tions, which implies stalikeness, convexity and concavity of confor-
mal mappings in the open unit disk.

For a functionu 2 K, we present a new differential operator in U

D0
bu zð Þ ¼ u zð Þ

D1
bu zð Þ ¼ b

�b

� �
zu0 zð Þ � 1� b

�b

� �
zu0 �zð Þ;

ð2Þ

where for m iteration, the operator (2) becomes:

Dm
b u zð Þ ¼ Db Dm�1

b u zð Þ
� �

¼ zþ
X1
n¼2

n b
�b
� 1� b

�b

� �
�1ð Þn

� �� �m
unz

n;

where b is a complex number. Table 1 shows some examples which
are useful in our study.

Domokos and Varkonyi (2007) have classified turtle shells into
three classes depending on the equilibrium points in the two
planes of reflection symmetry such that the y-coordinate is to be
calculated (Fig. 3).

3.2. Energy

In this work, the algorithm is based on conformal mappings in
the open unit disk. Therefore, the energy should take its value as
a complex number. Follow the technique of complex fractional
entropy (IIbrahim and Darus, 2018), we have construct the value
of energy. Moreover, since the study is in the open unit disk, there-
fore, at best value of the energy does not exceed one.

Let Z be the set of N- roots of DDO (2) in U,

Z ¼ g1; . . . ;gNf g � U:

Hence, the total information is a complex vector determining
from the complex fractional entropy

Iq gð Þ ¼
XN
k¼1

gk

q� 1
; q– 1; g 2 Z; ð3Þ



Table 1
Examples of Dm

a zð Þ; z 2 U. The roots are illustrated in symmetric structures.

u zð Þ Dm
m zð Þ; m ¼ b

�b
Roots in the complex plane

z
1�z D1

0:2 ¼ 0:2z
1�zð Þ2 þ

0:8z
1þzð Þ2

0;0:6� 0:8i

– D1
0:8 ¼ 0:8z

1�zð Þ2 þ
0:2z
1þzð Þ2

0;�0:6� 0:8i

z
1�zð Þ2 D1

0:2 ¼ � 0:2z 1þzð Þ
z�1ð Þ3 þ 0:8z 1�zð Þ

1þzð Þ3
0;0:2� 0:4i;1� 2i

– D1
0:8 ¼ � 0:8z 1þzð Þ

z�1ð Þ3 þ 0:2z 1�zð Þ
1þzð Þ3

0;�0:2� 0:4i;�1� 2i
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Table 1 (continued)

u zð Þ Dm
m zð Þ; m ¼ b

�b
Roots in the complex plane

z
1�zð Þ3 D1

0:2 ¼ 0:2z 1þ2zð Þ
1�zð Þ4 � 0:8z 2z�1ð Þ

1þzð Þ4
0;0:1� 0:2i;0:3� 1i

– D1
0:8 ¼ 0:8z 1þ2zð Þ

1�zð Þ4 � 0:2z 2z�1ð Þ
1þzð Þ4

0;�0:1� 0:2i;�0:3� 1i

Fig. 3. Classes of turtle shall in (Domokos and Varkonyi, 2007). Class S1 is signified
by a rather small domain, tall turtles are unusually close to S1, i.e. they tend to be
monochromatic and S2 for mote symmetrical shells including the flap shape, the
popularity of standard turtle’s shell drops into S3.

Table 2
The energy of DDO (2) for q ¼ 3. In our discussion, S1 distributes the energy equally,
S2 the energy is high on the boundary of the unit disk, and S3 shows the distribution
for different roots are not equal on the shell shape.

u zð Þ Nq gð Þ;q ¼ 3 2-D energy distribution

S1 : zþ 0:9z3 N3 ¼ 0:6082

2 ¼ 0:184 (two roots)

Ss : z
1�z N3 � 1 (two roots)

S3 : z
1�zð Þ2 N3 ¼ 1:44

4 ¼ 0:36 (4 roots)
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Moreover, large amount of information occurs from both theo-
retical investigations and numerical calculations from (3). The sta-
bility of (3) is realized by the energy equation

Nq ¼ Iq gð ÞIq gð Þ
N

; ð4Þ

where Iq gð Þ is the conjugate of Iq gð Þ. The energy gives a tool for
studying the dynamics of DDO. Table 2 shows the distribution of
our results for some useful conformal mappings. These conformal
mappings are utilized to describe the shell shape under the operator
(2). The first function u zð Þ ¼ zþ 0:9z3 represents to S1 model, the
second mapping (u zð Þ ¼ z= 1� zð Þ) acts as the S2-type and the third

mapping (u zð Þ ¼ z= 1� zð Þ2) performs the S3-design (see Fig. 4).
Experimentally, the value q ¼ 3 implies a higher energy for the sys-
tem Nq � 1

�
for S2). This method implies guarantee the energy is

less or equal to 1, because of the value of q.

3.3. Algorithm

The algorithm can be recognized by the following steps.

� Input the Kobe function (signal presentation of the shell)
u zð Þ ¼ z= 1� zð Þn; n ¼ 1;2;3; ::;N; b;m ¼ 1; ::;K;

� Operate the signal of the shell by using the symmetric operator
DDO which is given in Eq.(2);
� Find all the roots of DDO inside the unit disk (we ignore the
roots outside the unit disk);

� Congruent these roots with the point of the shell to recognize
the type S1; S2 and S3;

� Evaluate the energy in Eq.(4)

4. Discussion

Fig. 4 shows the comparison with the suggested geometry in
(Domokos and Varkonyi, 2007) and the symmetric distribution of
roots in the open unit disk for the operating (2). Obviously, we
can see the congruence of roots in left and right distributions for
S2 and S3. For S1, we suggested the functionu zð Þ ¼ zþ 0:9z3, where



Fig. 4. Comparison between Domokos and Varkonyi (2007) geometry and our algorithm.
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this function gives two imaginary roots r1;2 ¼ �0:608i in the open
unit disk differ from the origin (zero root). By experimental rota-
tion, to get symmetric shape, we have considered m ¼ b

�b
¼ 0:2 and

m ¼ 1 for all Sj; j ¼ 1;2;3.
The advantageous of this algorithm are recognized as follows:

� The conformal segments involve a set of center, radii and roots;
� DDO (2) is normalized in the open unit disk; therefore, no need
to use a weighted space;

� The energy is determined by the roots of DDO in the open unit
disk; therefore, there is no wasting of energy (high accuracy of
evaluation);

� This technique is iterative, hence the DDO collects the con-
nected data regarding the shape of a shell.
5. Conclusion

Shell shape is an essential component of analysis and classifica-
tion in turtles. We introduced a new study based on the conformal
mappings theory by formulating a new symmetric differential
operator in the open unit disk. We considered the roots of operator
(2), that is: Dm

m ui zð Þ ¼ 0; i ¼ 1;2;3, where m ¼ b=�b and u1 zð Þ ¼
zþ 0:9z3 represents to S1 model, the second mapping
u2 zð Þ ¼ z= 1� zð Þ symbolizes the S2-type and the third mapping

u3 zð Þ ¼ z= 1� zð Þ2 introduces the S3-type. We conclude that the
roots of the Dm

m ui zð Þ coincided with the shapes that recognized in
(Domokos and Varkonyi, 2007). Moreover, we examined the stabil-
ity and the energy by using entropy with complex values.
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