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Abstract The paper develops a weak-form integral equation method (WFIEM) for solving the sin-

gularly perturbed convection–diffusion equation, which is too ill-posed to find the singular solution

using conventional methods. We use Green’s second identity to generate integral equation, which

includes a source term and boundary functions on the space-time boundary, and the derived adjoint

Trefftz test functions. Then the singular solution is expressed in terms of a set of exponentially-fitted

trial functions, which automatically satisfy the boundary conditions. The numerical algorithm

deduced from the WFIEM is effective and accurate in the numerical solutions of highly singular

parabolic type problems as will be observed by numerical examples.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The mathematical models that involve a combination of con-
vective, diffusive and reactive terms are widespread in many

engineering and scientific branches. Often we may encounter
the problem that the boundary layers are presented when the
convective term dominates than the diffusive term. When the

Péclet number is large, the difficulty might appear in the
numerical approximations. Thus a vast literature has built
up over the last few decades on a variety of techniques for
analyzing and overcoming these difficulties (Morton, 1996).

Our problem is to find uðx; tÞ in the following singular

convection–diffusion equation:

utðx; tÞ ¼ euxxðx; tÞ � cuxðx; tÞ þ auðx; tÞ þ Sðx; tÞ; ð1Þ

uð0; tÞ ¼ u0ðtÞ; ð2Þ

uð‘; tÞ ¼ u‘ðtÞ; ð3Þ

uðx; 0Þ ¼ fðxÞ; ð4Þ
where ðx; tÞ 2 X : f0 < x < ‘; 0 < t 6 tfg; e > 0 is a small diffu-

sion coefficient, c is the transport velocity, a is a constant reac-
tion rate, ‘ is the length, tf is the final time, and Sðx; tÞ is the
source term. We suppose that the boundary values
u0ðtÞ–u‘ðtÞ. For a given problem if u0ðtÞ ¼ u‘ðtÞ we can trans-
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form it by wðx; tÞ ¼ uðx; tÞ þ xt to a new problem for wðx; tÞ
with the new boundary conditions wð0; tÞ ¼ u0ðtÞ and
wð‘; tÞ ¼ u‘ðtÞ þ ‘t–wð0; tÞ.

Because the highest order term uxx is multiplied by a small

parameter e, Eq. (1) is one of the singularly perturbed prob-
lems of parabolic type partial differential equations (PDEs),
which exhibits boundary layers near to x ¼ 0 and x ¼ ‘. The
singularly perturbed parabolic type problems have been an

interesting subject for many applications, of which a lot of
numerical methods were proposed to solve them (Boglaev,
1998; Clavero and Gracia, 2005, 2010; Hemker et al., 2000;

Kopteva, 1997; Linß and Madden, 2007; Mukherjee and
Natesan, 2011; Ng-Stynes et al., 1988; Shishkin, 1997). The
numerical methods to treat the singularly perturbed problems

were surveyed by Kadalbajoo and Patidar (2002), Kadalbajoo
and Gupta (2010). More difficult asymptotic behavior at small
diffusivity of the solutions in a rectangle with corner layers was
analyzed by Gie et al. (2013) and Hamouda et al. (2016).

Recently, Temam et al. (2015) have explored the recent pro-
gresses in boundary layer theory, where the boundary layer
analysis is performed on a curved boundary, and also the inte-

rior transition layers at the turning point characteristics in an
interval domain and classical (ordinary), characteristic (para-
bolic) and corner (elliptic) boundary layers in a rectangular

domain are provided using the technique of correctors and
the tools of functional analysis.

It is known that the singularly perturbed convection–diffusion

Eq. (1) is highly ill-posed (Rajan and Reddy, 2016), and as men-
tioned there the discretization of the singularly perturbed convec-
tion–diffusion equation often leads to a highly ill-conditioned
system which results in an unstable numerical solution. Due to

the presence of boundary layers phenomenawehave to seekmore
suitable trial functions and test functions in the weak-form
methods, which lead to stable and robust numerical methods to

give stable solution for any value of the diffusion parameter.
The remaining portion is arranged as follows. In Section 2

we introduce a weak-form integral equation method based on

Green’s second identity and the adjoint operator. In Section 3
we derive the spectral functions to simplify the weak-form inte-
gral equation derived in Section 2. Using the exponentially-
fitted trial functions to expand the singular solution and using

the adjoint Trefftz test functions, we can derive a quite simple
linear system in Section 4, which is then solved using the con-
jugate gradient method (CGM) to determine the expansion

coefficients. Numerical examples are given in Section 5, and
the conclusions are drawn in Section 6.

2. A weak-form integral equation method

The idea of weak-form integral equation method with inserting
the adjoint Trefftz functions as test functions has been success-

fully developed by Liu (2016a), Liu and Chang (2016) and Liu
and Wang (2016) to solve the direct and inverse problems of
elliptic and parabolic PDEs. In order to explore the new

method we first derive the following results.

Theorem 1 (Green’s second identity). Let X be a bounded
region in the plane ðx; tÞ with a counter-clockwise contour C
consists of finitely many smooth curves. Let uðx; tÞ and vðx; tÞ be
functions that are differentiable in X and continuous on �X.
Then
Z Z
X
ðuH�vþ vHuÞdxdt ¼

I
C
½eðuvx � vuxÞ þ cuv�dt� uvdx;

ð5Þ
where

HðuÞ ¼ @u

@t
� e

@2u

@x2
þ c

@u

@x
� au; ð6Þ

H�ðvÞ ¼ @v

@t
þ e

@2v

@x2
þ c

@v

@x
þ av ð7Þ

are, respectively, the linear parabolic operator and its adjoint

operator.

Proof. Inserting

R R
X utvdxdt ¼ �

I
C
uvdx� R R

X vtudxdt;

�e
R R

X uxxvdxdt ¼ �e
I

Cuxvdtþ e
I
C
uvxdt� e

R R
X uvxxdxdt;

c
R R

X uxvdxdt ¼ c

I
C
uvdt� c

R R
X uvxdxdt;

�a
R R

X uvdxdt ¼ �a
R R

X vudxdt

into the first integral term in left-hand side of Eq. (5) and mov-

ing the double integral terms to the left-hand side we can prove
this theorem. h

Theorem 2. For the singular problem (1) we have the following
integral relation:

R tf
0

R ‘

0
Sðx; tÞvðx; tÞdxdt ¼ R ‘

0
½uðx; tfÞvðx; tfÞ � uðx; 0Þvðx; 0Þ�dx

þ R tf
0
e½uð‘; tÞvxð‘; tÞ � uð0; tÞvxð0; tÞ�dt

� R tf
0
e½uxð‘; tÞvð‘; tÞ � uxð0; tÞvð0; tÞ�dt

þ R tf
0
c½uð‘; tÞvð‘; tÞ � uð0; tÞvð0; tÞ�dt

ð8Þ
for any function vðx; tÞ with H�v ¼ 0, where uðx; 0Þ ¼ fðxÞ,
uð0; tÞ ¼ u0ðtÞ and uð‘; tÞ ¼ u‘ðtÞ are given functions.

Proof. Inserting Hu ¼ Sðx; tÞ and H�v ¼ 0 into Eq. (5), inte-
grating along the contour C ¼ C1 [ C2 [ C3 [ C4 ¼ f0 6
x 6 ‘; t ¼ 0g [ fx ¼ ‘; 0 6 t 6 tfg [ f0 6 x 6 ‘; t ¼ tfg [ fx ¼
0; 0 6 t 6 tfg, and inserting the corresponding conditions in

Eqs. (2)–(4) we can prove this theorem. h
3. The adjoint Trefftz test functions

In order to simplify the weak-form integral Eq. (8), we need to

find the adjoint Trefftz test function vðx; tÞ, which satisfies the
following adjoint PDE as well as the adjoint boundary
conditions:

H�v ¼ @v

@t
þ e

@2v

@x2
þ c

@v

@x
þ av ¼ 0; ð9Þ

vð0; tÞ ¼ vð‘; tÞ ¼ 0: ð10Þ
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Theorem 3. For the singular problem, the adjoint Trefftz test

functions which satisfy Eqs. (9) and (10) are given by

v jðx; tÞ ¼ exp½ðkj � aÞðt� tfÞ�Gðx; jÞ; ð11Þ

Gðx; jÞ ¼ exp
�cx

2e

� �
sin

jpx
‘

; ð12Þ

where

kj ¼ c2

4e
þ ej2p2

‘2
; j 2 N: ð13Þ

Proof. Let

IðtÞ ¼ eat ð14Þ
be the integrating factor, and multiplying Eq. (9) by IðtÞ we
have

@IðtÞv
@t

þ e
@2IðtÞv
@x2

þ c
@IðtÞv
@x

¼ 0: ð15Þ

By letting

wðx; tÞ :¼ IðtÞvðx; tÞ; ð16Þ
a simpler PDE for wðx; tÞ follows:
wtðx; tÞ ¼ �cwxðx; tÞ � ewxxðx; tÞ: ð17Þ
Upon taking

wðx; tÞ ¼ yðxÞKðtÞ; ð18Þ
and using the method of separation of variables it follows that

_KðtÞ
KðtÞ ¼

�cy0ðxÞ � ey00ðxÞ
yðxÞ ¼ k; ð19Þ

where the eigenvalue k is to be determined.

In order to satisfy the boundary conditions
vð0; tÞ ¼ vð‘; tÞ ¼ 0 in Eq. (10) we impose

yð0Þ ¼ yð‘Þ ¼ 0; ð20Þ
such that by Eqs. (19) and (20) we can derive Eq. (13). As a
consequence we have the following solutions:

KðtÞ ¼ Dekj t; ð21Þ

yðxÞ ¼ C exp
�cx

2e

� �
sin

jpx
‘

; ð22Þ

where C and D are constants. Therefore, by Eqs. (16), (18) and

(14) we can derive Eqs. (11) and (12), of which v jðx; tÞ are
closed-form spectral solutions of the adjoint equation

H�v ¼ 0, and automatically satisfy the boundary conditions
vð0; tÞ ¼ vð‘; tÞ ¼ 0 in Eq. (10) due to

Gð0; jÞ ¼ Gð‘; jÞ ¼ 0: ð23Þ
We may call v jðx; tÞ; j 2 N the adjoint Trefftz test functions,

because they satisfy the adjoint equation automatically; more-

over, v jðx; tÞ; j 2 N are spectral functions. h

Inserting Eq. (11) into Eq. (8) we can derive a quite simple
integral relation between Sðx; tÞ and other boundary functions.
Theorem 4. For the singular convection–diffusion Eq. (1), the

solution uðx; tfÞ ¼ gðxÞ at any time tf, the given source function

Sðx; tÞ, and the given conditions uðx; 0Þ ¼ fðxÞ; uð0; tÞ ¼ u0ðtÞ;
uð‘; tÞ ¼ u‘ðtÞ satisfy the following weak-form integral relation:

R ‘

0
gðxÞv jðx; tfÞdx ¼ R tf

0

R ‘

0
Sðx; tÞv jðx; tÞdxdt

þ R ‘

0
fðxÞv jðx; 0Þdx� R tf

0
e½u‘ðtÞv j

xð‘; tÞ � u0ðtÞv j
xð0; tÞ�dt;

ð24Þ

where v jðx; tÞ; j 2 N are the adjoint Trefftz test functions.

Proof. This theorem follows from Eq. (8) using

vð0; tÞ ¼ vð‘; tÞ ¼ 0. h
4. Numerical algorithm of WFIEM

To prompt the introduction of the exponentially-fitted trial

functions, let us consider

ey00ðxÞ þ y0ðxÞ ¼ 0; 0 < x < 1;

yð0Þ ¼ 0; yð1Þ ¼ 1;
ð25Þ

which has a closed-form solution:

yðxÞ ¼ e�x=e � 1

e�1=e � 1
: ð26Þ

It can be seen that the singular solution is of the exponential

type function.
There are two basic trial functions we need:

/jðxÞ ¼ ejx�1
ej‘�1

;/jð0Þ ¼ 0; /jð‘Þ ¼ 1; ð27Þ

/jðxÞ ¼ ej‘�ejx

ej‘�1
;/jð0Þ ¼ 1; /jð‘Þ ¼ 0; ð28Þ

and via a linear superposition they can generate other trial

functions, which automatically satisfy the given boundary
conditions.

Then we describe a simple algorithm to solve gðxÞ in the

integral Eq. (24). For the solution of the singular convec-
tion–diffusion Eq. (1) we may consider

gðxÞ ¼
Xm2

j¼�m1

ajsj/jðxÞ; ð29Þ

/jðxÞ ¼ ðb2�b1Þejx�b2þb1e
j‘

ej‘�1
; ð30Þ

/0ðxÞ ¼ 1
‘
½ðb2 � b1Þxþ b1‘�; ð31Þ

where m1 and m2 are integers chosen by the user, sj are

multiple-scales, and b1 ¼ u0ðtfÞ and b2 ¼ u‘ðtfÞ. In the trial

functions /jðxÞ; b1 and b2 must be different constants; other-

wise, /jðxÞ will be constants. We impose an extra moment

equation:

Xm2

j¼�m1

aj ¼ 1 ð32Þ

to guarantee that the boundary conditions are satisfied. The
new idea of using the exponentially and polynomially fitted
trial functions as the bases for a trial solution was first devel-

oped by Liu (2016b) to solve the third-order singular boundary
value problems.

Inserting Eq. (29) with sj ¼ 1 into Eq. (24) and integrating,

and letting j ¼ 1; . . . ; nq � 1 we can derive a linear system:



Fig. 1 For the singular problem of example 1 solved by the

WFIEM, (a) showing the convergence iterations, and (b) com-

paring numerical and exact solutions.

Solving singular convection–diffusion equations 103
Ac ¼ e ð33Þ
to determine the expansion coefficients c :¼ fajg whose num-

ber is n ¼ m1 þm2 þ 1. The dimension of A is nq � n, including

Eq. (32). According to the idea of equilibrated matrix method
(Liu, 2012), the multiple-scales sj are given by

sj ¼ ka1k
kajk ; ð34Þ

where aj is the jth column vector of the coefficient matrix A,

and s1 ¼ 1.
Instead of Eq. (33), we can solve a normal linear system:

Dc ¼ b1; ð35Þ
where

b1 :¼ ATe; D :¼ ATA > 0: ð36Þ

The algorithm of conjugate gradient method (CGM) for

solving Eq. (35) is summarized as follows.

(i) Give an initial c0 and then compute r0 ¼ Dc0 � b1 and

set p0 ¼ r0.
(ii) For k ¼ 0; 1; 2; . . ., we repeat the following iterations:

gk ¼ krkk2
pT
k
Dpk

;

ckþ1 ¼ ck � gkpk;

rkþ1 ¼ Dckþ1 � b1;

akþ1 ¼ krkþ1k2
krkk2

;

pkþ1 ¼ akþ1pk þ rkþ1:

ð37Þ

If ckþ1 converges according to a given stopping criterion
krkþ1k < e1, then stop; otherwise, go to step (ii).

There are many different methods to choose the test func-

tions and trial functions. Here, the method of adjoint Trefftz
test functions transforms the strong form in Eq. (1) into the
most weak-form integral Eq. (24). Moreover, the test functions

can be solved in closed-form by Eq. (11), which significantly
enhance the efficiency of the presented method in the solution
of the singular problems at hand. From Eqs. (11) and (12) we
can observe that the singular behavior of the singular problems

is reflected in the test functions. On the other hand, in order to
simulate the singular behavior of the singular problems we
have used the exponentially-fitted functions as the trial func-

tions, which automatically satisfy the boundary conditions.
When we take enough bases and generate enough algebraic
equations using many linearly independent test functions

v jðx; tÞ, we can solve the singular problems effectively and
accurately. The above two points using the adjoint Trefftz test
functions and the exponentially-fitted trial functions are highly

original and sufficiently novel.

5. Numerical examples

In this section we apply the weak-form integral equation
method (WFIEM) to solve Eq. (1). Sometimes we may want
to find all the time histories of uðx; tÞ in a time interval

t 2 ð0; tf�. For this purpose we rewrite Eqs. (11), (12) and

(24) to
v jðx; s; tÞ ¼ exp½ðkj � aÞðs� tÞ� exp �cx
2e

� �
sin jpx

‘
;

Gðx; jÞ ¼ exp �cx
2e

� �
sin jpx

‘
;

R ‘

0
gðxÞGðx; jÞdx ¼ R t

0

R ‘

0
Sðx; sÞv jðx; s; tÞdxds

þ R ‘

0
fðxÞv jðx; 0; tÞdx� R t

0
e½u‘ðsÞv j

xð‘; s; tÞ � u0ðsÞv j
xð0; s; tÞ�ds:

ð38Þ
Reminding that the linear system (33) has a constant coef-

ficient matrix A, while the right-hand side is a time-varying
input vector for t 2 ð0; tf�. Hence, we can obtain

cðtÞ ¼ ðATAÞ�1
ATeðtÞ: ð39Þ

Upon substituting the time-varying coefficients

cðtÞ ¼ fajðtÞg into Eq. (29) we can obtain the time-varying sin-

gular solution uðx; tÞ ¼ gðx; tÞ.

Example 1. In order to assess the accuracy of the new method,
we consider an exact solution:

uðx; tÞ ¼ exp �t� xffiffi
e

p
� �

ð40Þ

of Eq. (1), where we take e ¼ 0:005; a ¼ 0:1 and

c ¼ �ð2þ aÞ ffiffi
e

p
, such that Sðx; tÞ ¼ 0.

In the WFIEM we take m1 ¼ 12;m2 ¼ 0, and nq ¼ 31,

which is convergence with 37 steps as shown in Fig. 1(a), where

the convergence criterion is given by e1 ¼ 10�10. In Fig. 1(b)



Fig. 2 For the singular problem of example 1 solved by the

WFIEM, showing the numerical errors in a time interval.

Fig. 3 For the singular problem of example 2 solved by the

WFIEM, comparing the numerical and exact solutions in a time

interval.
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we plot the numerical and exact solutions at t0 ¼ 1, whose

maximum error is 1:77� 10�4.

In Fig. 2 we plot the numerical errors in a time interval
t 2 ð0; 1�, whose maximum error in the whole domain is

1:91� 10�4. It can be seen that the WFIEM is very accurate
and has no problems of error propagation and error amplified.

Example 2. Next we consider a more complex exact solution

with two boundary layers at x ¼ 0 and x ¼ 1:

uðx; tÞ ¼ tð1� xÞ

þ t 1þ ðx� 1Þ exp � xffiffi
e

p
� �

� x exp
x� 1ffiffi

e
p

� �	 

;

ð41Þ
where we take e ¼ 0:01; a ¼ �0:1 and c ¼ �0:19, and accord-
ingly the exact Sðx; tÞ can be computed from Eq. (1).

In Fig. 3(a) we plot the numerical solution, while in Fig. 3

(b) the exact solution in a time interval t 2 ð0; 2�, whose

maximum error in the whole domain is 2:88� 10�4. It can be
seen that the numerical solution is very close to the exact one.

Again we can observe that the error is not being amplified.

Example 3. Finally we consider

wtðx; tÞ � ewxxðx; tÞ þ wðx;tÞ
2

¼ et � 1þ sinðpxÞ;
ðx; tÞ 2 ð0; 1Þ � ð0; 1�;

wð0; tÞ ¼ wð1; tÞ ¼ 0;

wðx; 0Þ ¼ 0;

ð42Þ

which is a variant of Eq. (32) in Clavero and Gracia (2010).

In order to apply the exponentially-fitted trial functions in
Eqs. (30) and (31) to solve the above problem we need to
consider the following variable transformation:
uðx; tÞ ¼ wðx; tÞ þ xt; ð43Þ
such that Eq. (42) becomes

utðx; tÞ � euxxðx; tÞ þ uðx;tÞ
2

¼ xþ xt
2
þ et � 1þ sinðpxÞ;

uð0; tÞ ¼ 0; uð1; tÞ ¼ t;

uðx; 0Þ ¼ 0:

ð44Þ

Solving uðx; tÞ by the WFIEM, one can obtain
wðx; tÞ ¼ uðx; tÞ � xt.

We take e ¼ 10�4 for a highly singular problem. We take

m1 ¼ m2 ¼ 100, and nq ¼ 31 in the WFIEM, which converges

after 448 steps under the convergence criterion e1 ¼ 10�10, as

shown in Fig. 4(a). In Fig. 4(b) we plot the numerical solutions
at two different times.



Fig. 4 For the singular problem of example 3 solved by the

WFIEM, (a) showing the convergence iterations and (b) showing

numerical solutions at two different times.
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6. Conclusions

In this paper we have derived a weak-form integral equation

method to tackle the highly singular problem of the one-
dimensional convection–diffusion equation. Because the
closed-form spectral functions were used as the adjoint Trefftz
test functions in the integral equation, we can easily find the

singular solution at any time. The use of exponentially-fitted
trial functions as solution bases can faithfully capture the sin-
gular behavior in the boundary layers. Through numerical

experiments, we have confirmed that the proposed algorithm
is applicable to the singular convection–diffusion equation.
Moreover, the WFIEM is very accurate and no error propaga-

tion and amplification.
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