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Abstract Numerical solutions are obtained for the hydro-magnetic mixed convection boundary

layer flow of an electrically conducting fluid over a non-isothermal wedge in the presence of variable

thermal conductivity. The effects due to viscous dissipation, internal heat generation/absorption,

thermal radiation, Joule heating and stress work are included. The governing partial differential

equations of the problem, subjected to the appropriate boundary conditions are solved numerically

by an efficient finite difference scheme. Numerical calculations are carried out for several sets of val-

ues of the dimensionless parameters and a careful study of the results obtained reveal that the flow

field is influenced appreciably by the applied magnetic field in addition to the other parameters.

Numerical results for the velocity and temperature fields, the local skin-friction coefficient and

the local Nusselt number are presented graphically and discussed. To validate the numerical

method, comparisons are made with the available results in the literature as special cases and the

results are found to be in good agreement. The results obtained reveal many interesting behaviors

that warrant further study of the flow and heat transfer characteristics over the permeable wedge.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

In recent years a great deal of interest has been generated to
study the problem of magneto-hydrodynamic (MHD) incom-
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pressible, steady viscous flow over a non-isothermal wedge
due to its extensive practical applications in technological pro-

cesses; such as MHD power generator designs, design for cool-
ing of nuclear reactors, construction of heat exchangers,
installation of nuclear accelerators and blood flow measure-

ment techniques. Watanabe (1978, 1986) studied theoretically
the characteristics of MHD boundary layer flow past a flat
plate with/without pressure gradient. Watanabe and Pop
(1994) extended the work of Watanabe (1978) to thermal field.

Yih (1999, 1998) investigated the effects of viscous dissipation
and the work done by stress on the heat transfer characteris-
tics. Chandrasekar and Baskaran (2007) studied the effects

of transverse magnetic field, viscous dissipation, stress work,
ing Saud University.

mailto:prasadkv2007@gmail.com
mailto:prasadkv2000@yahoo.co.in
mailto:prasadkv2000@yahoo.co.in
http://dx.doi.org/10.1016/j.jksus.2013.02.005
http://www.sciencedirect.com/science/journal/10183647
http://dx.doi.org/10.1016/j.jksus.2013.02.005


Nomenclature

A positive constant

C positive constant
B0 external imposed magnetic field
Cp specific heat at constant pressure
Cf local skin friction coefficient

Ec Eckert number
f dimensionless steam function
fo wall mass transfer parameter

g acceleration due to gravity
Grx local Grashof number
K thermal conductivity

k1 thermal conductivity away from the surface
K absorption coefficient
m pressure gradient parameter
Nr thermal radiation parameter

Nux local Nusselt number
Pr Prandtl number
qr the radiative heat flux

Q0 heat generation/absorption coefficient
Rex local reynolds number
T the temperature

Tw condition at the surface
T1 free stream surface temperature

u velocity component in the x-direction

U1 potential flow or free stream velocity
v velocity component in y-direction
v0 suction or injection velocity
x coordinate along the wedge

y coordinate normal to the wedge
Greek Symbols
a thermal diffusivity

B0 coefficient of thermal expansion
B1 angle factor of the wedge
B heat source/sink parameter

g pseudo similarity variable
k mixed convection parameter
m kinematic viscosity
q density

e thermal conductivity parameter
n magnetic variable
X total angle of the wedge

h dimensionless temperature
r electric conductivity
r* Stephen–Boltzmann constant

w stream function
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shear stress and surface heat transfer over a non-isothermal
wedge. An approximate numerical solution for thermal strati-
fication on MHD steady laminar boundary layer flow over a
wedge with suction or injection was investigated by Anjali

Devi and Kandasamy (2003). Pal and Mondal (2009) investi-
gated the combined effects of thermal radiation and tempera-
ture-dependent viscosity on the momentum and heat transfer

in the presence of magnetic field. Recently, Loganathan and
Puvi Arasu (2010) analyzed the effects of thermophoresis par-
ticle deposition on the non-Darcy mixed convective heat and

mass transfer past a porous wedge in the presence of suc-
tion/blowing.

The physical situation discussed by Watanabe (1978) is one
of the possible cases. Another physical phenomenon is the case

in which the difference between the surface temperature and
the free stream temperature namely (Tw � T1) is appreciably
large. The findings of such a physical phenomenon will have

a definite bearing on technological industries: the problem of
mixed convection flow over a heated vertical plate is of consid-
erable interest. There are many examples of relevant studies in

the articles reported by (Ali and Al-Youself, 1998; Chen, 1999;
Kumari et al., 2001; Patil et al., 2009). Mixed convection heat
transfer at a stretching sheet with variable temperature and lin-

ear velocity was investigated by Vajravelu (1994). Similar anal-
yses were performed numerically by Chen and Strobel (1980)
and Moutsoglou and Chen (1980) for fluids under different
physical situations.

All the above researchers restricted their analyses to hydro-
magnetic flow and heat transfer over a vertical plate. The role
of thermal radiation on the flow and heat transfer processes is

of major importance in the design of many advanced energy
conversion systems. In view of this, Raptis (1998) studied the
thermal radiation and free convection flow through a porous

medium. Chamkha et al. (2003) generalized the work of Yih
(1999) by considering the effects of suction and thermal radia-
tion. In these studies, the thermo-physical properties of the
ambient fluids are assumed to be constant. However, it is well
known that these properties may change with temperature,

especially the thermal conductivity. Available literature on
variable thermal conductivity and thermal radiation (Chiam,
1996; Raptis, 1998; Prasad et al., 2000; Chamkha et al.,

2003; Datti et al., 2004; Subhas Abel et al., 2005; Aydın and
Kaya, 2008) shows that not much work has been carried out
on mixed convection flow over a non-isothermal permeable

wedge with variable thermal conductivity. Furthermore, the
study of convection heat transfer around and through shapes
like spheres, cones, and wedges has been very active in the past
century. The flow of heat around these objects has applications

in many fields including the design of spacecraft, nuclear
reactors, and many types of transformers and generators.
Vajravelu and Nayfeh (1992) investigated free convection in

heat-generating fluids around both cones and wedges. The last
few decades have also shown a major increase in the research
of convective heat transfer through porous media. This is be-

cause it is applicable to topics such as nuclear waste storage,
ground-water pollution, chemical separation processes, and
many other areas of interest.

In view of this, we analyze in this paper the MHD mixed
convection flow over a permeable non-isothermal wedge in
the presence of variable thermal conductivity. Further, we in-
clude the effects of internal heat generation/absorption, vis-

cous dissipation, and work done by stress. While deriving
the basic equations, a temperature dependent heat source/sink
term is added and the Roseland approximation for the thermal

radiation term is assumed. The governing coupled, non-linear
partial differential equations for the flow and heat transfer are
solved numerically by an implicit finite difference scheme

known as Keller-box method.
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2. Mathematical formulation

Consider a steady, two-dimensional, viscous, incompressible,

mixed convection boundary layer flow over a permeable
non-isothermal wedge in the presence of thermal radiation
and heat generation/absorption. Let the x-axis be taken along
the wall of the wedge and y-axis normal to it (see Fig. 1). A

uniform magnetic field of strength B0 is applied parallel to
y-axis. Fluid suction or injection is imposed at the surface of
the wedge and the surface of the wedge is maintained at a var-

iable temperature proportional to the power of the distance,
i.e., Tw ¼ T1 þ Ax2m�1 as shown in Fig. 1. The induced
magnetic field is assumed to be uniform and is in the direction

normal to the surface. It is also assumed that the magnetic
Reynolds number is small and the electric field due to polari-
zation of charges is negligible. All the thermo-physical proper-

ties of the fluid are assumed to be constant except the density
variation in the body force term and the thermal conductivity.
Effects due to viscous dissipation, Joule heating, and the work
due to stress are included. Under these assumptions and the

usual Boussinesq approximation, the governing boundary
layer equations for the conservation of mass, momentum
and energy can be written as
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The physical boundary conditions for the problem are gi-
ven by

u ¼ 0; v ¼ �v0; T ¼ TwðxÞ ¼ T1 þ Ax2m � 1 at y ¼ 0;

u! U1 ¼ Cxm; T! T1 as y!1;
ð4Þ
Figure 1 Flow analysis alo
where x and y are coordinates measured along and normal to

the surface, respectively. u and v are the velocity components in
the x and y directions, m is the kinematic viscosity, v0 is the suc-
tion or injection velocity, U1= Cxm is the free stream veloc-

ity, m = b1/(2�b1) is the Hartree pressure gradient parameter
which corresponds to b1 = X/p for a total angle X of the
wedge. C is a positive number, r is the electrical conductivity,
B0 is the externally imposed magnetic field, and q is the den-

sity. The last term in the right hand side of the Eq. (2) repre-
sents the influence of thermal buoyancy force on the flow
field, with ‘‘+’’ and ‘‘�’’ signs referring to the buoyancy assist-

ing and buoyancy opposing flow region, respectively. T is the
temperature, cp is the specific heat at constant pressure, A is
a positive number, Q0 is the temperature-dependent volumetric

rate of heat source when Q0 > 0 and heat sink when Q0 < 0.
They deal with the situation of exothermic and endo-thermic
chemical reactions, respectively. T1 is the free stream temper-

ature. k(T) is the thermal conductivity. The thermal conductiv-
ity is assumed to vary as a linear function of temperature
(Chiam, 1996) in the form.

kðTÞ ¼ k1
qcp

1þ e
DT
ðT� T1Þ

� �
� ð5Þ

Here e is a small parameter known as the variable thermal

conductivity parameter and DT = Tw � T1 is the surface tem-
perature. In addition, the radiative heat flux qr is employed in
accordance with the Roseland approximation.

qr ¼
�4r�
3K�

@T4

@y
; ð6Þ

where r*, and K* are, respectively the Stephan–Boltzmann
constant and the mean absorption coefficient. We assume that
the temperature field within the fluid is of the form T4 and may
be expanded in Taylor series about T1. Neglecting the higher

order terms, we obtain T4 ~¼4T3
1T� 3T4

1 and using this expres-
sion for T4 in Eq. (6) we get

qr ¼
�16r�T3

1
3K�

@T

@y
: ð7Þ

With the help of (6) and (7), the Eq. (3) can be written as
ng the wall of the edge.
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Defining the stream function in the usual way such that

u= ow/oy and, v = �ow/ox and substituting the following
dimensionless variables (Chamkha et al., 2003; Pal and
Mondal, 2009).

n ¼ rB2
0x

qU1
; g ¼ y

x

U1x

m

� �1=2

; fðn; gÞ

¼ w

ðU1xmÞ1=2
; hðn; gÞ ¼ T� T1

ðTw � T1Þ
ð9Þ

into Eqs. (1), (2), and (8) we get
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The parameters Pr;Nr; b;Ec; and k are the Prandtl
number, the thermal radiation parameter, the heat source/sink

parameter, the Eckert number and the mixed convection
parameter, respectively, and are defined by

Pr ¼ m
a1

; Nr ¼ 16r�T3
1

3Kk1
; b ¼ Q0

rCpB
2
0

;

Ec ¼ U2
1

CpðTw � T1Þ
; k ¼ Grx

Re2x
;

Grx ¼
gbðTw � T1Þx3

m2
; Rex ¼

U1x

m
:

ð12Þ

The dimensionless forms of the boundary conditions are

f00ðn; gÞ ¼ 0;
1þm

2
fðn; gÞ þ ð1�mÞn @f

@n
¼ f0

ffiffiffi
n

p
;

hðn; gÞ ¼ 1 at g ¼ 0;

f00ðn; gÞ ! 1; hðn; gÞ ! 0 as g!1

ð13Þ

where f0 ¼ q= mrB2
0

� �� �1=2
v0 is the dimensionless suction or

injection parameter; such that f0 > 0 indicates suction and
f0 < 0 indicates injection or blowing. Eqs. (10) and (11) are
self-similar for n = 0 and hence we generate for n = 0 the

starting profiles (for the velocity and temperature fields) and
use them for the numerical computations. In addition, it is also
observed that for m = 1, the terms containing derivatives with

respect to n variable vanish in Eqs. (10) and (11). The impor-
tant physical parameters for the flow and heat transfer charac-
teristics are the shearing stress and the heat flux at the surface

of the wedge and they are defined as
Cf ¼
l@u=@yjy¼0

1
2x

qU1m
¼ 2Re1=2x f00ðn; 0Þ and

Nux

k1 þ 16rT3
1

3K�

h i
@T
@y

n o			
y¼0

k1ðTw � T1Þ=x
¼ �Re1=2x 1þ 16rT3

1
3K�


 �
h0ðn; 0Þ

ð14Þ

In the above equations the local Reynolds number is de-
fined as follows:

Rex ¼
U1x

m
:

3. Numerical procedure

The Eqs. (10) and (11) are highly non-linear, coupled partial
differential equations. Exact analytical solutions are not possi-
ble for the complete set of equations subject to the boundary

conditions (13) and hence we use an efficient implicit finite dif-
ference for the solution process. The implicit finite difference
scheme discussed by Cebeci and Bradshaw (1984) is chosen
for this purpose because it has been proven to be more than

adequate to give accurate results for coupled boundary layer
equations. The coupled boundary value problem of third order
in f and second order in h, is reduced to a system of five simul-

taneous differential equations of first order with respect to g by
assuming f ¼ f1; f0 ¼ f2; f00 ¼ f3; h ¼ h1; h0 ¼ h2.
Initially all first order derivatives with respect to n are replaced

by two-point backward difference formulae of the form.

@f

@n
¼ ðfÞ

jþ1=2
i � ðfÞjþ1=2i�1

Dn
; ðfÞjþ1=2i ¼ 1

2
fjþ1i þ fji
� �

and

fji � fðiDn; jDgÞ;

denoting an approximate value of f at the grid point ðiDn; jDgÞ.
To solve this system of equations we require five initial condi-

tions while we have only two initial conditions fðn; 0Þ;
f00ðn; 0Þ on f and one initial condition hðn; 0Þ on h. The
other two initial conditions f00ðn; 0Þ and h00ðn; 0Þ which are
not prescribed; however, the values of f0ðn; gÞ and hðn; gÞ
are known for g at infinity. Hence, we employ the numerical
Keller-Box scheme where these two boundary conditions are
utilized to produce two unknown initial conditions at g = 0.

To select g1, we begin with some initial guess value and solve
the boundary value problem for a set of parameters to obtain
f00ðn; 0Þ and h00ðn; 0Þ. Thus we start with the initial approx-

imation as f3ðn; 0Þ ¼ a0 and h2ðn; 0Þ ¼ b0 and then let a
and b be the correct values of f3ðn; 0Þ and h2ðn; 0Þ;, respec-
tively. We integrate the resulting system of five differential

equations using fourth order Runge–Kutta method and obtain
the values of f3ðn; 0Þ and h2ðn; 0Þ, respectively. Finally the
problem has been solved numerically using a second order
finite difference scheme known as the Keller-box method

(Prasad et al., 2010, 2011). The solution process is
repeated with another larger value of g1 until two successive
values of f00ðn; 0Þ and h0ðn; 0Þ agree up to the desired deci-

mal level signifying the limit of the boundary along g. The last
value of g1 is chosen as an appropriate value for that set of
parameters.

The numerical solutions are obtained in four steps as
follows:
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O = 30�, b = 0.0.

Table 2 Comparison of the values of h00ð0; 0Þ for various values of Pr with Ec = m = Nr = e = fw = X = 0.0.

Pr = 0.733 Pr= 1.0

n Present

results

Yih (1999) Watanabe and

Pop (1994)

Chamkha

et al. (2003)

Pal and

Mondal (2009)

Present

results

Yih (1999) Watanabe and

Pop (1994)

Chamkha

et al. (2003)

Pal and

Mondal (2009)

0.0 0.297656 0.297526 0.29755 0.297600 0.297526 0.332028 0.332057 0.33206 0.332173 0.332057

0.5 0.357473 0.357022 0.35699 0.357040 0.355269 0.405721 0.402864 0.40280 0.403103 0.401527

1.0 0.388155 0.382588 0.38336 0.383191 0.377470 0.435844 0.433607 0.43446 0.433901 0.428506

1.5 0.403345 0.398264 0.39959 0.399980 0.390609 0.454605 0.452634 0.45413 0.452808 0.444571

2.0 0.413890 0.409168 0.41091 0.409450 0.399658 0.467772 0.465987 0.46798 0.466111 0.455700

Table 1 Comparison of the values of f00ð0; 0Þ for various values of m with fw = 0.0.

m Present results Yih (1999) Cebeci and Bradshaw (1984) Chamkha et al. (2003) Pal and Mondal (2009)

�0.05 0.213442 0.213484 0.21351 0.213802 0.213484

0.0 0.333228 0.332057 0.33206 0.332206 0.332206

0.3333 0.757158 0.757448 0.75745 0.757586 0.757586

1.0 1.232578 1.232588 1.23259 1.232710 1.232588
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� reduce Eqs. (10) and (11) to a system of first-order
equations;
� write the difference equations using central differences;

� linearize the algebraic equations by Newton’s method, and
write them in matrix–vector form; and
� solve the linear system by the block tri-diagonal elimination
technique.

For each value of n, we get a set of algebraic equations.
With each of the non-linear terms evaluated at the previous

iteration, the algebraic equations are solved with iteration by
the well-known Thomas algorithm. This process is repeated
for the next n value and the problem is solved line by line until

the desired n value is reached. For the sake of brevity further
details on the solution process are not presented here. It is also
important to note that the computational time for each set of
input parameters should be as short as possible. Since the

physical domain in this problem is unbounded, whereas the
computational domain has to be finite, we apply the far field
boundary conditions for the pseudo-similarity variable g at a

finite value denoted by gmax. We ran our bulk of computations
with gmax = 7, which is sufficient to achieve asymptotically the
far field boundary conditions for all values of the parameters

considered. For numerical calculations, a uniform step size
of Dg = 0.005, and Dn = 0.001 is found to be satisfactory
and the solutions are obtained with an error tolerance of

10�6 in all the cases. To assess the accuracy of the present
method, comparison of the skin friction and the wall-temper-
ature gradient between the present results and the previously
published results are presented, for several special cases in

which the buoyancy parameter and the variable thermal con-
ductivity parameter are neglected (see Tables 1 and 2).

4. Results and discussion

In order to analyze the physical model, numerical computa-

tions are carried out by the method described above for several
sets of values of the pressure gradient parameter m, suction or
injection parameter fw, the magnetic parameter n, the mixed
convection parameter k, the Prandtl number Pr, the thermal
radiation parameter Nr, heat source/sink parameter, variable
thermal conductivity parameter e, and the Eckert number
Ec. Since it is not possible to present the results here for all

possible permutations and combinations of all the physical
parameters, we focus our attention on the effect of new param-
eters on the flow and heat transfer fields. The numerical results

are presented in Figs. 2–13. These figures depict the changes in
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b = 0.1, O = 30�, k = 0.1.
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the wall-normal velocity and the fluid temperature. Changes in
the skin friction and the wall-temperature gradient for several
sets of the pertinent parameters are recorded in Tables 3 and 4.
Before we make a discussion of the results, it is important
to summarize the following facts of the flow:
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(i) The flow direction is parallel to the axis of the wedge.
(ii) The flow is symmetric about the axis and hence we inves-

tigate only in the upper half.
(iii) The flow is on the inclined plane and there is a difference

in temperature between that of the wedge and its

surroundings.
(iv) Since, there is an appreciable temperature difference

(Tw � T1), the effects of free convective are important.
(v) The flow is also being affected due to a pressure

gradient.
(vi) In view of (iv) and (v), it is apparent that the flow under

consideration is a mixed convective flow.

Figs. 2(a) and 2(b), respectively illustrate the effects of the
pressure gradient parameter m and the magnetic parameter n
on the wall-normal velocity profiles for zero and non-zero val-
ues of the other pertinent parameters. It is noticed from
Fig. 2(a) that the velocity profiles decrease with increasing val-
Table 3 Values of skin friction f00ð0; 0Þfor different values of the pe

Nr e Pr Ec fw m

0.5 0.1 �1.0 1.0 0.1 0.5 0.333

0.2 0.1 �0.5 1.0 0.0 0.5 0.333

1.0

0.5 0.1 �1.0 1.0 0.1 �0.5 0.333

0.0

0.5
ues of the pressure gradient parameter m and magnetic param-

eter n in the boundary layer. The effect of increasing values of
the pressure gradient parameter m is to reduce the normal
velocity and thereby reduce the boundary layer thickness i.e.
the thickness is much large for negative values of pressure gra-

dient parameter m than that of zero or positive values of m as
clearly seen in Fig. 2(a). This observation holds for all values
of the magnetic parameter n. It is observed that the normal

velocity profile decreases with an increase in the magnetic
parameter: this is due to the fact that the introduction of trans-
verse magnetic field, normal to the flow direction, has a ten-

dency to create a drag force, known as the Lorentz force
which tends to resist the flow. This behavior is seen even in
the presence of other parameters as shown in Fig. 2(b). The ef-

fect of the magnetic parameter on the wall-normal velocity
profile for both mixed convection parameter k and suction/
injection parameter is shown in Figs. 3(a) and 3(b), respec-
tively. The effect of increasing values of the mixed convection

parameter is to reduce the velocity profile. Physically k > 0
means heating of the fluid or cooling of the wedge surface,
k < 0 means cooling of the fluid or heating of the wedge sur-

face, and k = 0 means the absence of free convection currents.
From Fig. 3(a), we noticed that an increase in k leads to a de-
crease in the wall-normal velocity. Also, an increase in the va-

lue k leads to an increase in the temperature difference
(Tw � T1). This leads to reduce the velocity profile due to
the enhanced convection and thus decreases the velocity
boundary layer thickness. The effect of suction/injection

parameter on the normal velocity profile for different values
of n is shown in Fig. 3(b). It can be seen that the suction
(fw > 0) reduces the velocity boundary layer thickness whereas

the blowing (fw < 0) has the opposite effect on the velocity
boundary layer. These results are consistent with the physical
situation. In Figs. 4–11 the numerical results for the tempera-

ture profile for several sets of values of the governing parame-
ters are presented. Fig. 4 illustrates the effect of the pressure
gradient parameter m and the magnetic parameter n on the

temperature distribution. The effect of increasing values of
the pressure gradient parameter b is to decrease the tempera-
ture. This is true even for different values of magnetic param-
eter. The effect of increasing values of the magnetic parameter

n is to reduce the temperature. Of course, as explained above,
the transverse magnetic field gives rise to a resistive force
known as the Lorentz force. This force makes the fluid experi-

ence a resistance by increasing the friction between its layers
and thus decreases its temperature. Fig. 5 depicts the effects
of the suction parameter on the temperature distribution.
rtinent parameters when X = 30�.

k n = 0.0 n = 0.5 n = 1.0 n = 1.5

�0.5 0.5244012 1.1871145 1.5484974 1.8652896

0.0 0.7571389 1.3590680 1.6787713 1.9794817

0.5 0.9682134 1.5288637 1.8098274 2.0938566

0.1 0.7993567 1.3930539 1.7054529 2.0030243

1.2584687 1.6472000 1.8966861 2.1075742

0.1 0.8008918 0.7819469 0.9331067 1.0274590

0.8008918 1.0579530 1.2655948 1.4461085

0.8008918 1.3931195 1.7049015 2.0023298



Table 4 Values of the wall temperature gradient h00ð0; 0Þ for different values of the pertinent parameters when X = 30�.

Nr e Pr Ec fw m k n = 0.0 n = 0.5 n = 1.0 n = 1.5

1.0 0.1 �0.5 1.0 0.1 0.5 0.333 �0.5 �0.2769064 �0.48430869 �0.64858717 �0.78895611
0.0 �0.2910083 �0.47778577 �0.64210945 �0.78296512
0.5 �0.3005078 �0.47159243 �0.63560712 �0.77671635

1.0 0.1 �0.5 1.0 0.1 0.5 0.0 0.1 �0.1725166 �0.21111232 �0.41617125 �0.60140407
0.333 �0.2932055 �0.47653311 �0.64081323 �0.78173470
1.0 �0.5565393 �0.78539824 �0.85341299 �0.98960036

0.5 0.1 �0.5 1.0 0.1 �0.5 0.333 0.1 �0.3236902 �0.20794937 �0.29920900 �0.35990244
0.0 �0.3236902 �0.35920355 �0.48724070 �0.59055054
0.5 �0.3236902 �0.56201142 �0.76259756 �0.93418515

0.5 0.1 0.2 1.0 0.0 0.5 0.333 0.1 �0.3117204 �0.61486977 �0.82890773 �1.0129173
0.1 �0.3236902 �0.56201142 �0.73000848 �0.93418515
0.2 �0.3357611 �0.50909376 �0.69624943 �0.85542172

0.5 0.1 0.2 1.0 0.01 0.5 0.333 0.1 �0.3236960 �0.56200647 �0.76259184 �0.93418515
2.0 �0.4214001 �0.89351082 �1.2352148 �1.5255585
3.0 �0.4880211 �1.1992261 �1.6753783 �2.0771673

0.5 0.1 �0.5 1.0 0.1 0.5 0.333 0.1 �0.3236951 �0.56201142 �0.76259756 �0.93418515
0.0 �0.3236951 �0.42021284 �0.51066387 �0.58872575
0.5 �0.3236951 �0.25678539 �0.18132886 �0.089466

0.5 0.0 �1.0 1.0 0.1 0.5 0.333 0.1 �0.3369952 �0.59147191 �0.80304921 �0.98427737
0.2 �0.3119196 �0.53593725 �0.72678328 �0.88984710
0.4 �0.2917960 �0.49181601 �0.66615480 �0.81481564

0.0 0.1 �1.0 1.0 0.1 0.5 0.333 0.1 �0.3711618 �0.71473402 �0.98029852 �1.2065980
0.5 �0.3236903 �0.56201142 �0.76259756 �0.93418515
1.0 �0.2933673 �0.47676486 �0.64098734 �0.78186834
2.0 �0.2580753 �0.38481852 �0.50761569 �0.61371660
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The thermal boundary layer becomes thicker for suction and
thinner for blowing. Fig. 6 depicts the temperature profiles
for different values of k. Increasing the values of k results in

a decrease in the thermal boundary layer thickness and an in-
crease in the magnitude of the wall-temperature gradient, and
hence produces an increase in the surface heat transfer rate.
The effect of variable thermal conductivity parameter e on

the temperature distribution is shown in Fig. 7. The effect of
variable thermal conductivity parameter e is to enhance the
temperature and this behavior holds for all values of the mag-

netic parameter. This is due to the fact that the presence of
temperature-dependent thermal conductivity results in a
reduction in the magnitude of the transverse velocity by a

quantity ok(T)/oy and this can be seen from energy equation.
In Fig. 8 the temperature distribution for different values of

the heat source parameter are drawn. The direction of heat
flow depends both on temperature difference (Tw � T1) and

the temperature gradient. We observe that the temperature dis-
tribution is lower throughout the boundary layer for negative
values of (heat sink) and higher for positive values of (heat

source) as compared with the temperature distribution in the
absence of heat source/sink parameter. Physically b > 0; im-
plies Tw � T1 i.e. the supply of heat to the flow region from

the surface. Physically these correspond, respectively, to
recombination and dissociation within the boundary layer.
Similarly, b > 0 implies Tw � T1 i.e. the transfer of heat is

from flow to the surface: this corresponds to combustion and
an endothermic chemical reaction. The effect of increasing
the value of heat source/sink parameter is to increase the tem-
perature profile for zero and non-zero values of magnetic
parameter. The variations in the temperature profiles for var-
ious values of the Eckert number Ec are displayed in Fig. 9.
The effect of increasing values of Ec is to increase the temper-

ature profile. This is in conformity with the fact that energy is
stored in the fluid region due to frictional heating as a conse-
quence of dissipation due to viscosity, and hence temperature
increases as Ec increases. Fig. 10 shows the effect of thermal

radiation Nr on temperature profiles in the boundary layer.
It is observed that an increase in thermal radiation parameter
produces a significant increase in the thickness of the thermal

boundary layer of the fluid, and as a consequence the temper-
ature profiles increase. The temperature gradient at the surface
increases as the thermal radiation parameter increases which

can be observed in Table 4. Fig. 11 exhibits the temperature
distribution for different values of the Prandtl number. The
figure demonstrates that an increase in the Prandtl number
Pr is to decrease the temperature distribution. That is, the ther-

mal boundary layer thickness decreases as Pr increases.
Numerical results for the skin friction coefficient f00 and the

Nusselt number h
0
(0,0) as a function of f_w and k for a wide

range of magnetic parameter n are shown in Figs. 12 and 13,
respectively. Fig. 12 shows that for different values of k, the
values of f00(0,0), are positive and increase as the parameters in-

crease namely, the mixed convection parameter, the suction/
injection parameter and the magnetic parameter. An inspec-
tion of Figs. 3(a) and 5 reveals that the wall slope of the veloc-

ity and temperature profiles increase and decrease, respectively
as f_w increases. Hence, by Eq. (14), this results in an increase
of the values of both local skin friction coefficient and the local
Nusselt number as evidenced in Fig. 12. From Fig. 13, it is
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noticed that the effect of the variable thermal conductivity

parameter and thermal radiation parameter is to increase the
wall-temperature gradient, whereas the reverse is true with
the Prandtl number and the Eckert number. Increases in the
values of Nr have the tendency to increase the conduction ef-

fect and to increase the thermal boundary layer. This, in turn,
causes the temperature to increase at every point away from
the wedge surface. The effects of all the physical parameters

on the local skin friction and the local Nusselt number
h0(0,0) are analyzed in Tables 3 and 4. It is observed that the
local skin friction coefficient and the local Nusselt number

monotonically increase as the pressure gradient parameter in-
creases. Increasing the magnetic parameter also increases the
local skin friction coefficient and the local Nusselt number.

It is of interest to note that the local Nusselt number monoton-
ically decreases as the pressure gradient parameter increases.
Further, the effect of the heat source/sink parameter or the
variable thermal conductivity parameter is to enhance the

wall-temperature gradient. Further the local Nusselt number
is enhanced with increasing Prandtl number.

5. Concluding remarks

Based on the numerical results, some of the interesting results

are as follows:

� The effect of suction is to reduce the thermal boundary

layer thickness. This holds for all values of the magnetic
parameter, the variable thermal conductivity parameter
and the Eckert number.
� The effect of increasing values of the mixed convection

parameter is to increase the momentum boundary layer
thickness as well as the thermal boundary layer thickness.
� The effect of Prandtl number is to decrease the thermal

boundary layer thickness and the wall-temperature
gradient.
� The effects of the variable thermal conductivity parameter,

the thermal radiation parameter, the Eckert number and the
heat source/sink parameter are to enhance the temperature
field.

� Of all the parameters, the mixed convection parameter has
the strong effect on the drag, heat transfer rate, the wall-
normal velocity and the temperature field of the MHD flow
over a permeable non-isothermal wedge.
Acknowledgements

The authors appreciate the constructive comments of the
reviewers which led to definite improvement in the paper.

One of the authors (KVP) is thankful to the University Grants
Commission, New Delhi for supporting financially under a
Major Research Project (Grant No. F. No. 41-790/2012 (SR)).
References

Ali, M., Al-Youself, F., 1998. Laminar mixed convection from a

continuously moving vertical surface with suction/injection. Heat

Mass Transfer 33, 301–306.

Anjali Devi, S.P., Kandasamy, R., 2003. Thermal stratification effects

on non-linear MHD laminar boundary-layer flow over a wedge

with suction or injection. Int. Commun. Heat Mass Transfer 30,

717–725.
Aydın, O., Kaya, A., 2008. Radiation effect on MHD mixed

convection flow about a permeable vertical plate. Heat Mass

Transfer 45, 239–246.

Cebeci, T., Bradshaw, P., 1984. Physical and Computational Aspects

of Convective Heat Transfer. 1st ed.. Springer-Verlag, NewYork,

p. 385.

Chamkha, A.J., Mujtaba, M.A., Quadri, C.I., 2003. Thermal radiation

effects on MHD forced convection flow adjacent to a non-

isothermal wedge in the presence of a heat source/sink. Heat Mass

Transfer 39, 305–312.

Chandrasekar, M., Baskaran, S., 2007. Thermodynamical modeling of

viscous dissipation in magneto hydrodynamic, flow. Theor. Appl.

Mech. 34, 197–219.

Chen, C.H., 1999. Forced convection over a continuous sheet with

suction or injection moving in a flowing fluid. Acta Mech. 138, 1–

11.

Chen, T.S., Strobel, F.A., 1980. Buoyancy effects in boundary layer

adjacent to a continuous moving horizontal flat plate. ASME J.

Heat Transfer 102, 170–172.

Chiam, T.C., 1996. Heat transfer with variable thermal conductivity in

a stagnation point flow towards a stretching sheet. Int. Commun.

Heat Mass Transfer 23, 239–248.

Datti, P.S., Prasad, K.V., Subhas Abel, M., Joshi, A., 2004. MHD

visco-elastic fluid flow over a non-isothermal stretching sheet. Int.

J. Eng. Sci. 42, 935–946.

Kumari, M., Takhar, H.S., Nath, G., 2001. Mixed convection flow

over a vertical wedge embedded in highly porous medium. Heat

Mass Transfer 37, 139–146.

Loganathan, P., Puvi Arasu, P., 2010. Thermophoresis effects on non-

Darcy MHD mixed convective heat and mass transfer past a

porous wedge in the presence of suction/injection. Theor. Appl.

Mech. 37, 203–227.

Moutsoglou, A., Chen, T.S., 1980. Buoyancy effects in boundary

layers on inclined continuous moving sheets. ASME J. Heat

Transfer 102, 371–373.

Pal, D., Mondal, H., 2009. Influence of temperature-dependent

viscosity and thermal radiation on MHD forced convection over

a non-isothermal wedge. Appl. Math. Comput. 212, 194–208.

Patil, P.M., Roy, S., Chamkha, A.J., 2009. Mixed convection flow over

a vertical power law stretching sheet. Int. J. Numer. Meth Heat

Fluid Flow 20, 445–458.

Prasad, K.V., Subhas Abel, M., Khan, S.K., 2000. Momentum and

heat transfer in visco-elastic fluid flow in a porous medium over a

non-isothermal stretching sheet. Int. J. Numer. Meth. Heat Fluid

Flow 10, 786–802.

Prasad, K.V., Vajravelu, K., Datti, P.S., 2010. The effects of variable

fluid properties on the hydromagnetic flow and heat transfer over a

non-linearly stretching sheet. Int. J. Ther. Sci. 49, 603–610.

Prasad, K.V., Vajravelu, K., Van Gorder, R.A., 2011. Non-Darcian

flow and heat transfer along a permeable vertical surface with

nonlinear density temperature variation. Acta Mech. 220, 139–

154.

Raptis, A., 1998. Radiation and free convection flow through a porous

medium. Int. Commun. Heat Mass Transfer 25, 289–295.

Subhas Abel, M., Prasad, K.V., Ali, M., 2005. Buoyancy force and

thermal radiation effects in MHD boundary layer visco-elastic fluid

flow over continuously moving stretching surface. Int. J. Therm.

Sci. 44, 465–476.

Vajravelu, K., 1994. Convection heat transfer at a stretching sheet with

suction or blowing. J. Math. Anal. Appl. 188, 1002–1011.

Vajravelu, K., Nayfeh, J., 1992. Hydromagnetic convection at a cone

and a wedge. Int. Commun. Heat Mass Transfer 19, 701–710.

Watanabe, T., 1978. Magneto hydrodynamic stability of boundary

layers along a flat plate in the presence of transverse magnetic field.

ZAMM 58, 555–560.

Watanabe, T., 1986. Magneto hydrodynamic stability of boundary

layers along a flat plate with pressure gradient. Acta Mech. 65, 41–

50.



324 K.V. Prasad et al.
Watanabe, T., Pop, I., 1994. Thermal boundary layers in magneto

hydrodynamic flow over a flat plate in the presence of a transverse

magnetic field. Acta Mech. 105, 233–238.

Yih, K.A., 1998. Uniform suction/blowing effect on forced convection

about a wedge: uniform heat flux. Acta Mech. 128, 173–181.
Yih, K.A., 1999. MHD forced convection flow adjacent to a non-

isothermal wedge. Int. Commun. Heat Mass Transfer 26, 819–

827.


	MHD mixed convection flow over a permeable  non-isothermal wedge
	1 Introduction
	2 Mathematical formulation
	3 Numerical procedure
	4 Results and discussion
	5 Concluding remarks
	Acknowledgements
	References


