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In a multivariate stratified sampling design, the individual optimum allocation of one character may not
remain optimum to other characteristics. For the solution of such problems, a usable allocation must be
required to get precise estimates of the unknown population parameters, which may be near optimum to
all characteristics in some sense. The compromise criterion is required to obtain such usable allocation in
sampling literature. In this paper, the sample allocation problem is considered as a stochastic nonlinear
programming problem and thereafter formulated into a multiobjective programming problem to provide
the usable allocation. The formulated problem is solved by using different models of stochastic optimiza-
tion. Afterwards, the proposed allocation is worked out and compared with some other allocations, which
are well defined in sampling, to give a comparative study. Also, the numerical study defines the practical
utility of the proposed technique.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In many real-life practices, the populations may vary in their
accessibility. Some parts of the population may be in remote loca-
tions, gated buildings or other inaccessible areas. For such situa-
tions, the choice of sampling design affects the results of the
survey. Then the stratified sampling seems to be the best choice
of the sampling technique. For obtaining detailed information
about the characteristics of the population, a multivariate stratified
sample survey is carried out by splitting the population into L
strata. It is assumed that all the p characteristics are defined in
each unit of the population. The estimation of unknown population
means of p characteristics is required and may be carried out using
the Nonlinear Programming Problem (NLPP). Cochran (1977) has
been shown that the individual optimum allocation of one charac-
ter may not remain optimum for others. A compromise criterion
may be required to obtain the best allocation, which helps obtain
precise information about population parameters. Therefore the
allocation based on some compromised criterion is called compro-
mise allocation in multivariate stratified sampling design. Most of
the authors (Neyman, 1934; Kokan and Khan, 1967; Chatterjee,
1968; Ahsan, 1975; Khan et al., 1997; Semiz, 2004; Kozak, 2006;
Varshney et al., 2012, 2015; Fatima et al., 2014; Muhammad
et al., 2015; Muhammad and Husain, 2017; Varshney and
Mradula, 2019) discussed the problems of allocation and worked
out compromise allocation in multivariate stratified sample sur-
veys. A compromise allocation is obtained either by suggesting dif-
ferent compromise criteria or using the suggested criteria under
different conditions, i.e. in the availability of auxiliary information,
presence of nonresponse, etcetera. In many sampling designs, the
stratum variances are not known in advance but maybe estimable.
From the deterministic point of view, such problems may be for-
mulated as NLPPs. However, if the nature of the estimated vari-
ances is also considered, it will be an additional restriction to the
problem, and therefore the compromise allocation may not be
obtained easily. For such situations, the Stochastic Nonlinear Pro-
gramming Problem (SNLPP) may help to work out the required
compromise allocation to obtain sufficient information about pop-
ulation parameters (See (Charnes and Cooper, 1963; Prékopa,
1978; Díaz-García and Garay Tapia, 2007; Kozak and Wang,
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2010; Haseen et al., 2016)). Díaz-García and Ramos-Quiroga (2014)
discussed and provided results by solving SNLPPs with a fixed lin-
ear cost function. The concept of fuzzy set theory has been dis-
cussed by Zadeh (1965) and then Bellman and Zadeh (1970).
They utilized the fuzzy approach for dynamic issues. The idea of
the fuzzy set was given by Zimmermann (1978) to convert the
multiobjective linear programming problem into a single objective
linear programming problem. Many authors solved sample alloca-
tion problems by using fuzzy programming techniques (See (Gupta
et al., 2013; Ali and Hasan, 2013; Varshney et al., 2017; Haq et al.,
2020). Fuzzy programming is one of many available optimization
techniques that deal with optimization problems under uncer-
tainty. The technique is flexible and thus helps decision-makers
have a better understanding of their problems. Such techniques
may be applied when situations are not clearly defined and also
have uncertainty. The fuzzy programming technique is a more
appropriate technique for solving the problem when the data has
anykind of uncertainity. Fuzzy programming has been studied
and applied recently by several authors in different areas (Elsisi,
2019a, 2019b, 2020; Fakhrzad and Goodarzian, 2019; Elsisi and
Soliman, 2020; Fathollahi-Fard et al., 2020; Goodarzian and
Hosseini-Nasab, 2021; Lu et al., 2020).

Under the probabilistic environment, the use of the nonlinear
cost function is proposed by considering the labour cost as part
of the survey’s total cost. In this paper, the compromise criterion
is suggested for determining the compromise allocation for a
multiobjective-multivariate stochastic nonlinear programming
problem for the fixed cost in the probabilistic situation. The solu-
tion procedure is also given to solve the formulated problem by
using an appropriate nonlinear programming technique.

In Section 2, the notations and formulation of the problem are
given. The formulated problems’ solutions are suggested using
two deterministic approaches: modified E-model and chance con-
straints in Section 3. In the modified E-model formulation, the
solution strategy is recommended by utilizing a fuzzy goal pro-
gramming technique. For the chance constraints model, the solu-
tions are obtained using Lagrange multiplier and integer
nonlinear programming techniques. In Section 4, the numerical
illustration is discussed by considering the Iris data set, and the
data set is obtained by simulation carried out by the software R.
The formulated problem is solved through the modified E-model
approach and chance constraints technique. The solution proce-
dures are suggested by utilizing fuzzy goal programming problem,
Lagrange multiplier method and integer nonlinear programming
problem. MATLAB software is used to solve the formulated NLPPs.
A comparative study is included by considering some other alloca-
tions, as discussed in Section 4.1.1, with the proposed allocation.
Finally, the conclusion has been made for using the proposed tech-
nique in Section 5.
2. Framework of the problem

Assuming a population of N units that is partitioned into strata
of sizes N1;N2; . . . ;NL units such that

PL
h¼1Nh ¼ N:

For hth stratum, the following notations are introduced as
follows:

Nh : Stratum size
Wh ¼ Nh

N : Stratum weight
nh : Sample size

yhi: Observational value of ith stratum unit/stratum sample.

Y
�
h ¼ 1

Nh

PNh
i¼1yhi : Stratum mean

y
�
h ¼ 1

nh

Pnh
i¼1yhi : Sample mean

S2h ¼ 1
Nh�1

PNh
i¼1 yhi � Y

�
h

� �2
: Stratum mean square
2

s2h ¼ 1
nh�1

Pnh
i¼1 yhi � y

�
h

� �2
: Sample mean square.

Furthermore,

Y
�
¼ 1

N

PL
h¼1

PNh
i¼1yhi ¼ 1

N

PL
h¼1NhY

�
h ¼

PL
h¼1WhY

�
h : describes the

overall population mean.

If the estimated value of Y
�
is needed, then the stratified sample

mean

y
�
st ¼

XL

h¼1

Why
�
h;

gives an unbiased estimator for Y
�
with the sampling variance

Vðy�stÞ ¼
XL

h¼1

W2
hS

2
h

nh
�
XL

h¼1

WhS
2
h

N

In a multivariate stratified population where p characteristics
are given on each population element, then theppopulation means

Y
�
j; j ¼ 1;2; . . . ; p are to be estimated. Since the individual optimum

allocation may not be optimum for other characteristics. Let yjhi
denotes the value obtained from ithelement in hth stratum having

jth characteristic and Y
�
jh ¼ 1

Nh

PNh
i¼1yjhi be the stratum mean of yjhi.

Then the sample means for all characteristics in hth stratum are cal-
culated by

y
�
jh ¼ 1

nh

Xnh
i¼1

yjhi; j ¼ 1;2; . . . ; p:

For jth characteristic, an unbiased estimate of the overall popu-

lation mean Y
�
j is given by y

�
jst and is expressed by

y
�
jst ¼

XL

h¼1

Why
�
jh

with its sampling variance

Vðy�j stÞ ¼
XL

h¼1

W2
hS

2
jh

nh
�
XL

h¼1

WhS
2
jh

N

where S2jh is the stratum variance of jth characteristic in hth stratum
forj ¼ 1;2; . . . ;p, h ¼ 1;2; . . . ; L and can be calculated by

S2jh ¼
1

Nh � 1

XNh

i¼1

yjhi � Y
�
jh

� �2
:

For a multivariate stratified sample survey, the linear cost func-
tion may be considered for the overall budget of the survey
(Cochran, 1977) and may be expressed as

C ¼ c0 þ
XL

h¼1

chnh;

or

C � c0 ¼ C0 ¼
XL

h¼1

chnh;

where C0 denotes the cost to measure all sampling units in all
strata, ch is the per-unit measurement cost of measuring p charac-

teristics on the selected unit in hth stratum, nhis the hth stratum
sample size and c0 is the overhead cost to conduct the survey. If
the travel cost within the stratum come into consideration, then
the cost function may not have remained linear. Beardwood et al.
(1959) suggested the nonlinear cost function for this case. They
showed that the distance between n arbitrarily dispersed points is
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proportional to
ffiffiffi
n

p
. The nonlinear cost function, which includes tra-

vel costs, may be expressed as

C ¼ c0 þ
XL

h¼1

chnh þ
XL

h¼1

th
ffiffiffiffiffi
nh

p
;

or

C0 ¼ C � c0 ¼
XL

h¼1

chnh þ
XL

h¼1

th
ffiffiffiffiffi
nh

p ð1Þ

where th
ffiffiffiffiffi
nh

p
is the travel cost incurred for hth stratum. The cost

function defined by (1) is quadratic in
ffiffiffiffiffi
nh

p
.

Practically, some other cost factors may be considered, like
costs on the reward to respondents, labour costs, etc. Whenever
the interviewers want to collect detailed information from the
selected respondents, there will be a requirement for more human
resources available for a specified time. For these prerequisites, the
labour costs may be used for conducting the survey, and therefore
the cost function may be expressed as

C0 ¼ C � c0 ¼
XL

h¼1

chnh þ
XL

h¼1

th
ffiffiffiffiffi
nh

p þx
XL

h¼1

E Thð Þ ð2Þ

where x is unit time labour cost and
PL

h¼1E Thð Þ is the accumulated
labour time to obtain information from all strata. The labour time is
available concerning time for sampling units within a stratum and
follows an exponential distribution with the rate k and value

k ¼ 1=ðaverage timeÞ. To approach nh units in hth stratum, the
labour time has Gamma distribution with parameters ðnh; kÞ. Subse-
quently, the distribution of labour time to measure all sampling
units within the stratum follows Gamma distribution with
ðPL

h¼1nh; kÞ (Ross, 2009). Hence the expected labour time for all
strata may be computed as

PL
h¼1E Thð Þ ¼ PL

h¼1

R1
0 tke�kt ðktÞnh�1

ðnh�1Þ! dt
� �

¼ PL
h¼1

1
ðnh�1Þ!

R1
0 tke�ktðktÞnh�1dt

� �
¼ PL

h¼1
nh
k ;

for various values of k (Muhammad and Husain, 2017).
The problem may be formulated in two ways by using a deter-

ministic approach, and the solution is obtained either by minimiz-

ing the variance Vðy�j stÞ for a fixed cost or by minimizing the cost of
the survey with variances of specified limits. Therefore two opti-
mization problems may be described as

Minimize Vðy�j stÞ ; j ¼ 1; 2; . . . ; p simultaneously

subject to
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0;

2 6 nh 6 Nh;

and nh integers; h ¼ 1; 2; . . . ; L:

ð3Þ

and

Minimize
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k

subject to Vðy�j stÞ 6 Vj
0; j ¼ 1; 2; . . . ; p;

2 6 nh 6 Nh;

and nh integers; h ¼ 1; 2; . . . ; L;

ð4Þ

respectively.
If the true values of S2jh are unknown, then they may be com-

puted through a starter test or the values of past events (Kozak,
2006).
3

3. Determination of identical probabilistic sampling variances
and cost

If S2jh are considered as random variables, then the problems
defined in (3) and (4) become SNLPPs. These problems may be con-
verted into their equivalent deterministic problems. Several tech-
niques, like modified E-model, E-model, V-model, chance
constraints, etc., are available to solve deterministic problems
(Charnes and Cooper, 1963). In this manuscript, modified E-
model and chance constraints methods are used to convert the
problems into the deterministic form.

3.1. Determination of probabilistic sampling variance through
modified E-model

Consider the following formulated SNLPP for jth characteristic
which is given as

Minimize Vðy�j stÞ
subject to

PL
h¼1chnh þ

PL
h¼1sh

ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0;

2 6 nh 6 Nh;

and nh integers; h ¼ 1; 2; . . . ; L; j ¼ 1; 2; . . . ; p;
ð5Þ

where Vðy�j stÞ ¼
PL

h¼1
W2

hS
2
jh

nh
�PL

h¼1
WhS

2
jh

N and S2jh are random variables.

By considering the limiting distribution of S2jh (Melaku, 1968;
Díaz-García and Garay Tapia, 2007), define a random variable fh
that has an asymptotic NðEðfhÞ; VðfhÞ Þ:

For jth characteristic, fjh is defined for a multivariate case and is
given as

fjh ¼
1

nh � 1

Xnh
i¼1

yjhi � Y
�
jh

� �2

where yjhi denotes the value of the ith unit in hth stratum for jth char-

acteristic and Y
�
jh ¼ N�1

h

PNh
i¼1yjhi is stratum mean for hth stratum. The

random variable fjh has an asymptotic NðEðfhÞ; VðfhÞ Þ: These are
given as

EðfjhÞ ¼
nh

nh � 1
S2jh

and

VðfjhÞ ¼
nh

ðnh � 1Þ2
½C4

yjh � ðS2jhÞ
2�

respectively, where C4
yjh is the fourth mean moment and can be

calculated by the following expression

C4
yjh ¼

1
Nh

XNh

i¼1

yjhi � Y
�
jh

� �4
; h ¼ 1;2; . . . ; L; j ¼ 1;2; . . . ; p:

Let us define s2jh which may be given as

s2jh ¼ fh �
nh

nh � 1
y
�
jhi � Y

�
jh

� �2
;

where

nh

nh � 1
! 1

and

y
�
jhi � Y

�
jh

� �2
! 0 in probability form:
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Then, the sample variance s2jh has Normal asymptotical
distribution

s2jh !
a
NðEðfjhÞ; VðfjhÞÞ

It has also seen that the objective function in (5) is a linear func-
tion of s2jh. Therefore, the objective function also follows Normal
distribution with mean and variance, which are given as

EðV̂ðy�j stÞÞ ¼ E
PL

h¼1

W2
hs

2
jh

nh
�PL

h¼1

Whs
2
jh

N

� �

¼ PL
h¼1

W2
hS

2
jh

nh�1 �PL
h¼1

Wh
N

nh
nh�1

� �
S2jh

ð6Þ

and

VðV̂ðy�j stÞÞ ¼ V
PL

h¼1

W2
h s

2
jh

nh
�PL

h¼1

Whs
2
jh

N

� �

¼ PL
h¼1

W4
h

nh nh�1ð Þ2 C4
yjh � ðS2jhÞ

2� �
�PL

h¼1
W2

h

N2
nh

ðnh�1Þ2 C4
yjh � ðS2jhÞ

2� �h i

Therefore by using the modified E-model technique, the objec-
tive function may be redefined as

f jðnhÞ ¼ k1E V̂ðy�j stÞ
� �

þ k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðV̂ðy�j stÞÞ

q
where k1 and k2 are non-negative constants such that k1 þ k2 ¼ 1.
The values of k1 and k2 will show the existence of the expectation

and variance of V̂ðy�j stÞ. Hence, the equivalent deterministic NLPP

to the SNLPP for jth characteristic, given in (5), maybe formulated as

Minimize f jðnhÞ
subject to

PL
h¼1chnh þ

PL
h¼1sh

ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0;

2 6 nh 6 Nh;

and nh integers; h ¼ 1;2; . . . ; L; j ¼ 1;2; . . . ; p;

ð8Þ

where

f jðnhÞ ¼ k1
PL

h¼1
W2

hS
2
jh

nh�1 �PL
h¼1

WhS
2
jh

N
nh

nh�1

� �� �

þk2
PL

h¼1
W4

h

nh nh�1ð Þ2 C4
yjh � ðS2jhÞ

2� �
�PL

h¼1
W2

h

N2
nh

ðnh�1Þ2 C4
yjh � ðS2jhÞ

2� �� �h i1=2
:

Since the objective function includes the values of the popula-
tion variance S2jh, but these values are unknown in general, in that

case, the sample variances s2jh may be used. Therefore, the equiva-
lent deterministic NLPP defined in (8) may be given as

Minimize f jðnhÞ ¼ k1
PL

h¼1

W2
h s

2
jh

nh�1 �PL
h¼1

Whs
2
jh

N
nh

nh�1

� �� �

þk2
PL

h¼1
W4

h

nh nh�1ð Þ2 C4
yjh � ðs2jhÞ

2
� �

�PL
h¼1

W2
h

N2
nh

ðnh�1Þ2 C4
yjh � ðs2jhÞ

2
� �� �h i1=2

subject to
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0 ;

2 6 nh 6 Nh;

and nh integers; h ¼ 1;2; . . . ; L; j ¼ 1;2; . . . ;p:
ð9Þ

The NLPP given in (9) may be extended as multiobjective-INLPP
(MINLPP) for multivariate stratified sampling designs as given as

Minimize f 1ðnhÞ; f 2ðnhÞ; . . . ; f pðnhÞ
	 


subject to
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0;

2 6 nh 6 Nh;

and nh integers; h ¼ 1;2; . . . ; L:

ð10Þ
4

3.1.1. Solution procedure by using the fuzzy goal programming
technique

To solve the MINLPP given in (10), the fuzzy goal programming
technique may be applied for multivariate sampling design. Since
no technique is developed to solve the multiobjective formulation
of INLPP, in that case, the problem may be converted into a single
objective problem by using a suitable criterion. For such a case, the
fuzzy goal programming technique may be used and applied using
the following steps.

Stage 1: To get the solution of the MINLPP, a problem of a single
objective function is to be required by ignoring the remaining
objective functions of other characteristics to work out the opti-
mum solution for each characteristic as an ideal solution.

Stage 2: Step �1 is repeated for all characteristics, and p-
optimum solutions are obtained to give the optimum values of
objective functions ðf 1; f 2; . . . ; f pÞ.

Stage 3: To compute the payoff matrix, the ideal solutions will
give the upper and lower values for each objective function by

defining Uj and Lj for j
th objective function; j ¼ 1; 2; . . . ; p.

These values are computed as

Uj ¼ Max f 1ðn�
1hÞ; f 2ðn�

2hÞ; . . . ; f pðn�
phÞ

n o
and

Lj ¼ Min f 1ðn�
1hÞ; f 2ðn�

2hÞ; . . . ; f pðn�
phÞ

n o
where f jðn�

jhÞis the optimum value of the objective function for jth

characteristic with optimum allocation n�
jh.

Stage 4: The membership function may be defined as

ljðnjhÞ ¼
0 if f jðnjhÞ P Uj

UjðnjhÞ�f jðnjhÞ
UjðnjhÞ�LjðnjhÞ if Lj 6 f jðnjhÞ 6 Uj

1 if f jðnjhÞ 6 Lj

8>><
>>:

where ljðnjhÞ is a strictly monotonic decreasing function to the
solution njh, h ¼ 1; 2; . . . ; L.

Consider the variable nj which is defined as

nj ¼
UjðnjhÞ � f jðnjhÞ
UjðnjhÞ � LjðnjhÞ

Stage 5: By the max–min method, we have
Max ½Min ðn1; n2; . . . ; npÞ�, then
Maximize n

subject to n1 P n;

n2 P n;

..

.

np P n ;

where n ¼ Min
j

fljðnjhÞ; j ¼ 1; 2; . . . ;pg .
Finally, the mathematical programming formulation for the

problem (10) is to be solved by using fuzzy goal programming as
follows:

Maximize n

subject to f 1 � nðU1 � L1Þ P L1
f 2 � nðU2 � L2Þ P L2

..

.

f p � nðUp � LpÞ P Lp;PL
h¼1chnh þ

PL
h¼1sh

ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0;

n P 0; nh are integers; h ¼ 1; 2; . . . ; L:

ð11Þ
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3.2. Determination of probabilistic sampling cost through chance
constraints

In this section, the SNLPP is considered for minimizing the total
survey cost for a given bound to the estimated variance of the
mean. This bound may be specified with tolerance limits for esti-
mated variances of the estimates. This SNLPP may be formulated
as:

Minimize
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k

subject to P V̂ðy�j stÞ 6 Vj
0

h i
P p0 ; j ¼ 1; 2; . . . ;p;

2 6 nh 6 Nh;

and nh integers; h ¼ 1; 2; . . . ; L;
ð12Þ

where

V̂ðy�j stÞ ¼
XL

h¼1

W2
hs

2
jh

nh
�
XL

h¼1

Whs2jh
N

:

Also, Vj
0 P 0 and p0 is a predetermined probability such that

0 6 p0 6 1.
Since s2jh follows an asymptotic NðEðfhÞ; VðfhÞ Þ, then the esti-

mated V̂ðy�j stÞin (12) also follows asymptotic Normal distribution
with mean and variance defined in (6) and (7), respectively. After

standardizing the function of the V̂ðy�j stÞ in (12), it may be re-
expressed as

P
V̂ðy�j stÞ � EfV̂ðy�j stÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VfV̂ðy�j stÞg
q 6

Vj
0 � EfV̂ðy�j stÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
2
64

3
75 P p0

where p0 ¼ u Vj
0�EfV̂ðy�j st Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j st Þg

p
" #

and /ð�Þ represents the function of standard Normal distribu-
tion. If e denotes the value of a random variable that follows stan-
dard normal distribution such that /ð�Þ ¼ p0, with these conditions,
the inequality may be expressed as

u
Vj

0 � EfV̂ðy�j stÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
2
64

3
75 P uðeÞ

Therefore,

EfV̂ðy�j stÞg þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
� Vj

0 6 0:

The equivalent deterministic NLPP for SNLPP in (12) may be
given as

Minimize
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k

subject to EfV̂ðy�j stÞg þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
� Vj

0 6 0; j ¼ 1; 2; . . . ; p; 2 6 nh 6 Nh;

and nh intgers; h ¼ 1;2; . . . ; L;
ð13Þ
Table 1
Three strata information with two characteristics.

h Nh s21h s22h C4
y1h

1 3000 0.01523817 0.02037975 0.0006806
2 3000 0.06898021 0.00957083 0.0143498
3 3500 0.16608490 0.01080517 0.0842604

5

where

EfV̂ðy�j stÞg þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
¼ PL

h¼1

W2
hS

2
jh

nh�1 � PL
h¼1

WhS
2
jh

N
nh

nh�1

� �� �

þe
PL
h¼1

W4
h

nh nh�1ð Þ2 C4
yjh � ðS2jhÞ

2� �
� PL

h¼1

W2
h

N2
nh

ðnh�1Þ2 C4
yjh � ðS2jhÞ

2� �� �� �1=2
ð14Þ

The expression in (14) population variances S2jh, and these val-

ues remain not known in advance. Then s2jh maybe substituted in

place of S2jh. Hence the equivalent deterministic NLPP for (12)
may be given as

Minimize
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k

subject to EfV̂ðy�j stÞg þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
� Vj

0 6 0 ; j ¼ 1; 2; . . . ;p;

2 6 nh 6 Nh;

and nh integers; h ¼ 1; 2; . . . ; L;
ð15Þ

where

EfV̂ðy�j stÞg þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfV̂ðy�j stÞg

q
¼ PL

h¼1

W2
hs

2
jh

nh�1 �
PL
h¼1

Whs
2
jh

N
nh

nh�1

� �� �

þ e
PL
h¼1

W4
h

nh nh�1ð Þ2 C4
yjh � ðs2jhÞ

2
� �

� PL
h¼1

W2
h

N2
nh

ðnh�1Þ2 C4
yjh � ðs2jhÞ

2
� �� �� �1=2

ð16Þ
4. Application

A population of size N ¼ 9500; with three strata and two
characteristics are taken and obtained by simulating 150 obser-
vations of Iris data. Iris data set is available in the Software R
domain (R Development Core Team, 2018). These observations
are divided into three strata where two characteristics (that is,
length and width of a leaf of a particular species of flower) are
measured on each population unit. The population units for
three strata of sizes 3000, 3000 and 3500 are generated by the
simulation of Iris data using the software R and the values of
s2jh and C4

yjh are computed and reported in Table 1. The values
of ch; sh;x and k are assumed for numerical illustration accord-
ingly and given in Table 1. The total cost for conducting the sur-
vey is taken as 1000 units.

4.1. Solution for modified E-model by fuzzy goal programming
technique

Without loss of generality, k1 ¼ k2 ¼ 0:5 is taken. For the given
numeric values, given in Table 1, the formulations of the NLPP for
both characteristics are given as
C4
y2h

ch sh x k

1 0.001217395 2 1 100 20
2 0.000268493 3 2 100 20
2 0.000349415 3 3 100 20
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Minimize f 1 ¼ 0:5 0:00151959
ðn1�1Þ þ 0:00687891

ðn2�1Þ þ 0:02254338
ðn3�1Þ � 0:00481210n1

9500ðn1�1Þ � 0:02178320n2
9500ðn2�1Þ � 0:06118920n3

9500ðn3�1Þ

h i
þ0:5 0:000004459

n1�1ð Þ2n1
þ 0:00009538

n2�1ð Þ2n2
þ 0:00104419

n3�1ð Þ2n3
� 0:00004472n1

95002 n1�1ð Þ2 �
0:00095649n2
95002 n2�1ð Þ2 �

0:00769289n3
95002 n3�1ð Þ2

h i1
2
;

subject to 2n1 þ 3n2 þ 3n3 þ ffiffiffiffiffi
n1

p þ 2
ffiffiffiffiffi
n2

p þ 3
ffiffiffiffiffi
n3

p þ 5 n1 þ n2 þ n3ð Þ 6 1000;
2 6 nh 6 Nh ;

and nh integers; h ¼ 1;2;3:

Minimize f 2 ¼ 0:5 0:00203233
ðn1�1Þ þ 0:00095443

ðn2�1Þ þ 0:00146663
ðn3�1Þ � 0:00643571n1

9500ðn1�1Þ � 0:00302237n2
9500ðn2�1Þ � 0:00398085n3

9500ðn3�1Þ

h i
þ0:5 ð0:00000797Þ

n1�1ð Þ2n1
þ 0:00000176

n2�1ð Þ2n2
þ 0:0000042865

n3�1ð Þ2n3
� 0:00007998n1

95002 n1�1ð Þ2 �
0:00001764n2
95002 n2�1ð Þ2 �

0:00003158n3
95002 n3�1ð Þ2

h i1
2

subject to 2n1 þ 3n2 þ 3n3 þ ffiffiffiffiffiffi
n1

p þ 2
ffiffiffiffiffiffi
n2

p þ 3
ffiffiffiffiffiffi
n3

p þ 5 n1 þ n2 þ n3ð Þ 6 1000;
2 6 nh 6 Nh ;

and nh integers; h ¼ 1;2;3:

characteristics are worked out as given below:

n11 ¼ 18; n12 ¼ 37; n13 ¼ 67; f 1 ¼ 0:00034712;

n21 ¼ 54; n22 ¼ 33; n23 ¼ 40; f 2 ¼ 0:00005878:

After getting ideal solutions, the payoff matrix may be com-
puted and given in Table 2:

The upper and lower bounds of each objective function may be
given as:

f l1 ¼ 0:00034712; f u1 ¼ 0:00047683;

f l2 ¼ 0:00005878; f u2 ¼ 0:00010331;

Therefore the values of Lj and Uj are obtained as

Lj ¼ Min
j

f jðn�
jhÞ ¼ 0:000058780 and Uj ¼ Max

j
f jðn�

jhÞ

¼ 0:00047683:

Let l1ðn1hÞ and l2ðn2hÞ are the fuzzy membership function for
the functions f jðnjhÞ; j ¼ 1;2, and they are used for developing a
membership function for both characteristics as

l1ðn1hÞ ¼
0 if f 1ðn1hÞ P 0:00047683

0:00047683�f 1ðn1hÞ
0:00013 if 0:00034712 6 f 1ðn1hÞ 6 0:00047683
1 if f 1ðn1hÞ 6 0:00034712

8><
>:

l2ðn2hÞ ¼
0 if f 2ðn2hÞ P 0:00010331

0:00010331�f 2ðn2hÞ
0:00004453 if 0:000058780 6 f 2ðn2hÞ 6 0:00010331

1 if f 2ðn2hÞ 6 0:000058780

8><
>:

By using the max–min addition operator, the objective function
is revised as

Maximize 7:274210973� f 1ðn1hÞ
:00013

þ f 2ðn2hÞ
:00004453

� �� �

To maximize the above problem with subject to constraints as
formulated as

Maximize n

subject to f 1 � :00012971n P 0:00034712
f 2 � :00004453n P 0:00005878PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0;

2 6 nh 6 Nh;

and n 2 ½0;1�; nh areintegers; h ¼ 1;2; . . . ; L:
Table 2
The payoff matrix with ideal solutions.

f 1 f 2

n�
1h 0.00034712 0.00010331

n�
2h 0.00047683 0.00005878

6

Using MATLAB, the optimal solution to the above problem is
obtained as

n ¼ 0:1890; n1 ¼ 33; n2 ¼ 35; n3 ¼ 56

with variances Vðy�jstÞ; j ¼ 1;2under the proposed allocation given
as

Vðy�1stÞ ¼ 0:000638635; Vðy�2stÞ ¼ 0:000114102;

Therefore, the Trace will be

Vðy�1stÞ þ Vðy�2stÞ ¼ 0:00075274:

where,

f 1 ¼ 0:5 0:00151959
ðn1�1Þ þ 0:00687891

ðn2�1Þ þ 0:02254338
ðn3�1Þ � 0:00481210n1

9500ðn1�1Þ � 0:02178320n2
9500ðn2�1Þ

h
� 0:06118920n3

9500ðn3�1Þ
�

þ 0:5
0:000004459

ðn1 � 1Þ2n1

þ 0:00009538

ðn2 � 1Þ2n2

þ 0:00104419

ðn3 � 1Þ2n3

� 0:00004472n1

95002ðn1 � 1Þ2
"

� 0:00095649n2

95002ðn2 � 1Þ2 �
0:00769289n3

95002ðn3 � 1Þ2�
1
2

f 2 ¼ 0:5 0:00203233
ðn1�1Þ þ 0:00095443

ðn2�1Þ þ 0:00146663
ðn3�1Þ � 0:00643571n1

9500ðn1�1Þ �
h

0:00302237n2
9500ðn2�1Þ � 0:00398085n3

9500ðn3�1Þ
�

þ 0:5
ð0:00000797Þ
n1 � 1ð Þ2n1

þ 0:00000176

n2 � 1ð Þ2n2

þ 0:0000042865

n3 � 1ð Þ2n3

"

� 0:00007998n1

95002 n1 � 1ð Þ2
� 0:00001764n2

95002 n2 � 1ð Þ2
� 0:00003158n3

95002 n3 � 1ð Þ2
�12
4.1.1. Comparison with other allocations
In this section, a comparative study is carried out where the

proposed method is compared with some other well-defined
methods of allocation. Some of these methods are as follows:

4.1.1.1. Proportional allocation. For the fixed cost of the survey, the
proportional allocation may be obtained by substituting nh ¼ nWh

in the cost function, and subsequently, stratum-wise allocations,
which are rounded off to nearest integers, may be obtained as

n1 ¼ 40; n2 ¼ 40; n3 ¼ 46;

also the trace value, under proportional allocation, is computed
as 0.0008066.

4.1.1.2. Cochran’s average allocation. Cochran (1977) suggested the
compromise criterion by taking the average of the individual opti-
mum allocations n�

jh;h ¼ 1; 2; . . . ; L; j ¼ 1; 2; . . . ; p. These alloca-
tions are obtained by solving the individual NLPP for each

characteristic; that is, for jth characteristic, the required NLPP
may be formulated as

Minimize Vðy�jstÞ ¼
PL

h¼1
W2

hS
2
jh

njh

subject to
PL

h¼1chnjh þ
PL

h¼1sh
ffiffiffiffiffiffi
njh

p þx
PL

h¼1
njh
k 6 C0

and njh P 0; h ¼ 1;2; . . . ; L; j ¼ 1;2; . . . ;p;

ð19Þ

where n�
jh ¼ ðn�

j1;n
�
j2; . . . ;n

�
jLÞ denotes the individual optimum alloca-

tion to the jth characteristic. Therefore Cochran’s compromise allo-
cation is computed as

nh ¼ 1
p

Xp

j¼1

n�
jh; h ¼ 1;2; . . . ; L:



Table 3
Allocations with trace value and relative efficiency.

S.N Allocations Allocations n1n2n3n cost Trace R.E. w.r.t Proportional Allocation

1 Proportional 40 40 46 126 1007.3 0.0008066 1.00000
2 Cochran 36 35 53 124 995.67 0.0007755 1.04010
3 Sukhatme 25 36 61 122 991.43 0.0007532 1.07089
4 Proposed 33 35 56 124 999.03 0.0007527 1.07155

Table 4
Percentage increase for all characteristics within the variances when the individual
optimum for one characteristic is used.

Percentage increment within the variances

Characteristics 1 2

1 0 0.31866816 0.014920487
2 0.55578140 0 0.229092349

Table 6
Allocations with the incurred cost.

S.
No

Allocations n1n2 n3n Cost

1 Lagrange multiplier (non integer) 12.97 52.74 61.33 127 1045.10
2 Lagrange multiplier (rounded) 13 53 61 127 1044.59
3 Lagrange multiplier (integer) 13 53 62 128 1052.78
4 Stochastic (non integer) 18.66 36.95 66.30 122 997.630
5 Stochastic (rounded) 19 35 56 124 997.890
6 Stochastic (integer) 19 38 65 122 997.870
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For the given numerical values, as given in Table 1, the compro-
mise allocation suggested by Cochran (1977) is worked out as
n1 ¼ 36; n2 ¼ 35; n3 ¼ 53. The variances of both characteristics

are calculated as V�ðy�1stÞ ¼ 0:000664098 and

V�ðy�2stÞ ¼ 0:000111389 respectively. Therefore the trace value is
0:00077549.
4.1.1.3. Sukhatme’s compromise allocation. This compromise alloca-
tion is obtained by optimizing the Trace of the variance–covariance
matrix of the estimator. The solution to the following NLPP will
give the desired compromise allocation Sukhatme et al. (1984),
and the formulation of the NLPP is given as
Minimize
Pp

j¼1Vðy
�
jstÞ ¼

Pp
j¼1

PL
h¼1

W2
hS

2
jh

nh

subject to
PL

h¼1chnh þ
PL

h¼1sh
ffiffiffiffiffi
nh

p þx
PL

h¼1
nh
k 6 C0

and nh P 0; h ¼ 1;2; . . . ; L; j ¼ 1;2; . . . ;p:

On the substitution of numerical values from Table 1, the solu-
tion is obtained as n1 ¼ 25; n2 ¼ 36; n3 ¼ 61 and therefore, the
trace value is calculated as 0:000753271.

In Table 3, it appears that the proposed allocation gives the least
trace value compared to the values obtained by other allocations.
Furthermore, the relative efficiency of the proposed allocation to
proportional allocation is maximum among the others. Table 4
shows the percentage increase in both characteristics’ variances
when the individual optimum allocation of one characteristic is
used for both characteristics, and the proposed allocation is uti-
lized. The proposed allocation provides lesser values of percentage
increase in the variances with respect to individual allocations.
Table 5 shows the percentage increase in both characteristics’ vari-
ances when other allocations are used instead of individual alloca-
tions. For the proposed allocation, these values are minimum in
comparison to others. Therefore it may be claimed that the sug-
gested allocation may be regarded as the best allocation.

Based on the above discussion, the proposed allocation works
well in comparison to other allocations.
Table 5
Percentage increment when optimization is done about the criteria.

Percentage increment within the variances of distinct characteristics beneath assorte

Characteristics Proportional Coch

1 15.36391 9.441
2 3.225985 7.919

7

4.2. Solution by chance constraints

When the cost of carrying out a sample survey is high and a
specified limit on the variances are given, then this method may
be used. With the specified values of V1

0 ¼ 0:00080 and

V2
0 ¼ 0:00040, the value of e is 2:3263 such that /ðeÞ ¼ p0 ¼ 0:99:

The equivalent deterministic problem of SNLPP may be given as

Minimize
P3

h¼1chnh þ
P3

h¼1sh
ffiffiffiffiffiffi
nh

p þx
P3

h¼1
nh
k

subject to
P3

h¼1
W2

h s
2
1h

ðnh�1Þ �
P3

h¼1
Whs

2
1h

9500
nh

nh�1

� �
þ2:3263

P3
h¼1

W4
h

nh ðnh�1Þ2 C4
y1h � ðs21hÞ

2
� �

�P3
h¼1

W2
h

ð9500Þ2
nh

ðnh�1Þ2 C4
y1h � ðs21hÞ

2
� �� �h i1=2

6 0:00080;

P3
h¼1

W2
h s

2
2h

ðnh�1Þ �
P3

h¼1
Whs

2
2h

9500
nh

nh�1

� �
þ2:3263

P3
h¼1

W4
h

nh ðnh�1Þ2 C4
y2h � ðs22hÞ

2
� �

�P3
h¼1

W2
h

ð9500Þ2
nh

ðnh�1Þ2 C4
y2h � ðs22hÞ

2
� �� �h i1=2

6 0:00040;

2 6 nh 6 Nh ;

and nh integers; h ¼ 1;2; 3:

ð20Þ

The NLPP (20) solutions are obtained using MATLAB by the
Lagrange multiplier technique and INLPP technique. The solutions
are reported in Table 6.

Table 6 shows the Lagrange multiplier technique and INLPP
technique to minimize the survey’s total cost. If the continuous
solution to the NLPP (20) is considered, then the nonlinear pro-
gramming technique is preferable to that of the Lagrange multi-
plier technique. If the continuous solution is adjusted off to the
closest whole number, then the nonlinear programming technique
provides the survey’s minimum cost. Furthermore, if integer
restriction is a must, then the use of a nonlinear programming
technique is advisable.

5. Conclusion

In general, stratum variances’ true values may not be known in
advance but may be estimated. In this way, the problem is defined
as a multivariate-multiobjective SNLPP in this paper. The formu-
lated SNLPPs may be converted into their deterministic form using
a modified E- model and chance constraints techniques. The for-
mulated problems’ solutions may be computed either by minimiz-
ing the sampling variances for a fixed cost or minimizing the cost
d criteria

ran Sukhatme Proposed

428 2.40957 0.014920487
08 27.73566 0.229092349
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for the fixed precision value of the variances of estimates. For
numerical illustration, the data are generated by conducting simu-
lation using R, and the formulated NLPPs may be solved by using
MATLAB. The proposed compromise allocation provides the best
outcomes for the given numerical application than that obtained
by other compromise criteria, as discussed in this paper. Further-
more, for large scale investigations, it is vital to select the appropri-
ate method for attaining the study’s objectives.
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