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In this paper, we propose a semi numerical-analytical method, called Fractional Reduced Differential
Transform Method (FRDTM), for finding exact and approximate solutions of fractional Helmholtz equa-
tion with appropriate initial conditions. The fractional derivatives are demonstrated in the Caputo sense.
The solutions are given in the form of series with easily computable terms, then with the help of Mittag-
Leffler function, we find the exact solutions of the fractional Helmholtz equations. Three examples are
given to demonstrate the applicability of FRDTM.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Various methods for solving linear and nonlinear fractional par-
tial differential equations based on different fractional derivatives.
Morales-Delgado et al. (2016) presented an analysis based on a
combination of the Laplace transform and homotopy methods in
the Liouville-Caputo and Caputo-Fabrizio sense, while Bulut et al.
(2016) studied the improved Bernoulli sub-equation function
method and they apply it to the nonlinear time-fractional Burgers
equation. Gomez-Aguilar et al. (2017) presented the homotopy
perturbation transform method for nonlinear fractional partial dif-
ferential equations of the Caputo-Fabrizio fractional operator.
Atangana and Gomez-Aguilar (2017) studied the numerical
approximation of fractional differentiation based on the
Riemann-Liouville definition, from power-law kernel to the gener-
alized Mittag-Leffler-law via exponential-decay-law. Also Yepez-
Martinez et al. (2016) employed the fractional derivatives in the
sense of the modified Riemann-Liouville derivative and the Feng’s
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first integral method for solving the nonlinear coupled space-time
fractional mKdV partial differential equation.

Differential Transform Method (DTM) was initially proposed by
Zhou (1986), who solved linear and nonlinear problems in electri-
cal circuit problems. Chen and Ho (1999) applied this method to
partial differential equations. The essential definitions and applica-
tions of DTM in various types of differential equations were pre-
sented in Hassan (2002), Bildik and Konuralp (2006), Ayaz
(2004), Arikoglu and Ozkol (2005). On the other hand, Keskin
and Oturanc (2009) presented the Reduced Differential Transform
Method (RDTM) for finding approximate analytical solutions of
partial differential equations. Then, Keskin and Oturanc (2010)
proposed the Fractional Reduced Differential Transform Method
(FRDTM). The applicability of the recent method to several differ-
ent types of fractional differential equations has been presented
recently. For examples, Saravanan and Magesh (2016) presented
numerical solutions of linear and nonlinear Fokker-Planck partial
differential equations with space and time fractional derivatives
and Gupta (2011) presented the approximate analytical solutions
of Benney-Lin equation with fractional time derivative. Singh and
Kumar (2016) applied FRDTM to find approximate solution of
time-fractional order multi-dimensional Navier-Stokes equations
and Singh and Srivastava (2015) gave FRDTM approximate series
solution of the multi-dimensional (heat-like) diffusion equation
with time-fractional-order. The FRDTM approximate solution of
time-fractional Korteweg-de Vries equation was presented by
Ebenezer et al. (2016). Rawashdeh (2017) employed FRDTM to
solve nonlinear fractional partial differential equations such as
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the space-time fractional Burgers equations and the time-
fractional Cahn-Allen equations. An application of FRDTM to a sys-
tem of linear and nonlinear fractional partial differential equations
was done by Singh (2016). In Srivastava et al. (2014), FRDTM was
used to obtain exact solution of a mathematical model for the gen-
eralised time fractional-order biological population model.
Helmholtz equation (or reduced wave equation) is an elliptic
partial differential equation which can be derived directly from
the wave equation. In the Cartesian coordinate system, consider
the two-dimensional nonhomogeneous isotropic medium whose
speed is c. The wave solution is u(x, y) corresponding to a harmonic
source ®(x,y) vibrating at a given fixed frequency w > 0 satisfying
the scalar Helmholtz equation on a given region R:
s >
a2 u®y) + 57 uR,y) + iux,y) = -0(x,y), (M)

where u(x,y) is a sufficiently differentiable function on the bound-
ary of R, and ®(x,y) is a given function, / > 0 is a constant number,
and V2= w/c is the wavenumber with wavelenght 27m/v1
(Thompson and Pinsky, 1995). If ®(x,y) = 0, then Eq. (1) is homoge-
neous Helmholtz equation. Many problems related to steady-state
oscillations (mechanical, acoustical, thermal, electromagnetic) lead
to the two-dimensional Helmholtz equation, if the plus sign (in
front of the 4 term) is switched to a minus sign, then this equation
describes mass transfer processes with volume chemical reactions
of the first order (Polyanin and Nazaikinskii, 2015). For example,
in linear acoustics ®(x,y) might represent a perturbation in pres-
sure about a reference state (Thompson and Pinsky, 1995). Helm-
holtz equation in two dimensions has been studied by many
authors with the finite difference method (FDM), Adomian decom-
position method (ADM) (El-Sayed and Kaya, 2004 ), multiple theory
(MT) method (Zheng et al., 1999), the finite element method (FEM)
and the boundary element method (BEM). Thompson and Pinsky
(1995) proposed Galerkin least-squares (GLS) finite element
method for solving the Helmholtz equation. Also, wave simulation
with the finite difference method for the Helmholtz equation based
on the domain decomposition method was investigated by Zhang
and Dai (2013). Gupta et al. (2012) obtained the approximate ana-
lytical solutions of a multidimensional fractional Helmholtz equa-
tion using homotopy perturbation method (HPM). Samuel and
Thomas (2010) derived an analytic solution for the fractional Helm-
holtz equation in terms of the Mittag-Leffler function.

The aim of this paper is to apply FRDTM to the Helmholtz equa-
tion with x-space fractional order of the form:

2
“ux,y) + ay u(x.y) + u(x.y) = ~O(x.y), 2)

subject to the initial condition

u0,y) = ¢ (y)- (3)

Also, we can similarly apply FRDTM to the Helmholtz equation with
y-space fractional order of the form:

2

Dju(x.y) + 55 UX.y) + au(x.y) = —®(x.y), 4
subject to the initial condition
U(X,O) = l//(X), (5)

where y(x) is a given function and 1 < o < 2.

As we will show in the present work, the exact and approximate
solutions using FRDTM of Helmholtz equations with the fractional
order suggest new and promising interpretations for steady-state
oscillations more than the integer-order derivatives; i.e., in the
fractional derivatives we can find range of solutions depending
on the fractional order (1 < o < 2) and this is actually one of the

main reasons for generalizing the integer-order differential equa-
tions to fractional-order differential equations.

The paper is organized as follows: after presenting basic defini-
tions and properties of fractional calculus in Section 2, we intro-
duce the proposed method in Section 3. Section 4 presents the
exact and approximate solutions of three examples of fractional
Helmholtz equation. Section 5 concludes the study.

2. Preliminaries of fractional calculus

In this section, we present some useful definitions associated
with fractional calculus. Firstly, we define the Mittag-Leffler func-
tion, which plays a major role in fractional calculus. There are sev-
eral definitions of fractional derivatives, for examples, Riemann-
Liouville, Caputo, Hadamard, Erdélyi-Kober, and Griinwald-
Letnikov Oldham and Spanier (1974). A survey of many different
applications which have emerged from fractional calculus was
given by Podlubny (1999). In this work we use the Caputo frac-
tional derivative.

Definition 2.1. Mittag-leffler function

The Mittag-Leffler function is a direct generalization of the
exponential function, e*. The two-parameter Mittag-Leffler func-
tion is defined in powers series by the formula:

»’/f ZFV’(-{—[f />O7ﬁ>0)' (6)

The one-parameter Mittag-Leffler function is defined as:

ZF yk+1

For special choices of the values of the parameters ),  we obtain
well-known classical functions:

eXx—1
P

Ey1(x?) = cosh(x), Ey,(x*) =

(y>0). (7)

Ei1(x) =e*, Eja(x)=

sinh(x)
T

Definition 2.2. Caputo fractional derivative (Kilbas et al., 2006).

Let a € R, then the (Left-sided) Caputo fractional derivative
(°D%,y)(x) (the small ¢ denotes the Caputo derivative) of order
o € R" is defined as:

1 AU
r(n _ OC) /ﬂ (X o t)z—nﬂ dt’ (8)

for n—-1<a<mx >
Gamma function.

(‘D y)(x) =

a), neN and I'(x) is the well-known

For simplicity, we denote the Caputo fractional derivative as

DL (x).
3. Fractional Reduced Differential Transform Method (FRDTM)

In this section, we give the basic definitions and properties of
FRDTM.

Consider a function of two variables u(x,y), such that
u(x,y) =p(x)q(y), then from the properties of the one-
dimensional differential transform method (DTM), we have

ZZU )Xy, 9)

i=0 j=0

o

u(x,y) =Y p(i)x Z

i=0 j=0

where u(i,j) = p(i)q(j) is referred to as the spectrum of u(x,y). Also,
the lowercase u(x,y) is used for the original function, while its frac-
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tional reduced transformed function is represented by the upper-
case Uy (y), which is called the T-function.

Definition 3.1. FRDTM (Singh and Srivastava, 2015; Srivastava
et al., 2014).

Let u(x,y) be an analytical and continuously differentiable with
respect to two variables x and y in the domain of interest, then
FRDTM of u(x,y) is given by

1

Ury) = kot 1)

,k=0,1,2,... (10)

X=Xo

D (u(x.y))]

with x-space fractional derivative.
The inverse FRDTM of U (y) is defined by

00

u(x,y) = Ur(y)(x — x0)“". (11)
k=0
From (10) and (11), we have

S
9= Ty [P )],

=Xo

(x — Xo)¥*. (12)

In particular, for xo = 0, the above equation becomes

M) = Mo o PR ey X (13)

X=Xo

From the above definition, it can be found that the concept of
FRDTM is derived from the power series expansion of a function.
Then the inverse transformation of the set of values {U(y)}i_,
gives approximate solution as

y) =Y Uy, (14)
k=0

where n is the order of approximate solution. Therefore, the exact
solution is given by

u(x,y) = limi(x, y). (15)

In Table 1 we give some properties of FRDTM, where §(k —m) is
defined by

1, k=m
o(k—m) = {0’ K m (16)

4. Numerical examples
In this section we demonstrate the applicability of FRDTM via

test examples.

Table 1
Fundamental operations of FRDTM.

Transformed function

Wi (y) = arUk(y) £ 2V ()
Wiy) = SEoUi0)Vie-i(y)

Original function

WX, y) = ciu(x,y) £ v(x,y)
WX, y) = u(x,y)v(x,y)

w(x.y) =D"u(x.y) Wi(y) = Sty k + n)(y)
w(x,y) = "h;% Wi(y) = %

w(x,y) =x"y" Wi(y) =y"d(k —m)

w(x,y) = x"y"u(x,y) Wi (y) =y"Uk-m(¥)

w(x,y) = e* W) =%

W(x,y) = sin(wx + o) Wi (y) = (@ /k!) sin[(rtk/2!) + o]
W(X,y) = cos(wx + ) Wi (y) = (@ /k!) cos[(mtk/2!) + o]

4.1. Example 1

Consider the following fractional homogeneous Helmholtz
equation with x-space fractional derivative:

2

“u(x,y) + 8y u(x.y) - u(x.y) = (17)

where 1 < o < 2, with the initial condition

u@©,y)=y. (18)

Applying the appropriate properties given in Table 1 to Eq. (17), we
obtain the following recurrence relation:

~ T(ka+1) PU(Y)

Uk (y) = Tlak+ 1) +1) <Uk( ) — a2 |’ (19)
fork=0,1,2,.... From (19) we obtain the inverse transform coeffi-
cients of x** as follows:

_ Y
U07y7 Ulir((x-’-])’

_ y _ y
V=roerty U rEesn
Or in general,

_ y
U= T k)’ where k > 0. (20)

Continuing in the same manner and after a few iterations, the dif-
ferential inverse transform of {Ux(y)}_, will give the following ser-
ies solution:

) => . Uy

y 20, y

:”r(1y+ DY A At T
which can be written in compact form,
xke
ux.y) yZF 1+ka) 1)

Now using the definition of Mittag-Leffler function, we obtain the
exact solution of Eq. (17) subject to (18):

u(x,y) = YE,(x*), (22)

where 1< o <2, and E,(z) is the one-parameter Mittag-Leffler
function (7).
In the case of o = 2, and since the Hyperbolic cosine is a partic-

ular case of Mittag-Leffler function,
Z = coshx. (23)
k=0

x2) 7 i xzk 7
- = T(2k+1) £ (2k)!

Then, the exact solution of Eq. (17) when o = 2 subject to (18) is

X2k

u(x,y) =ycoshx. (24)

In similar way, we can apply the FRDTM to fractional homogeneous
Helmholtz equation with y-space fractional derivative:

Dju(x,y) + ;XZZ u(x,y) —u(x,y) =0, (25)
where 1 < o < 2, with the initial condition

u(x,0) = x. (26)
Then, the exact solution of Eq. (25) subject to (26) is

u(x,y) = XEx(y*). (27)
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Generally, if the plus sign (in front of the 2 term) is switched to a
minus sign, the exact solution of the homogeneous Helmholtz
Eq. (2) subject to (3) with x-space fractional order is

u(x,y) = YE,(4(x*)). (28)

While, if the plus sign (in front of the / term) is switched to a minus
sign, the exact solution of the homogeneous Helmholtz Eq. (4)
subject to (5) with y-space fractional order is

u(x,y) = XE,(A(y"))- (29)

The 3-dimensional plots of the FRDTM solutions of (17) with
initial condition (18) are shown in Fig. 1 for different values of
o =2,1.8,1.6. Fig. 2 depicts solutions in 2-dimensional plots for
different values of o =2,1.8,1.6,1.4 for x€[0,1] and y = 1. On
the other hand, Fig. 3 depicts for different values of 2 and constant
o = 1.5 the solutions in 2-dimensional plots; y = 1. In similar way,
we can plots the figures for y-space fractional derivative.

(b)

Fig. 1. The FRDTM solutions u: (a) « = 2, (b) « = 1.8 and (c) & = 1.5.

F—T— T — — — — 7

20 /’ ]

-

18+ ’ .
e

b Exact(non-fractional) ‘/ -~ a

161 R

s I —-—- apha=18 R AN

%ﬁ r / s’ ]

oo = alpha=1.6 ‘ ‘
14} P aat
——-— alpha=14

u(xy)

Fig. 3. The FRDTM solutions u for 2 =4,3,2,1;a=1.5;x€ [0,1] and y = 1.

4.2. Example 2

Now, we consider another especial case of fractional homoge-
neous Helmholtz equation with Z=5 and x-space fractional
derivative to illustrate the efficiency of FRDTM.

82
D:U(X’y) +a_yzu(x7y) +5u(xay) = 07 (30)
where 1 < o < 2 with the initial condition
u(0,y) =y. (31

Using the appropriate properties from Table 1 to Eq. (30), we obtain
the following recurrence relation:

(ko + 1 Y
D) = [k 17 (—suk(w - ﬁ”)) (32)

where k = 0,1,2,.... The inverse transform coefficients of x** are as
follows:

_ _ Sy
U=y, U= —m7
25y _ 125y
U2 TTRa+1) Us = T@a+1) "
More generally,
_ (9"
U= T(1+ka) (33)
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Again, if we continue in the same manner and after a few iterations,
the differential inverse transform of {Ux(y)}-, will give the follow-
ing series solution:

ux,y) =y, Uky)x*
5

N y o 25y 200 125}/ 300 4 L.
T Trer ) Trea ) T T
In compact form,
B o (—SX“)’(
“(X’J’)*y,;ir(nka)’ (34)

Fig. 4. The FRDTM solutions u: (a) & = 2, (b) « = 1.8 and (c) « = 1.5.

and using the Mittag-Leffler function, we obtain the exact solution
u(x,y) = yE,(=5x*), (35)
where 1< o <2, and E,(z) is the one-parameter Mittag-Leffler
function (7).

In the case of o = 2, and since the cosine is a particular case of
Mittag-Leffler function,

= (-50) (DAY
E(—5x%) = ( = = cos v/5x. 36
2(=>x) ;F(2k+l) ; (2k)! (36)
Then, the exact solution of Eq. (30) when o = 2 subject to (31) is
u(x,y) = ycos v/5x. (37)

Also, the fractional homogeneous Helmholtz equation with 1 =5
and y-space fractional derivative can be easily solved using FRDTM

2

Dju(x,y) + %u(x,y) + 5u(x,y) =0, (38)
where 1 < o < 2 with the initial condition

u(x,0) =x. (39)
So, the exact solution of Eq. (38) subject to (39)is

u(x,y) = yE,(=5x*), (40)

Generally, the exact solution of the homogeneous Helmholtz Eq. (2)
subject to (3) with x-space fractional order is

u(x,y) = yE,(=A(x*)). (41)
While, the exact solution of the homogeneous Helmholtz Eq. (4)
subject to (5) with y-space fractional order is

u(x,y) = XEx(=A(y")). (42)

Figs. 4 and 5 show the 3-dimensional and 2-dimensional plot of
the FRDTM solutions respectively. While, Fig. 6 depicts the solu-
tions for different values of A.

4.3. Example 3

Now we consider the following two-dimensional inhomoge-
neous Helmholtz equation with A= -2 and x-space fractional
derivative:

P
Dlu(x,y) +Wu(x,y) —2u(x,y) = (12x*> — 3x*) siny, (43)

where 1 <o <2,0<x<1, and 0 <y < 2m, subject to the initial
condition:

u(x,y)

Exact(non-fractional)

_05l alpha=1.8
[ == alpha=1.6
[ ——-— alpha=14

1.0} 4
Ll L L L 1 L L L 1 L L 1 1 1 1 1 1 L L L 1d
0.0 02 0.4 0.6 0.8 1.0

X

Fig. 5. The FRDTM solutions u for o« = 2 (exact), 1.8,1.6,1.4;x € [0,1] and y = 1.
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u(x,y)

X

Fig. 6. The FRDTM solutions u for 2 =4,3,2,1;a=15;x< [0,1] and y = 1.

6
Up(x,y) = (x“ - ;(—O) siny.

This fractional equation was solved using the homotopy perturba-
tion method by Gupta et al. (2012) and the exact solution when

o=2is

u(x,y) = x*siny.

Using the appropriate properties from Table 1 to Eq. (30), we obtain

the following recurrence relation:
_ TI(ka+1)
CT(ak+1)+1)

PUr(y)

Uk+1 (y)

x((ZUk(y)— ay2 +125iny6(k—2)—3siny6(k—4)>.

The initial conditions (44) yield

6
Uo(y) = (x4 - ;‘—0) siny.

The inverse transform coefficients of x** where k = 0,1,2,... are

@ x5\ .
Uo:< fﬁ)smy

3 (x4 - %) siny

Ur= T(a+1)

9(x47%) siny
U2 = T2u+1)
u, 3 siny (40T (20 + 1) — 9x° + 90x*)
> 10r(Ba+1)
U siny (40T (20 + 1) — 9x° + 90x*)
T 10T (40 + 1)
U _ 3sinym(x, «)
T TGa+1)

32 sinym(x, o)
Ug =222 02

T(60+1)

where m(x, o) is defined as:

mx,o) = 11—0(3601"(20( +1) — 10T (4ot + 1) — 81(x* — 10)x*).

More generally, for k > 5, we have:

(44)

(45)

(47)

(b)

Fig. 7. (a) The FRDTM solution and (b) the corresponding exact solution (non-
fractional) at o = 2.

015+ B

A

[ Exact(non-fractional) / 7

010} /]
| ———- alpha=2(approximate) /

> ’ A

x | T - alpha=1.8

'} P yavs

r ——-— alpha=1.6 7

oo Ipha=1.4 ,/ / <
- a a=1. /7

L p / ) //,/, i

// /,;/ g

R 1

i e |

e
0.00 B
| L L L L | L L L L | L L L L | L L L L | L L L L |
0.0 0.1 0.2 0.3 0.4 0.5

(48)
Fig. 8. The exact solution (non-fractional) and FRDTM approximate solutions for
several values of o at y = 0.5.
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a0l — —— —— ——
25} :
20 =4 ]

= I ———— A=3 ]
2 15F ]
5 [ mme=- - A=2 1
10— A=t ]
05F :
0.0} ]

Ll n n n 1 n n n 1 n n n 1 n n n 1 n n n 11

0.0 0.2 0.4 06 0.8 1.0

Fig. 9. The FRDTM approximate solutions for several values of 1 at y = 0.5 and
o =1.5.

3**siny m(x, o)

U= T(ka+1)
_siny m(x, %) 3k
B 34 I'(ka+1)

If we continue in the same manner and after a few iterations, the
differential inverse transform of {Uy(y)},, will give the following
series solution:

uxy) =S Uy (49)

(149 %~ XY sin
“UTTer) " Tar 1) 10/)°"™Y

3)(3“ 9X4a
* (IOF(Boc 1) T 100 (4o + 1))
+ (400 (200+ 1) — 9x® + 90x*) siny

sinym(x, o) < (3x%)*
AT ; T(ka+ 1)

If we change the index of summation of the last term in (49), then
we can use the definition of two-parameter Mittag-Leffler function
(6) to arrive at the exact solution

ux,y)=(1+ 3 + Sl Xt — x sin
Y= T 1) TRat ) 10) %™
3x3zx 9x4a(
+ +
(10F(3oc +1) 10T (4o + 1))
* (400200 + 1) — 9x° + 90x*) siny
+3x°*m(x, o) SINYE, 5,1 (3x%).

Fig. 7 shows the comparison between the exact (non-fractional)
solution and FRDTM approximate solution (when o =2) for
x€[0,1] and y € [0, 27]. In Fig. 8 we depict the solution for differ-
ent values of « and the exact solution (when o =2) of non-
fractional order at y = 0.5. Fig. 9 depicts the approximate solutions
for different values of 4;o0 = 1.5 and y = 0.5.

5. Conclusion

An effective FRDTM has been introduced to find the exact and
approximate solutions of fractional Helmholtz equations with
appropriate initial conditions. For the computational cost of
FRDTM, we can clearly note that this method involves two main

steps: firstly, find the recurrence relation Uy, using the fundamen-
tal operations of FRDTM. Then, find the inverse transform coeffi-
cients of x** which leads to a series solution. In most cases, we
can write the solution as a compact form and with the help of
Mittag-Leffler function, we can find the exact or approximate solu-
tions easily. In Examples 1 and 2 we note that if « = 2, then the
FRDTM is the same as the RDTM. In Example 3 we obtain the
approximate solution (not exact) when « = 2 and compare it with
the exact solution (of non-fractional order).
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