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A counting problem on lattice points in n-dimensional space with rectangular coordinate system was
considered. Lattice points are all the points having integer coordinates. The distances of these lattice
points to the origin O are denoted from small to large as rn;0 < rn;1 < rn;2 < . . ., where rn;0 ¼ 0 denotes
the origin itself. All the lattice points scatter on a series of concentric spherical surfaces with the center
O and the radii rn;k; k ¼ 0;1;2; . . .. The number of lattice points on the spherical surface with the radius rn;k
is denoted as Nn;k. Several properties about the sequences rn;k and Nn;k; k ¼ 0;1;2; . . ., were investigated.
The relevant generating function was derived in terms of the elliptic theta functions for convenient cal-
culation of rn;k and Nn;k. We proved that for the 2-dimensional case, the number of lattice points is 4 on
each circles with the radii satisfying r22;s ¼ 2h; h ¼ 0;1;2; . . .; for the 3-dimensional case, the number of
lattice points is 6 on each spherical surfaces with the radii satisfying r23;s ¼ 4h;h ¼ 0;1;2; . . .; for the 4-
dimensional case, the number of lattice points is 24 on each hyper-spherical surfaces with the radii sat-
isfying r24;s ¼ 2h;h ¼ 1;2; . . ..
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In molecular dynamics simulations, the coordination shells
around an atom are often considered, such as in pairwise poten-
tials (Kittel, 2005), the Van der Waals interactions (Mittemeijer,
2010), the embedded atom potentials (Daw and Baskes, 1984;
Finnis and Sinclair, 1984; Duan and Liu, 2020) and the radial distri-
bution function (Callister, 2001). Mirjalili and Vahdati-Khaki
(2008) calculated the melting point of nano-particles by introduc-
ing and using the mean coordination number. Peresypkina and
Blatov (1999) and Peresypkina and Blatov (2000) considered the
molecular coordination numbers in crystal structures of simple
substances and organic compounds. Wang et al. (2010) investi-
gated the coordination numbers and geometrical conformation of
rare earth metal. In Duan et al. (2020), computational problems
of multilayered coordination radii and coordination numbers in
cubic crystals were considered, respectively for simple cubic,
body-centered cubic and face-centered cubic crystals. These prob-
lems were solved by modelling the enumeration of lattice points in
3-dimensional space by means of the Diophantine equations and
generating functions.
The calculation problem of coordination numbers of cubic
crystals, especially the simple cubic crystals, may be modeled as
counting of lattice points in the Cartesian coordinate system. In a
2-dimensional space, the calculation of lattice points within a
circle is related to an ancient puzzle, known as the Gauss’s circle
problem (Hardy and Landau, 1924; Berndt et al., 2018), which is
still an open problem (Berndt et al., 2018) the resolution of which
involves the application of advanced number theory and special
functions (Andrews, 2015; Travaglini, 2015; Grosswald, 1985). Its
counterpart in 3-dimensional space has been considered in
(Grosswald, 1985; Fraser and Gotlieb, 1962; Arkhipova, 2008;
Fomenko, 2014). Further, a new field, the geometry on the integer
lattices, was developed in Maehara and Martini (2018). Owing to
the complicacy of computation problem on lattices, the lattice the-
ory has been applied to the field of cryptography (Micciancio et al.,
2011; Wang et al., 2016).

In this article, we consider a counting problem on lattice points
in the n-dimensional space with the Cartesian rectangular coordi-
nate system. Lattice points are all the points with the integer coor-
dinates. The following notations are used:

n: the dimension of space under consideration.
r: the distance to the origin O of the Cartesian rectangular coor-

dinate system.
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rn;k: the distances from lattice points to the origin O in n-
dimensional rectangular coordinate system, ordered from small
to large as rn;0 < rn;1 < rn;2 < . . ., where rn;0 ¼ 0 means the distance
of the origin O to itself. So r2n;k is just the kþ 1ð Þth non-negative
integer in natural order that may be expressed as sum of n square
numbers.

Nn;k: the number of lattice points on the spherical surface with
the radius rn;k; k ¼ 0;1; . . ..

Ln;k: the total of lattice points on or inside the spherical surface
with the radius rn;k; k ¼ 0;1; . . ..

Z: the set of all the integers.
In the next section, we discuss the properties of the sequence

rn;k and express Nn;k as the number of integer solutions of a quad-
ratic indefinite equation. Further, we derive the generating func-
tion for the sequences Nn;k and r2n;k; k ¼ 0;1; . . ., in terms of the
elliptic theta functions. So convenient computing methods for
Nn;k and r2n;k are obtained. In Section 3, we consider the properties
of the sequences Nn;k and Ln;k; k ¼ 0;1; . . ., especially focused on
the cases of n ¼ 2;3 and 4.

2. Sequences rn;k and Nn;k;k ¼ 0;1; . . ., and the generating
function

We consider the lattice points in n-dimensional space with rect-
angular coordinate system. Suppose the basis vectors of the unit
orthogonal basis to be e1; e2; . . . ; en. Then, every lattice point A
may uniquely be represented as a vector

rA ¼ OA
�! ¼

Xn
i¼1

xiei; ð1Þ

where xi 2 Z. The square of the distance of the lattice point A to the
origin O is

r2 ¼ jrAj2 ¼
Xn
i¼1

x2i : ð2Þ

The set of all possible values of r2 is countable, assumed to be
r2n;k; k ¼ 0;1;2; . . ., and

rn;0 < rn;1 < rn;2 < . . . :

All of the number r2n;k; k ¼ 0;1;2; . . ., are exactly the set of all of
the sums of n square numbers. It is obvious that

rn;0 ¼ 0; rn;1 ¼ 1; ð3Þ
which correspond to the origin O and the nearest 2n lattice points
from O in n-dimensional space:

�1;0; . . . ;0ð Þ; 0;�1; . . . ;0ð Þ; . . . ; 0; . . . ; 0;�1ð Þ:
In 2-dimensional case, r22;k cannot equal 3, i.e. the first positive

integer which cannot be represented as the quadratic sum of two
integers is 3. In 3-dimensional case, r23;k cannot equal 7.

Whether a given positive integer can be represented into a quad-
ratic sum of two, three or four integers is a classical and attractive
problem. We list the related results in the following three theorems
(Andrews, 2015; Travaglini, 2015; Grosswald, 1985; Feng, 2011).

Theorem 1. A positive integer m can be expressed as the sum of two
square numbers if and only if each prime factor of m in the form of
p ¼ 4kþ 3 has an even power, where k is a nonnegative integer.
Fig. 1. Plots of r2n;k versus k for k ¼ 0;1; . . . ;49 (+: n ¼ 2;� : n ¼ 3; � : n ¼ 4).
Theorem 2. A positive integer m cannot be expressed as the sum of
three square numbers if and only if m can be expressed as the form

of m ¼ 4l 8kþ 7ð Þ, where l and k are nonnegative integers.
2

Theorem 3 (Lagrange’s four-square theorem). Every positive integer
can be expressed as the quadratic sum of four integers.

If a positive integer m can be expressed as a sum of p square
numbers, then m can be expressed as a sum of more than p square
numbers either because some terms in the sum are already sum of
squares or by trivially adding as many zeros squared as one wants.

It can be derived that the sequence r22;k
n o

is a subsequence of

r23;k
n o

, and the sequence r23;k
n o

is a subsequence of r24;k
n o

. From

Theorem 3, if n P 4, then the sequence r2n;k
n o

is just all the non-

negative integers, i.e.

r2n;k ¼ k; k ¼ 0;1;2; . . . ; for n P 4: ð4Þ
We notice that for the higher dimensional cases, n P 4, the

sequence r2n;k
n o

is very simple. But for the 2-dimensional and 3-

dimensional cases, namely n ¼ 2;3, it is difficult to find a general

term formula or recurrence relation for the sequence r2n;k
n o

. By

means of the software MATHEMATICA 8.0, the plots of r2n;k versus
k for k ¼ 0;1; . . . ;49 are shown in Fig. 1, where n is taken as 2, 3
and 4, respectively.

The plots of r2n;k versus k for k ¼ 1 through k ¼ 20000 were
examined visually for n ¼ 2 and 3, and we found that for n ¼ 3,
the plot is almost a straight line, while for n ¼ 2, the plot appears
to be slightly concave. By linear fitting, the obtained results are

r̂23;k ¼ 1:1999k� 2:579; ð5Þ
r̂22;k ¼ 4:1641k� 1596:5: ð6Þ

We also examined the fitting effects by adding a nonlinear term

in the form of akþ bþ ckd, and find that for the case of n ¼ 3, the
fitting result nearly does not change and d ¼ 1 again, while for
the case of n ¼ 2, the fitting result is r̂22;k ¼ �2:1113k� 119:88þ
4:3433k1:0366.

For any nonnegative integer k, the number of lattice points, Nn;k,
on the spherical surface jrAj ¼ rn;k, introduced in the last section, is
just the number of the n-tuples, x1; x2; . . . ; xnð Þ 2 Zn, the integer
solutions of the quadratic indefinite equation

Xn
i¼1

x2i ¼ r2n;k: ð7Þ
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Next, we consider the generating function Gn tð Þ of the sequence
Nn;k; k ¼ 0;1;2; . . ., starting from the equation

X1
x1 ;x2 ;...;xn¼�1

tx
2
1þx22þ...þx2n ¼

X1
j¼�1

tj
2

 !n

: ð8Þ

Considering Eq. (7), combining the terms with same powers on
the left hand side of Eq. (8) forms a power series on t, which is just

in the form of
P1

k¼0Nn;kt
r2
n;k . So we obtain the generating function

for the sequences Nn;k and r2n;k; k ¼ 0;1;2; . . ., as

Gn tð Þ ¼
X1
k¼0

Nn;kt
r2
n;k ¼ 1þ 2

X1
j¼1

tj
2

 !n

¼ h3 0; tð Þð Þn; ð9Þ

where h3 c; tð Þ is the elliptic theta function of the third type, defined
as Olver et al. (2010)

h3 c; tð Þ ¼ 1þ 2
X1
j¼1

tj
2
cos 2jcð Þ; jtj < 1: ð10Þ

We can resort to a computer software to expand the power of
the elliptic theta function in Eq. (9) into power series to obtain
the values of r2n;k and Nn;k. We note that the elliptic theta function

is built-in in MATHEMATICA 8.0. Let Ln;k ¼
Pk

i¼0Nn;i. In Table 1,

the first ten values of the sequences r2n;k
n o

; Nn;k

� �
and Ln;k

� �
for

n ¼ 2;3;4 are listed.

3. Properties of sequences Nn;k and Ln;k;k ¼ 0;1;2; . . .

In this section, we investigate properties of the sequence Nn;k

and Ln;k; k ¼ 0;1;2; . . ., especially for the cases of n ¼ 2;3 and 4.

Theorem 4. For any positive integers k P 1 and p P 2, there exists a
positive integer s > k, such that prn;k ¼ rn;s and Nn;k 6 Nn;s.
Proof. Suppose l1; . . . ; lnð Þ is an integer solution of the indefinite

equation
Pn

i¼1x
2
i ¼ r2n;k.Then we have

Pn
i¼1 plið Þ2 ¼ prn;k

� �2. This
implies that there exists a positive integer s > k, such that
prn;k ¼ rn;s and pl1; . . . ; plnð Þ is an integer solution of the indefinite
equation

Pn
i¼1x

2
i ¼ r2n;s. Therefore, the inequality Nn;k 6 Nn;s holds.

j.
Theorem 5. (i) If n ¼ 2 or 3, then for each rn;k; k P 1, there exists a
positive integer s > k, such that 2rn;k ¼ rn;s and Nn;k ¼ Nn;s.

(ii) For the case of n ¼ 4, if r24;k is a positive even number, then

there exists a positive integer s > k, such that 2r4;k ¼ r4;s and
N4;k ¼ N4;s.
Table 1
The first ten values of the sequences r2n;k

n o
; Nn;k

� �
and Ln;k

� �
for n ¼ 2;3;4.

k r22;k N2;k L2;k r23;k

0 0 1 1 0
1 1 4 5 1
2 2 4 9 2
3 4 4 13 3
4 5 8 21 4
5 8 4 25 5
6 9 4 29 6
7 10 8 37 8
8 13 8 45 9
9 16 4 49 10

3

Proof. By Theorem 4, we only need to explain the inequality
Nn;k P Nn;s holds. Suppose l1; . . . ; lnð Þ is an integer solution of the
equation

Pn
i¼1x

2
i ¼ r2n;s. Then

Xn
i¼1

l2i ¼ 4r2n;k: ð11Þ

In the following we show that all of li for i ¼ 1; . . . ; n are even.

(i) If n ¼ 2, then l1 and l2 in Eq. (11) are both even. In fact, it is
obvious that there cannot be exactly one even. Suppose both l1 and
l2 are odd, then

l21 þ l22 ¼ 2uþ 1ð Þ2 þ 2v þ 1ð Þ2 ¼ 2 2u2 þ 2uþ 2v2 þ 2v þ 1
� �

;

where u;v are integers. Eq. (11) cannot hold.
If n ¼ 3, Eq. (11) implies evidently that l1; l2 and l3 cannot be all

odd, nor exactly one odd. Suppose there are exactly two being odd,
then we have

X3
i¼1

l2i ¼ 2uþ 1ð Þ2 þ 2v þ 1ð Þ2 þ 4g

¼ 2 2u2 þ 2uþ 2v2 þ 2v þ 2g þ 1
� �

; ð12Þ
where u;v; g are integers. Eq. (11) cannot hold too.

Hence if n ¼ 2 or 3, all li in Eq. (11) are even. Thus l1=2; . . . ; ln=2ð Þ
is an integer solution of the equation

Pn
i¼1x

2
i ¼ r2n;k. It follows that

Nn;k P Nn;s.
(ii) If n ¼ 4, Eq. (11) implies obviously that among l1; l2; l3 and l4,

there cannot be exactly one or three being odd. If there were
exactly two being odd, a counterpart with Eq. (12) would derived.
So Eq. (11) cannot hold. If all the four were odd, then

P4
i¼1

l2i ¼ 2uþ 1ð Þ2 þ 2v þ 1ð Þ2 þ 2g þ 1ð Þ2 þ 2hþ 1ð Þ2

¼ 4 u uþ 1ð Þ þ v v þ 1ð Þ þ g g þ 1ð Þ þ h hþ 1ð Þ þ 1ð Þ;
ð13Þ

where u;v; g;h are integers. But by the assumptions for the case
n ¼ 4, Eq. (11) has the form

X4
i¼1

l2i ¼ 4� 2p; p ¼ 1;2; . . . : ð14Þ

This is contradictory to Eq. (13). Hence if n ¼ 4, all li in Eq. (11)
are even. Thus l1=2; . . . ; l4=2ð Þ is an integer solution for the equationP4

i¼1x
2
i ¼ r2n;k. It follows that Nn;k P Nn;s. The proof is completed. j.

Theorem 5 indicates that for the 2-dimensional or 3-
dimensional cases, the numbers of lattice points on the spherical
surfaces remain the same when the radius doubles; for the 4-
dimensional case, if the square of the radius is even, then as the
N3;k L3;k r24;k N4;k L4;k

1 1 0 1 1
6 7 1 8 9
12 19 2 24 33
8 27 3 32 65
6 33 4 24 89
24 57 5 48 137
24 81 6 96 233
12 93 7 64 297
30 123 8 24 321
24 147 9 104 425
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radius doubles, the number of lattice points on the spherical sur-
face remains unchanged. For the 4-dimensional case, if the square
of the radius is odd, such invariant property cannot hold by the fol-
lowing theorem.

Theorem 6. For the case of n ¼ 4, if r24;k is an odd number and

2r4;k ¼ r4;s, then the inequality N4;k < N4;s holds.
Proof. Let r24;k ¼ 2mþ 1;m ¼ 0;1; . . .. By definition we know that
N4;k is the number of the integer solutions of the equation

X4
i¼1

x2i ¼ 2mþ 1; ð15Þ

while N4;s is the number of the integer solutions of the equation

X4
i¼1

x2i ¼ 4 2mþ 1ð Þ: ð16Þ

It is obvious that the double of any solution of Eq. (15) is a solu-
tion of Eq. (16). Now we write 4 2mþ 1ð Þ ¼ 8mþ 3þ 1. By Theo-
rem 2, 8mþ 3 can be expressed as the sum of three square
numbers. Thus we find a solution of Eq. (16) with at least one
odd component 1. This solution of Eq. (16) cannot be a double of
any integer solution of Eq. (15). The inequality N4;k < N4;s is proved.
j.

In Fig. 2, plots of Nn;k versus k for k ¼ 1 through 260 are shown
for n ¼ 2, 3 and 4, respectively. From Theorem 5, for the 2-
dimensional or 3-dimensional cases, for any s P 1, there are infi-
nitely many terms in the sequence Nn;k

� �
taking the same value

with Nn;s. This properties are reflected in Figs. 2a and 2b.
By using Eq. (4), the results in Theorems 5 (ii) and 6 mean

N4;k ¼ N4;4k; if k is even; ð17Þ
N4;k < N4;4k; if k is odd: ð18Þ

Theorem 7. (i) For the 2-dimensional case, every N2;k for k P 1 is a
multiple of 4. For every h;h ¼ 0;1;2; . . ., there exists a positive integer
s, such that
r22;s ¼ 2h; N2;s ¼ 4; ð19Þ
which is the least value of N2;k for k P 1.
Fig. 2. Plots of Nn;k versus k for k ¼ 1 throu

4

(ii) For the 3-dimensional case, every N3;k for k P 1 has the form
6dþ 12pþ 8q, where d ¼ 0 or 1, p; q P 0; d; p; q are not all zeros. For
every h;h ¼ 0;1;2; . . ., there exists a positive integer s, such that

r23;s ¼ 4h; N3;s ¼ 6; ð20Þ
which is the least value of N3;k for k P 1.

(iii) For the 4-dimensional case, every N4;k for k P 2 has the form
8dþ 24pþ 32qþ 16w, where d ¼ 0 or 1, p; q;w P 0; p; q;w are not
all zeros, and if w ¼ 1, then d ¼ 1. For every h;h ¼ 1;2; . . ., the
following equalities hold

N4;2h ¼ 24; h ¼ 1;2; . . . ; ð21Þ
which is the least value of N4;k for k P 2.
Proof. (i) For the 2-dimensional case, by symmetry, every N2;k for
k P 1 is a multiple of 4. From r22;1 ¼ 1;N2;1 ¼ 4 and Theorem 5 (i),
for any l P 0, there exists a positive integer s1, such that

r22;s1 ¼ 4l ¼ 22l; N2;s1 ¼ 4:

Since r22;2 ¼ 2 ¼ �1ð Þ2 þ �1ð Þ2 and N2;2 ¼ 4, so for any l P 0,
there exists a positive integer s2, such that

r22;s2 ¼ 4l � 2 ¼ 22lþ1; N2;s2 ¼ 4:

Thus for every h;h ¼ 0;1;2; . . ., there exists a positive integer s,
such that

r22;s ¼ 2h; N2;s ¼ 4;

which is the least value of N2;k for k P 1.
(ii) For the 3-dimensional case, we can classify the N3;k lattice

points for k P 1 into those on axes with only one nonzero
coordinate, those on planes with exactly two nonzero coordinates,
and those inside octants with three nonzero coordinates. There are
six first kind points, if any, a multiple of 12 of the second kind
points, and a multiple of 8 of the third kind points. Therefore, every
N3;k for k P 1 has the form 6dþ 12pþ 8q, where d ¼ 0 or 1,
p; q P 0; d; p; q are not all zeros.

From r23;1 ¼ 1;N3;1 ¼ 6 and Theorem 5 (i), for every
h;h ¼ 0;1;2; . . ., there exists a positive integer s, such that

r23;s ¼ 4hr23;1 ¼ 4h; N3;s ¼ 6;

which is the least value of N3;k for k P 1.
gh 260 ((a) n ¼ 2, (b) n ¼ 3, (c) n ¼ 4).
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(iii) For the 4-dimensional case, we classify the N4;k lattice
points for k P 2 into four classes: those with only one nonzero
coordinate, there being 8 points, if any; those with exactly two
nonzero coordinates, the number of points being a multiple of 24;
those with exactly three nonzero coordinates, the number being a
multiple of 32; and those with four nonzero coordinates, the
number being a multiple of 16. So every N4;k for k P 2 has the form
8dþ 24pþ 32qþ 16w, where d ¼ 0 or 1, p; q;w P 0.

Next, we show that even if d ¼ 1; p; q;w are not all zeros. If N4;k

for k P 2 has the expression 8þ 24pþ 32qþ 16w, then r24;k is a

square number, i.e. the partitions of four square numbers of r24;k
include the case of only one nonzero part. In this case, r24;k can be

expressed as the sum of at least two nonzero square numbers. In

fact, if r24;k ¼ 2mð Þ2, then it has the expression

r24;k ¼ m2 þm2 þm2 þm2. If r24;k ¼ 2mþ 1ð Þ2, then r24;k ¼ 2mð Þ2þ
4mþ 1. By Theorem 2, 4mþ 1 can be expressed as the sum of three
square numbers since there is the expression 4mþ 1 ¼ 8uþ 1 or
4mþ 1 ¼ 8uþ 5 corresponding to even m or odd m, respectively.
Therefore, p; q;w are not all zeros by the last paragraph.

Further, we show that ifw ¼ 1, then d ¼ 1.w ¼ 1 means there is
only one lattice point with four positive coordinates. The four
coordinates of such lattice point must be identical as
m;m;m;mð Þ;m > 0. Otherwise, more lattice points with four
positive coordinates were found by exchanging different coordi-

nates. Thus we have r24;k ¼ m2 þm2 þm2 þm2 ¼ 2mð Þ2; a square

number. Therefore, we have d ¼ 1.
Finally, due to N4;2 ¼ 24 and Eq. (17), we have

N4;4l �2 ¼ N4;22lþ1 ¼ 24; l P 0. Similarly, due to N4;4 ¼ 24 and Eq.

(17), we have N4;4l �4 ¼ N4;22lþ2 ¼ 24; l P 0. In conclusion, for every

h;h ¼ 1;2; . . ., the equalities N4;2h ¼ 24; h ¼ 1;2; . . ., hold, and

which is the least value of N4;k for k P 2 from the above analysis.
j.

Because one lattice point occupies one n-dimensional unit cube
and the n-dimensional sphere with the radius r has the volume

Vn rð Þ ¼ pn=2rn

C n
2þ1ð Þ,where C �ð Þ is the gamma function, so we have the

asymptotic behavior for the sequence Ln;k as

Ln;k � Vn rn;k
� � ¼ pn=2rnn;k

C n
2 þ 1
� � ; k ! 1: ð22Þ

This means

lim
k!1

Ln;k
Vn rn;k
� � ¼ 1: ð23Þ

We checked the results for n ¼ 2;3 and 4, and the data are plot-
ted in Fig. 3.
Fig. 3. Plots of Ln;k=Vn rn;k
� �

versus k for k ¼ 1 th

5

Unlike the sequence Ln;k; k ¼ 0;1;2; . . .,in Eqs. (22) and (23), the
sequence Nn;k; k ¼ 0;1;2; . . .,does not have an asymptotic behavior
for our considered cases n ¼ 2;3and 4. Instead, we may consider
the sequence of mean values
Nn;k ¼ Ln;k
kþ 1

; k ¼ 0;1;2; . . . : ð24Þ

From Eq. (22), it has the asymptotic behavior
Nn;k �
pn=2rnn;k

kþ 1ð ÞC n
2 þ 1
� � ; k ! 1: ð25Þ

For the case of n ¼ 4, a simple result may be derived considering

Eq. (4) as N4;k � p2k
2 ; k ! 1.For the cases of n ¼ 2 and n ¼ 3, we

only have N2;k �
pr2

2;k
k and N3;k �

4pr3
3;k

3k as k ! 1, since we do not
know the asymptotic behaviors of the sequences r2;k

� �
and r3;k

� �
.

4. Conclusions

Lattice points in n-dimensional space scatter on a series of con-
centric spherical surfaces with the center O and the radii rn;k, where
0 ¼ rn;0 < rn;1 < rn;2 < . . .. All of the number r2n;k; k ¼ 0;1;2; . . ., are
exactly the set of all of the sums of n square numbers. If n P 4,

the sequence r2n;k
n o

is just the sequence of all the nonnegative inte-

gers, i.e. r2n;k ¼ k; k ¼ 0;1;2; . . ..The number of lattice points,
Nn;k, on the spherical surface with the radius rn;k equals the
number of integer solutions of the quadratic indefinite
equation

Pn
i¼1x

2
i ¼ r2n;k. The generating function is derived as

Gn tð Þ ¼P1
k¼0Nn;kt

r2
n;k ¼ h3 0; tð Þð Þn in terms of the elliptic theta func-

tions for convenient calculation of rn;k and Nn;k.
We proved that for the 2-dimensional or 3-dimensional cases,

the numbers of lattice points on the spherical surfaces, Nn;k, remain
the same when the radius doubles; for the 4-dimensional case, if
the square of the radius is even, then as the radius doubles, the
number of lattice points on the spherical surface remains
unchanged, while if the square of the radius is odd, such invariant
property does not hold.

For the 2-dimensional case, for every h;h ¼ 0;1;2; . . ., there

exists a positive integer s, such that r22;s ¼ 2h and N2;s ¼ 4.For the
3-dimensional case, for every h;h ¼ 0;1;2; . . ., there exists a posi-

tive integer s, such that r23;s ¼ 4h and N3;s ¼ 6. For the 4-
dimensional case, for every h;h ¼ 1;2; . . ., the equalities
N4;2h ¼ 24 hold and 24 is the least value of N4;k for k P 2. Finally,

the asymptotic behaviors of the sequences Ln;k and Nn;k are given.
rough 200 ((a) n ¼ 2, (b) n ¼ 3, (c) n ¼ 4).
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