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Abstract A new type of exact solutions of the full 3 dimensional spatialHelmholtz equation for the

case of non-paraxial Gaussian beams is presented here.

We consider appropriate representation of the solution for Gaussian beams in a spherical coor-

dinate system by substituting it to the full 3 dimensional spatial Helmholtz equation.

Analyzing the structure of the final equation, we obtain that governing equations for the compo-

nents of our solution are represented by the proper Riccati equations of complex value, which has

no analytical solution in general case.

But we find one of the possible exact solutions which is proved to satisfy to such equations for

Gaussian beams.
ª 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The full 3-dimensional spatial Helmholtz equation provides
solutions that describe the propagation of waves over space

(e.g., electromagnetic waves) under proper boundary condi-
tions; it should be presented in a spherical coordinate system
R, h, u as given below (Sommerfeld, 1949; Serway, 2004):

DAþ k2A ¼ 0; ð1:1Þ

- where D is the Laplacian, k is the wavenumber, and A is the
amplitude. So, the derivation advanced in this manuscript
starts with the scalar Helmholtz equation expressed in

spherical co-ordinates.
Besides, in spherical coordinate system (Kamke, 1971):

DA ¼ @
2A

@R2
þ 2

R

@A

@R
þ 1

R2 sin2 h

@2A

@u2
þ 1

R2

@2A

@h2
þ 1

R2
cot h

@A

@h
:

Special solutions to this equation have generated con-
tinuing interest in the optical physics community since the dis-
covery of unusual non-diffracting waves such as Bessel and
Airy beams (Alonso and Bandres, 2014a, 2014b, 2012).

Let us search for solutions of Eq. (1.1) in a classical form of
Gaussian beams (Yi-Qing, 2013; Tagirdzhanov et al., 2011;
Chen et al., 2002), which could be presented in Cartesian

coordinate system as given below (Svelto, 2010):

A ¼ a � w0

wðzÞ exp �
x2 þ y2

w2ðzÞ � ikz� ik
x2 þ y2

2rðzÞ þ ifðzÞ
� �

- where w(z), r(z), f(z) – are the real functions, describing
appropriate parameters of a beam; w(z) is the beam waist size,
r(z) is a wavefront radius of curvature and f (z) is the Gouy’s
phase shift properly (Svelto, 2010).
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The classical form of Gaussian beams above could be also
represented as given below

exp i fðzÞ � kzþ i � ln wðzÞ þ i

w2ðzÞ �
k

2RðzÞ

� �
� ðx2 þ y2Þ

� �� �

¼ exp i pðzÞ þ x2 þ y2

2qðzÞ

� �� �

- where p(z) is the complex phase-shift of the waves during
their propagation along the z axis; q(z) is the proper complex
parameter of a beam, which is determining Gaussian profile
of a wave in the transverse plane at position z.

Besides, let us also note that at the left part of the
expression above we express the term (1/w(z)) in a form for
Gaussian beams, as exp (i2 ln w(z)) = exp (�ln w(z)).

The right part of the expression above could be transformed
in a spherical coordinate system to the form given below:

A ¼ a � exp i pðR; hÞ þ R2 � sin2 h
2qðR; hÞ

� �� �
ð�Þ

The solution (*) is additionally assumed to be independent

of the azimuthal co-ordinate to observe it under well-known
paraxial approximation (Svelto, 2010) also.

Then having substituted the expression (*) into Eq. (1.1),
we should obtain (h „ 0):

@2pðR; hÞ
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þ
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A ¼ i � k2: ð1:2Þ
2. Exact solutions

Let us re-designate appropriate term in (*) as given below:

fðR; hÞ ¼ pðR; hÞ þ R2 � sin2 h
2qðR; hÞ :

In such a case, Eq. (1.2) could be transformed as shown
below (h „ 0):

@2fðR;hÞ
@R2

þ i � @fðR;hÞ
@R

� �2

þ 2

R
� @fðR;hÞ

@R

� �
þ 1

R2

� @2fðR;hÞ
@h2

þ i � @fðR;hÞ
@h

� �2

þcoth � @fðR;hÞ
@h

� � !
� i �k2¼0

ð2:1Þ

Thus, all possible solutions for representing Gaussian beams in

a form (*) are described by the Eq. (2.1).
But we should especially note that during the process of

obtaining a solution (for example, if we are simply assuming

a special eikonal solution (Svelto, 2010; Milonni and Eberly,
2010) to the Helmholtz equation), some of main features of
the solution could be reduced; so, such a solution need not
have any relation to Gaussian form (*).

Besides, one of the obvious solutions of PDE-equations (2.1):

fðR; hÞ ¼ f 1ðRÞ þ f 2ðhÞ ð��Þ

- where f 1 (R), f 2 (h) – are the functions of complex value.
Let us assume as given below:

@2fðR; hÞ
@h2

þ i � @fðR; hÞ
@h

� �2

þ cot h � @fðR; hÞ
@h

� �
¼ C ð2:2Þ

- where C – is a constant of complex value. For such a case,
Eq. (2.1) could be reduced as shown below (h „ 0):

@2fðR;hÞ
@R2

þ i � @fðR;hÞ
@R

� �2

þ 2

R
� @fðR;hÞ

@R

� �
þ C

R2
� i �k2¼0 ð2:3Þ

3. Presentation of exact solution

Under assumption (**), Eq. (2.2) could be represented as

shown below:

df2
dh

� �
¼ yðhÞ ) y0ðhÞ ¼ �i � y2 � cot h � yþ C;

yðhÞ ¼ csc h � uðhÞ ) u0ðhÞ ¼ �ði � csc hÞ � u2 þ C � sin h;

ð3:1Þ

- where the last equation is known to be the Riccati ODE

(Kamke, 1971), which has no solution in general case. But if
C= 0, Eq. (3.1) has a proper solution (C0 = const):

u0ðhÞ ¼ �ði � csc hÞ � u2; uðhÞ ¼ 1

ðC0 þ i �
R
csc hdhÞ )

df2
dh ¼

csc h
ðC0 þ i �

R
csc hdhÞ ðC0 ¼ 0Þ ) f2 ¼ �i � lnð

Z
csc hdhÞ

ð3:2Þ

Besides, Eq. (2.3) could be presented as given below
(C= 0):

df1
dR

� �
¼ y1ðRÞ ) y01ðRÞ ¼ �i � y21 � 2

R
y1 � C

R2 � i � k2
� �

;

f1ðRÞ ¼
R
y1ðRÞdR:

ð3:3Þ

- where the last Riccati ODE (3.3) has a proper solution as
shown below if C= 0 (see Kamke, 1971, the case 1.104).

Indeed, let us assume (k „ 0, R „ 0):

y1 ¼ u1 þ i
R
; y01ðRÞ ¼ �i � y21 � 2

R
y1 þ i � k2

) u01ðRÞ ¼ �i � u21 þ i � k2 )
R

du1
k2�u2

1

¼ i � R

)
u1 ¼ k � tanhði � k � RÞ; ji � tanðk � RÞj < 1;

u1 ¼ k � cothði � k � RÞ; ji � tanðk � RÞj > 1;

�
- then, we obtain:

f1 ¼ �i � ln coshði � k � RÞ þ i � ln R; jk � Rj < p=4;

f1 ¼ �i � ln sinhði � k � RÞ þ i � ln R; jk � Rj > p=4:

�
ð3:4Þ

Taking into consideration the expression (**) for the
solution as well as (3.2)–(3.4), let us finally present a new
type of non-paraxial solution, which is proved to satisfy the

Helmholtz equation (1.1), as shown below:



Figure 1 A schematic plot of a spherical-wave type of the

solutions.
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A ¼ a �
R
csc hdh

	 

� coshði � k � RÞ

R
; jk � Rj < p=4;

A ¼ a �
R
csc hdh

	 

� sinhði � k � RÞ

R
; jk � Rj > p=4;

8><
>:
- or

A ¼ ðk � aÞ � ln tan h
2

	 
	 

� cosðk � RÞ

k � R ; jk � Rj < p=4;

A ¼ ðk � aÞ � ln tan h
2

	 
	 

� i � sinðk � RÞ

k � R ; jk � Rj > p=4;

8><
>: ð3:5Þ

- where h2 (0, p).
Figure 2 A schematic plot of the

Figure 3 A schematic plot of the function ln(x/2y)*(cos(kÆy)/(kÆy)),
1000).
4. Discussions and conclusion

A new type of exact solutions of the full 3 dimensional spatial
Helmholtz equation for the case of non-paraxial Gaussian

beams is presented here.
We consider an appropriate representation of the solution

for Gaussian beams in a spherical coordinate system by substi-

tuting it to the full 3 dimensional spatial Helmholtz equation.
Analyzing the structure of the final equation, we obtain that

governing equations for the components of our solution are
represented by the proper Riccati equations of complex value,

which has no analytical solution in general case. We should
note that a modern method exists for obtaining the numerical
solution of Riccati equations with a good approximation

(Bender and Orszag, 1999).
But we find one of the possible exact solutions (3.5) which is

proved to satisfy the Helmholtz equation (1.1) for beams (*).

Indeed, since the functions g(R) = (sin(kÆR))/(kÆR) or
g(R) = (cos(kÆR))/(kÆR) in (3.5) are itself an exact solution of
the full Helmholtz equation (1.1) Sommerfeld, 1949; Serway,

2004, the formula for the Laplacian in spherical coordinates
gives for A= h(h)Æg(R), h(h) = ln(tg(h/2)):

1

R2

@2A

@h2
þ 1

R2
cot h

@A

@h
¼ 0!

d 1
sin h

	 

dh

þ cot h � 1

sin h

� �
¼ 0;

- which is obviously valid for the range of parameter h2 (0, p).
As for the appropriate example of paraxial approximation

for such a non-paraxial exact solution (3.5) of the full
Helmholtz equation (1.1), it could be easily obtained in the
case h fi +0 (see the expression (3.5) above).
plane spherical-wave solutions.

here we designate: x = r(X,Y) =
p
(X2 + Y2)2 (0, 1), y= Z2 (0,



Figure 4 A schematic plot of the function ln(x/2y)*(cos(kÆy)/(kÆy)), here we designate: x = r(X,Y) =
p
(X2 + Y2)2 (0, 700), y= Z2 (0,

100,000).

Figure 5 A schematic plot of the function (cos(kÆy)/(kÆy)), here we designate: y= Z2 (0, 1000).
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Let us express the real part of solution (3.5) in
Cartesian co-ordinates X, Y, Z as given below (|kÆR| < p/4,
r(X, Y) Z):

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þY2 þZ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2 þZ2

q
; cosh¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrðX;YÞÞ2þZ2
p ;

tan h
2

	 

¼ 1�coshffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðcoshÞ2
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
1�cosh
1þcosh

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2þZ2
p

�Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2þZ2
p

þZ

r
;

ð4:1Þ

A ¼ ðk � aÞ � ln tan h
2

	 
	 

� cosðk�RÞ

k�R ¼

¼ ðk�aÞ
2
� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2þZ2
p

�Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2þZ2
p

þZ

� �
� cosðk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2þZ2
p

Þ
k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðX;YÞÞ2þZ2
p ffi ðk � aÞ � ln rðX;YÞ

2Z

� �
� cosðk�ZÞ

k�Z
As we know, a spherical-wave solution g(R) = (cos(kÆR))/
(kÆR) could be schematically imagined in the Cartesian
co-ordinate system as given below (Sommerfeld, 1949;
Serway, 2004):

- where each of spherical waves is assumed to be a concen-

tric sphere evenly enlarging from a fixed point (a source of
waves), see Figs. 1 and 2.

The solution (3.5) differs from the spherical-waves on a fac-

tor ln(tan(h/2)), but the total energy of a beam should not
exceed the total energy of the appropriate spherical-waves
solution of Helmholtz equation. The energy of the beam is,

of course, essentially the absolute magnitude of the solution
spherically integrated over space.

So, we should restrict the range of parameter h2 (0, p) to
the range of h2 [h0, h1] {where h0 = 2Æarctan(1/e) @ 0,2244 p,
e = 2.71828. . ., h1 = 2Æarctan(e) @ 0,7756 p} for the reason



Figure 6 A schematic plot of the function (cos(kÆy)/kÆy), here we designate: y = Z2 (0, 100,000).
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that inequality: |lntan(h/2)| < |tan(h/2)| 6 1 should be valid

for all meanings of function ln(tan(h/2)) in that range of h,
especially if |kÆR| > p/4.

So, these unusual beams with limited amplitude A could be

compared to the spherical-waves solution (which is much more
closer to each other than other exotic beams) only at the range
of parameter h2 [�40,4�, �139,6�].

As for the appropriate examples of paraxial approximation
r(X,Y) =

p
(X2 + Y2) Z, expressed by Eq. (4.1) in Cartesian

co-ordinates X, Y, Z, see Fig. 3 and 4.
Let us also schematically imagine the spherical-wave solu-

tion to compare it with the solution above:
Also, let us note that these unusual beams could be comparing

to the Bessel beam solutions (Milonni and Eberly, 2010) at all the

ranges of parameter h2 (0, p). To obtain the energy of the beam,
we should spherically integrate the absolute magnitude of the
solution over space, so such a calculations should produce the

infinite energy of a beam due to the structure of the solution:
A= (aÆk)Æln(tan(h/2))Æ(cos(kÆR))/(kÆR). As for the point of clarify-
ing the physical content of the derived solution, Fig. 3–6 could

present a wave travelling on the ocean surface, for a example.
Such a solution is supposed to be linearly enhancing their

radius R during propagation in R-direction, but it is modu-
lated by the function ln(tan(h/2)) so that the total amplitude

A= (aÆk)Æln(tan(h/2))Æ(cos(kÆR))/(kÆR).
Jumping of a phase-function of a solution (*) in a form (3.5)

for an amplitude A being equal to zero at the meaning of para-

meter h = p/2, could be associated with the existing of an optical
vortex (Svelto, 2010) at this point.Optical vortex (also known as a
screw dislocation or phase singularity) is a zero of an optical field,

a point of zero intensity. Research into the properties of vortices
has thrived since a comprehensive paper (Nye and Berry, 1974),
described the basic properties of ‘‘dislocations in wave trains’’.
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Appendix A. Appendix (checking of the exact solution)

The direct substitution of the final expression (3.5) into the
Helmholtz equation (1.1) is an easy matter, showing that this

is really an exact solution.
Let us begin to check the solution (3.5) from the 1-st part of

such a solution:

A ¼ a � ln tan
h
2

� �� �
� cosðk � RÞ

R

¼ a �
Z

1

sin h

� �
dh

� �
� cosðk � RÞ

R
fjk � Rj < p=4; h 2 ð0; pÞg

For the reason that some of the readers may have no suffi-
cient time to execute the calculations properly, it has been

made step-by-step as shown below:
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d
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R2

� �
dR

þ 2
R
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R2

� �
þ k2 cosðk�RÞ

R
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þ 2
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¼ 0;)
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R
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þ k2 �cosðk�RÞ
R
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R3 ¼ 0;

- where the last identity is obviously valid for the range of
parameter R: |k R| < p/4.
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The checking of 2-nd part of the solution (3.5) could be
executed in the same way.
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