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A B S T R A C T   

In this work, we present a numerical scheme based on the operational matrix of fractional Caputo-Fabrizio (CF) 
integration for handling fractional Bloch equation (FBE) in nuclear magnetic resonance (NMR). The under-
standing of Bloch equation provides us a fundamental framework for describing magnetic resonance phenomena, 
facilitating breakthrough in diverse fields such as medical diagnostics, quantum computing and materials 
characterization. The non-integer order derivative and integration are presented in the Caputo-Fabrizio sense. To 
construct the operational matrix, Jacobi polynomial is used as a basis. The fractional Bloch equation is trans-
formed into a set of algebraic equations by using the operational matrix. In order to examine the fractional order 
problem, we obtain an approximate solution for FBE and present the numerical results in graphical and tabular 
forms.   

1. Introduction 

Bloch model is a system of differential equations. It is most useful for 
studying costly biological materials like nucleic acids, proteins, DNA 
and RNA. Petrochemical plants, liquid media, process control and pro-
cess optimization in oil refineries are just a few of the real-world ap-
plications of the Bloch equation. Based on the NMR concept, surface 
magnetic resonance allows for measurements that can be used to infer 
the saturated and unsaturated zone’s water content. The classical system 
of Bloch equations can be written as 

dPx(ξ)
dξ

= μ0Py(ξ) −
Px(ξ)
T2

dPy(ξ)
dξ

= − μ0Px(ξ) −
Py(ξ)
T2

dPz(ξ)
dξ

=
P0 − Pz(ξ)

T1

(1)  

with the initial conditions Px(0) = b1, Py(0) = b2 and Pz(0) = b3. 
Here Px(ξ),Py(ξ) and Pz(ξ) are indicting system magnetization in x, y 

in addition z components respectively, μ0 indicates the resonant fre-
quency provided by the relation μ0 = γM0, where M0 represents static 
magnetic field in z-component, P0 stands for equilibrium magnetization, 
T2 and T1 are the spin–spin relaxation and spin–lattice time respectively, 
b1 , b2 and b3 are real constants. 

For the mathematical model given in Eq. (1), the exact solution is 
expressed as 

Px(ξ) = e−
ξ

T2
(
Px(0)cosμ0ξ + Py(0)sinμ0ξ

)

Py(ξ) = e−
ξ

T2
(
Py(0)cosμ0ξ − Py(0)sinμ0ξ

)

Pz(ξ) = Pz(0)e
−

ξ
T2 + P0

⎛

⎜
⎝1 − e−

ξ
T2

⎞

⎟
⎠

(2) 
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Fractional calculus has a vast variety of practical applications including 
physics (Singh et al., 2020), computer security (Singh et al., 2018), 
viscoelasticity (Bagley and Torvik, 1983; Bagley and Torvik, 1985; Sri-
vastava et al., 2019), fluid dynamics (Kumar et al., 2015), medical and 
health science (Kumar and Singh, 2020; Singh et al., 2021a, b; Robinson, 
1981). For additional details, the reader should refer (Miller and Ross, 
1993; Kilbas et al., 2006). The fractional Bloch equation may simulate a 
variety of magnetic resonance systems. Due to non-local nature, frac-
tional operators impart past memory of the system. Therefore, to 
examine the resulting magnetic resonance system, we will substitute the 
classical derivative in the Bloch equation with CF derivative. The 
resulting FBE is expressed as 

CF
0 Dα

ξ Px(ξ) = μ0Py(ξ) −
Px(ξ)
T2

CF
0 Dβ

ξPy(ξ) = − μ0Px(ξ) −
Py(ξ)
T2

CF
0 Dγ

ξPz(ξ) =
P0 − Pz(ξ)

T1

(3)  

where 0 < α, β, γ < 1.Jajarmi et al. (2022) provided a study on the 
description of the immune system. Singh (2020) investigated the effect 
of alcohol on ingested quality and quantity by a human being. Singh and 
Gupta (2023) provided a computational scheme with Caputo Katu-
gampola to solve non-linear PDE. Kumar et al. (2023) simulated frac-
tional partial differential equation analytically. A childhood diseases SIR 
model was studied by Veeresha et al. (2022). A detailed investigation on 
gemini virus examined by Nisar et al. (2022). Kumar et al. (2022), 
Kumar and Kumar (2022) discussed different models for paste side ef-
fects and ecological model. Dubey et al., 2022a, b investigated a frac-
tional LWR model on heavy traffic flow. 

Researchers, such as Mahariq et al. (2014), Mahariq and Kurt (2015), 
Mahariq et al. (2016), have explored various models using the spectral 
element method due to its efficacy in accurately and efficiently solving 
differential equations. Dubey et al., 2022a, b studied an analytic 
computational scheme for solving the fractional Bloch equation 
appearing in NMR flows. Singh et al., 2021a, b solved the system of the 
Bloch equation using Sumudu transform. Kumar et al. (2014) analyzed 
fractional Bloch equation analytically. Bharwy et al. (2014) provided a 
Jacobi operational matrix of Riemann-Liouville integration. Singh 
(2016) solved fractional Bloch equation numerically by using an oper-
ational matrix with Legendre polynomial. Some recent work on frac-
tional calculus can be seen (Hashmi et al., 2022; Dubey et al., 2022a, b; 
Singh et al., 2022). 

In the present article, we describe a numerical technique for the 
approximate solution of FBE based on an operational matrix of Caputo- 
Fabrizio fractional order integration. The unique aspect of our research 
is centred on developing an operational matrix that harnesses the power 
of Jacobi polynomials specifically for Caputo-Fabrizio fractional inte-
gration. This pioneer method significantly demonstrates the effective-
ness of the operational matrix technique. This method is a more resilient 
and adaptable solution for tackling fractional differential equations. 
Introducing Jacobi polynomials into the operational matrix broadens its 
utility across various applications and elevates the precision of ap-
proximations. Consequently, our work contributes to the progression of 
fractional calculus and facilitates its real-world applications by 
providing enhanced computational tools. By applying this method, we 
find some different unknown coefficients for approximate parameters. 
With the aid of the determined coefficient, we attain an approximate 
solution of the given system of arbitrary order Bloch model pertaining to 
Caputo-Fabrizio non-integer order derivatives. 

2. Preliminaries 

In this paper, fractional order differentiation and integration is 
Caputo-Fabrizio (CF) sense derivative. 

Let a,b, β ∈ R s.t 0 < β ≤ 1. 
The CF non-integer derivative of order β (Nchama, 2020) of a func-

tion u ∈ Hʹ[a, b] is given as 

CF
0 Dβ

ξu(ξ) =
1

1 − β

∫ξ

a

e
−

(
β

1− β

)

(ξ− s)
uʹ(s)ds (4)  

The CF integration of order β (Nchama, 2020) of a function u ∈ Hʹ[a, b] is 
a linear operator represented as 

CF
0 Iβ

ξ u(ξ) = (1 − β)u(ξ) + β
∫ξ

a

u(x)dx (5)  

The Jacobi polynomial of degree r (Singh and Srivastava, 2020) is given 
by 

νr(ξ) =
∑r

k=0
( − 1)r− k Γ(r + d + 1)Γ(r + k + c + d + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!
ξk (6)  

The orthonormal property of Jacobi polynomial with weight function 
w(c,d)(ξ) = (1 − ξ)cξd is expressed as 
∫ 1

0
νn(ξ)νm(ξ)w(c,d)(ξ)dξ = σc,d

n δmn (7)  

where δmn represents the Kronecker delta function and 

σc,d
n =

Γ(n + c + 1)Γ(n + d + 1)
(2n + c + d + 1)n!Γ(n + c + d + 1)

(8)  

A function f ∈ L2[0,1], having |fʹ́ (ξ)| ≤ Q, can be extended as 

f(ξ) = lim
n→∞

∑n

r=0
crνr(ξ) (9)  

where 

cr =
1

σc,d
r

∫ 1

0
νr(ξ) f(ξ)w(c,d)(ξ)dξ (10)  

Eq. (9), for the finite dimensional approximation, is expressed in the 
subsequent form 

f ≅
∑m

r=0
crνr(ξ) = CTqm(ξ) (11)  

where C in addition qm(ξ) are (m+1) × 1 matrices expressed by C =

[c0, c1,⋯, cm]
T and qm(ξ) = [ν0, ν1,⋯, νm]

T. 

3. Operational matrix for Caputo-Fabrizio fractional integration 

Theorem 1. If qm(ξ) = [ν0, ν1,⋯, νm]
T represents shifted Jacobi vector 

in addition if β > 0, then CF
0 Iβ

ξ νr(ξ) = CF
0 I(β)ξ qm(ξ). Where CF

0 I(β)ξ = ηβ(r, s), 
is the (m+1) × (m+1) operational matrix of Caputo-Fabrizio fractional 
integral of order β, and its (r, s) th element expressed by   
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Proof. The analytical form of νr(ξ) of degree, r is given by Eq. (6). Using Eq. 
(5) we get  

Now approximate (1 − β)ξk +β ξk+1

k+1 by m+1 terms of the shifted Jacobi 
series, it yields 

(1 − β)ξk + β
ξk+1

k + 1
=
∑m

s=0
csσs(ξ). (13)  

where cs is given from Eq. (10) and  

By Eqs. (12) and (13), we get 

CF
0 Iβ

ξ (νr(ξ) ) =
∑m

s=0
ηβ(r, s)νs(ξ), r = 0,1,m (15)  

where  

[
(1 − β)Γ(f + k + d + 1)

Γ(f + k + c + d + 2)
+

β
(k + 1)

Γ(f + k + d + 2)
Γ(f + k + c + d + 3)

]

. (16)  

In this way, Eq. (15) can be written in the following manner 

CF
0 Iβ

ξ (νr(ξ) ) =
[
ηβ(r,0), ηβ(r, 1), ηβ(r, 2),……………, ηβ(r, n)

]
qm(ξ) (17)  

4. Computational procedure of the method 

Here, we discuss a computational scheme to obtain the approximate 

solutions of FBE. By utilizing it we can find magnetisation in each 
direction. 

First of all, we take the subsequent approximation 

CF
0 Dα

ξ Px(ξ) = CT
1q(ξ), CF

0 Dβ
ξPy(ξ) = CT

2q(ξ), CF
0 Dγ

ξPz(ξ) = CT
3q(ξ) (18)  

and 

Px(0) = ETq(ξ),Py(0) = FTq(ξ),Px(0) = GTq(ξ),
P0

T1
= HTq(ξ). (19)  

From Eqs. (18) and (19), we have 

Px(ξ) = CT
1

CF
0 Iα

ξ q(ξ)+ETq(ξ), (20)  

Py(ξ) = CT
2

CF
0 Iβ

ξ q(ξ)+ FTq(ξ), (21)  

Pz(ξ) = CT
3

CF
0 Iγ

ξq(ξ)+GTq(ξ), (22)  

Using Eqs. (18)–(22) in Eq. (3), we have 

CT
1

(

I +
1
T2

CF
0 Iα

ξ

)

− μ0CT
2

CF
0 Iβ

ξ = μ0FT −
1
T2

ET (23) 

ηβ(r, s) =
∑r

k=0

∑s

f=0
( − 1)r+s− k− fΓ(r + d + 1)Γ(r + k + c + d + 1)(2s + c + d + 1)s!Γ(s + f + c + d + 1)Γ(c + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!(s + c + 1)Γ(f + d + 1)(s − f)!f!

[
(1 − β)Γ(f + k + d + 1)

Γ(f + k + c + d + 2)

+
β

(k + 1)
Γ(f + k + d + 2)

Γ(f + k + c + d + 3)

]

CF
0 Iβ

ξ (νr(ξ) ) = CF
0 Iβ

ξ

(
∑r

k=0
( − 1)r− k Γ(r + d + 1)Γ(r + k + c + d + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!
ξk

)

=
∑r

k=0
( − 1)r− k Γ(r + d + 1)Γ(r + k + c + d + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!
CF
0 Iβ

ξ

(
ξk)

=
∑r

k=0
( − 1)r− k Γ(r + d + 1)Γ(r + k + c + d + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!

⎡

⎣(1 − β)ξk + β
∫ξ

0

skds

⎤

⎦

=
∑r

k=0
( − 1)r− k Γ(r + d + 1)Γ(r + k + c + d + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!

[

(1 − β)ξk + β
ξk+1

k + 1

]

(12)   

cs =
(2s + c + d + 1)s!

Γ(s + c + 1)
∑s

f=0
( − 1)s− fΓ(s + f + c + d + 1)Γ(c + 1)

Γ(f + d + 1)(s − f)!f!

[
(1 − β)Γ(f + k + d + 1)

Γ(f + k + c + d + 2)
+

β
(k + 1)

Γ(f + k + d + 2)
Γ(f + k + c + d + 3)

]

. (14)   

ηβ(r, s) =
∑r

k=0

∑s

f=0
( − 1)r+s− k− fΓ(r + d + 1)Γ(r + k + c + d + 1)(2s + c + d + 1)s!Γ(s + f + c + d + 1)Γ(c + 1)

Γ(k + d + 1)Γ(r + c + d + 1)(r − k)!k!(s + c + 1)Γ(f + d + 1)(s − f)!f!
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μ0CT
1

CF
0 Iα

ξ +CT
2

(

I +
1
T2

CF
0 Iβ

ξ

)

= − μ0ET −
1
T2

FT (24)  

CT
3

(

I+
1
T1

CF

0
Iγ
ξ

)

= HT −
1
T1

GT (25)  

where CF
0 Iα

ξ ,
CF
0 Iβ

ξ and CF
0 Iγ

ξ are indicating operational matrices of Caputo- 
Fabrizio integral of α, β as well as γ orders and I stand for an identity 
matrix. 

From Eqs. (23)–(25), we have 

CT
1U1 − CT

2U5 = S1 (26)  

CT
1U4 +CT

2U2 = S2 (27)  

CT
3U3 = S3 (28)  

where 

U1 = I+
1
T2

CF

0
Iα
ξ (29)  

U2 = I+
1
T2

CF

0
Iβ
ξ (30)  

U3 = I+
1
T1

CF

0
Iγ
ξ (31)  

U4 = μ0
CF
0 Iα

ξ (32)  

U5 = μ0
CF
0 Iβ

ξ (33)  

S1 = μ0FT −
1
T2

ET (34)  

S2 = − μ0ET −
1
T2

FT (35)  

S3 = HT −
1
T1

GT (36)  

Matrix U1,U2,U3,U4,U5, S1, S2 and S3 are known matrices since these 
are expressed in terms of known values. 

On solving Eqs. (26)–(28) 

CT
1 =

(
S1U− 1

5 + S2U− 1
2
)(

U1U− 1
5 + U4U− 1

2
)− 1 (37)  

CT
2 =

{(
S1U− 1

5 + S2U− 1
2
)(

U1U− 1
5 + U4U− 1

2
)− 1U1 − S1

}
W− 1

5 (38)  

CT
3 = S3W− 1

3 (39) 

Fig. 2. Response of the solution of Py(ξ) at β = 0.98, 0.99 and 1, with parameter: μ0 = 1, T1 = 1, T2 = 20, c = 1, d = 1.  

Fig. 1. Response of the solution of Px(ξ) at α = 0.98, 0.99 and 1, with 
parameter:μ0 = 1, T1 = 1, T2 = 20, c = 1, d = 1. 
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Using Eqs. (37)–(39) in Eqs. (20)–(22) respectively, we get a system of 
magnetisation Px(ξ),Py(ξ) and Pz(ξ) for fractional Bloch model. 

5. Results and discussions 

We will numerically simulate our outcomes in this section. To 
compute numerical results, we take Px(0) = 0, Py(0) = 100 and Pz(0) =

0. The behaviour of the solutions of Px(ξ), Py(ξ) and Pz(ξ) shown in 
Figs. 1-3 at distinct values α, β and γ, respectively. 

It is evident from these outcomes of the study that the obtained so-
lution regularly changes from fractional order to integer order. From 
Fig. 1, we observe that the value of Px(ξ) increases with increasing time 
ξ. Decreasing the order of non-integer order derivatives leads to increase 
in the value of Px(ξ) initially, after some time its nature is opposite. From 
Fig. 2, we notice that the value of Py(ξ) decrease with increasing time on 
ξ. Decreasing the order of arbitrary order derivatives leads to diminution 
in the value of Py(ξ) initially, after some time its nature is opposite. From 
Fig. 3 we inspect that value of Pz(ξ) increase with increasing time ξ. On 

decreasing the order of fractional derivatives leads to an enhancement in 
the value of Pz(ξ) initially, after some time its nature is opposite. 

It is evident that the results vary continuously from arbitrary order to 
classical order. Both the exact solution as well as the approximate so-
lutions obtained by using our proposed scheme is presented in the 
Table 1. We have compared outcomes obtained by Jacobi polynomial, 
exact solution and method (Singh, 2017; Kumar et al., 2014). Table 1 
reveals that the results of the described technique are faithful for prac-
tical implementations of FBE. 

6. Conclusions 

In this study, we have suggested a computational scheme for arbi-
trary order Bloch equation pertaining to the Caputo − Fabrizio operator. 
The proposed method offers notable advantages in terms of simplicity 
and user-friendliness compared to alternative techniques, primarily due 
to the straightforward construction of the operational matrix for dif-
ferential equations. Specifically, we develop an operational matrix for 
Caputo-Fabrizio integration by utilizing the Jacobi polynomial. When α,
β, γ = 1, we observe strong agreement between the solution obtained 
through operational matrix techniques and the exact solution of the 
Bloch equation of arbitrary order. These findings underscore the suit-
ability and accuracy of our proposed approach for analyzing fractional 
order models employing the Caputo-Fabrizio operator. Future endeavors 
will delve into the utilization of various special functions such as 
Bernstein and Vieta Lucas, alongside the operational matrix method, 
while also exploring the impacts of arbitrary orders on the dynamics of 
the Bloch equation. 
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(2014) 
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Fig. 3. Response of the solution of Pz(ξ) at γ = 0.98, 0.99 and 1, with param-
eter:μ0 = 1, T1 = 1, T2 = 20, c = 1, d = 1. 

J. Singh et al.                                                                                                                                                                                                                                    

https://doi.org/10.1122/1.549724
https://doi.org/10.1122/1.549724
https://doi.org/10.2514/3.9007
http://refhub.elsevier.com/S1018-3647(24)00175-7/h0015
http://refhub.elsevier.com/S1018-3647(24)00175-7/h0015
http://refhub.elsevier.com/S1018-3647(24)00175-7/h0015
https://doi.org/10.3390/fractalfract6080426
https://doi.org/10.1016/j.chaos.2022.112691
https://doi.org/10.1016/j.chaos.2022.112691
https://doi.org/10.1016/j.aej.2021.11.065
https://doi.org/10.1016/j.aej.2021.11.065
https://doi.org/10.1002/mma.7804
https://doi.org/10.1002/mma.7804
http://refhub.elsevier.com/S1018-3647(24)00175-7/h0040
http://refhub.elsevier.com/S1018-3647(24)00175-7/h0040
https://doi.org/10.1016/j.chaos.2021.111697
https://doi.org/10.1016/j.chaos.2021.111697


Journal of King Saud University - Science 36 (2024) 103263

6

Kumar, D., Singh, J., 2020. Fractional calculus in medical and health science. CRC Press. 
Kumar, D., Singh, J., Kumar, S., 2015. A fractional model of Navier-Stokes equation 

arising in unsteady flow of a viscous fluid. Journal of the Association of Arab 
Universities for Basic and Applied Sciences. 17, 14–19. https://doi.org/10.1016/j. 
jaubas.2014.01.001. 

Kumar, D., Dubey, V.P., Dubey, S., Singh, J., Alshehri, A.M., 2023. Computational 
analysis of local fractional partial differential equations in realm of fractal calculus. 
Chaos Solitons Fractals 167, 113009. https://doi.org/10.1016/j. 
chaos.2022.113009. 

Kumar, S., Faraz, N., Sayevand, K., 2014. A Fractional model of Bloch equation in nuclear 
magnetic resonance and its analytic approximate solution. Walailak. J. Sci. Technol. 
11 (4), 273–285. https://doi.org/10.14456/WJST.2014.44. 

Kumar, S., Kumar, A., Jleli, M., 2022. A numerical analysis for fractional model of the 
spread of pests in tea plants. Numer. Methods Partial Differential Equations 38 (3), 
540–565. https://doi.org/10.1002/num.22663. 
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