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Abstract A new class of general quasi-variational inequalities involving two operators is intro-

duced and studied. Using essentially the projection operator technique, we establish the equivalence

between the general quasi-variational inequalities and the fixed-point problem and the Wiener–

Hopf equations. These alternative equivalent formulations have been used to suggest and analyze

several iterative methods for solving the general quasi-variational inequalities. We also discuss

the convergence criteria of these iterative methods under some suitable conditions. Several special

cases are also discussed.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Quasi-variational inequalities, which were introduced and
studied in the early 1960s, are being used to consider a wide
class of unrelated problems in a unified and general frame-
work, see Borwein and Lewis (2006), Cristescu and Lupsa

(2002), Glowinski et al. (1981), Noor (1975, 1988a, 1993,
1997c, 2004), Noor et al. (1993). It has been shown that the
variational inequalities provide a general, natural, simple,
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unified and efficient framework for a general treatment of a
wide class of unrelated linear and nonlinear problems. This
theory combines theoretical and algorithmic advances with no-

vel domain of applications. Analysis of these problems re-
quires a blend of techniques from convex analysis, functional
analysis and numerical analysis, see Baiocchi and Capelo

(1984), Bensoussan and Lions (1978), Borwein and Lewis
(2006), Cristescu and Lupsa (2002), Giannessi et al. (2001),
Gilbert et al. (2001), Glowinski et al. (1981), Kravchuk and

Neittaanmaki (2007), Noor (1975, 1985, 1988a,b, 1993,
1997a,b,c, 1998, 1999, 2000, 2004, 2007, 2008a, 2010a,
2009a,b,c, 2010b, 2008b), Noor et al. (1993, 2010), Robinson
(1992), Shi (1991), Stampacchia (1964) and the references

therein. There are significant developments of these problems
related to nonconvex optimization, iterative method and struc-
tural analysis. Bensoussan and Lions (1978) have shown that a

class of impulse control problems can be formulated as quasi-
variational inequality problem. Kravchuk and Neittaanmaki
(2007), and Noor (1998) have shown that a wide class of prob-

lems, which arises in mechanics can be studied in the general
framework of quasi-variational inequalities. Noor (1985)
proved that a class of quasi-variational inequalities is equiva-

lent to the fixed-point problem using the projection technique.
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This equivalent formulation has been used to develop iterative

methods for solving the quasi-variational inequality and its
various variant forms.

Related to the variational inequalities, we have the problem
of solving the Wiener–Hopf equations, which were introduced

by Robinson (1992) and Shi (1991). Normal maps (Shi, 1991)
were introduced by using linear transformation technique,
whereas the Wiener–Hopf equations were considered by Rob-

inson (1992) by using the projection operator theory. We
would like to point out that normal maps problem and the
Wiener–Hopf equations are exactly the same. Robinson

(1992) and Shi (1991) have proved that the variational inequal-
ities are equivalent to the Wiener–Hopf equations (normal
maps) using quite different techniques. These alternative for-

mulations have played a very significant role in the develop-
ments of numerical methods, sensitivity analysis, dynamical
systems and other aspects of variational inequalities. Noor
(1997a) has shown that the quasi-variational inequalities are

equivalent to the Wiener–Hopf (normal maps) using the pro-
jection operator techniques. This alternative equivalent formu-
lation to suggest numerical methods and other techniques for

solving the quasi variational inequalities, see Borwein and
Lewis (2006), Kravchuk and Neittaanmaki (2007), Noor
(1975, 1985, 1988a,b, 1993, 1997a,b,c, 1998, 1999, 2000,

2004, 2007, 2008a, 2010a, 2009a,b,c, 2010b, 2008b), Noor et
al. (1993, 2010) and the references therein.

It is well known that the variational inequality represents
the optimality condition for the minimum of a convex function

on the convex set. We would like to point out that all the
works carried out in this direction assumed that the underlying
set is a convex set. In many practical problems, a choice set

may not be a convex so that the existing results may not be
applicable. In recent years, the concept of convexity has been
generalized and extended in several directions using some dif-

ferent techniques. Cristescu and Lupsa (2002) introduced the
concept of g-convex set, which is non–convex set. Noor
(2008b) studied a class of functions on the g-convex set, which

is called the g-convex function. It is well known that every con-
vex function is a g-convex function, but the converse is not
true. Noor, 2008b has shown that the minimum of a differen-
tiable g-convex function can be characterized by a class of var-

iational inequalities, which is called the general variational
inequality.

Inspired and motived by these research activities, we con-

sider and study a new class of quasi-variational inequalities
involving two operators, which is called the general quasi-var-
iational inequality. This class is quite general and unifying

ones. The general quasi-variational inequalities include the
classical quasi-variational inequalities and related optimization
problems as special cases. Using the projection method, we

prove that the general quasi-variational inequality is equiva-
lent to the fixed-point problem, which is Lemma 3.1. This
equivalent is used to discuss the existence of a solution of
the general quasi-variational inequality, which is the main

motivation of Theorem 3.1. In section, we use Lemma 3.1 to
suggest and analyze a number of iterative methods for solving
the general quasi-variational inequalities, see, for example

Algorithm 4.1. We also consider the convergence analysis of
Algorithm 4.1 under some suitable conditions, which is the
main result (Theorem 3.1). Several special cases are also dis-

cussed. In Section 5, we introduce a new class for solving the
Wiener–Hopf equations(normal maps), which is called the
general implicit Wiener–Hopf equation. Using Lemma 3.1,

we show that the general implicit Wiener–Hopf equations
are equivalent to the general quasi-variational inequalities.
This equivalence is more flexible than the fixed-point problem.
We use this alternative equivalent to suggest some new itera-

tive methods for solving the general quasi-variational inequal-
ities. We consider the convergence criteria of these new
methods under the same conditions as in Section 4. Several

special cases are also discussed. Since the general quasi-varia-
tional inequality includes quasi-variational and related optimi-
zation problems as special cases, the results proved in this

paper continue to hold for these problems.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm
are denoted by h�; �i and k:k, respectively. Let K : H! H be

a point to set mapping, which is closed and convex valued,
In other words, for every u 2 H, the set KðuÞ is closed and
convex.

For given nonlinear operators T; g : H! H, consider the

problem of finding u 2 H : gðuÞ 2 KðuÞ such that

hqTðuÞ þ gðuÞ � u; v� gðuÞiP 0; 8v 2 KðuÞ; ð2:1Þ

where q > 0 is a constant. Inequality of type (2.1) is called the
general quasi-variational inequality involving two operators.

This class of quasi-variational inequalities is quite general
and unified one.

If KðuÞ � K, that is, the convex set KðuÞ is independent of
the solution u, then the general quasi-variational inequalities
(2.1) are equivalent to finding u 2 H : gðuÞ 2 K such that

hTðuÞ þ gðuÞ � u; v� gðuÞiP 0; 8v 2 K; ð2:2Þ

which is called the general variational inequality involving two

operators and was introduced and studied by Noor, 2008b.
For u ¼ gðuÞ, the problem (2.2) is equivalent to finding
u 2 H : gðuÞ 2 K such that

hTðgðuÞÞ; v� gðuÞiP 0; 8v 2 K: ð2:3Þ

Inequality of type (2.3) is also called the general variational
inequality involving two operators, which was introduced and
studied by Noor, 1988a in 2008. For the numerical analysis,
applications and other aspects of these variational inequalities,

see Glowinski et al. (1981), Noor (2008a, 2010b, 2008b), Noor
et al. (1993) and the references therein.

We now show that the minimum of a differentiable g-con-

vex function on a non-convex set K in H can be characterized
by the general variational inequality of type (2.3).

For this purpose, we recall the following well-known con-

cepts, see Noor (2008a, 2010a, 2009a).

Definition 2.1 (Cristescu and Lupsa, 2002; Noor, 2008b). Let K
be any set in H. The set K is said to be g-convex, if there exists
a function g : H! H such that

gðuÞ þ tðv� gðuÞÞ 2 K; 8u; v 2 H : gðuÞ; v 2 K; t 2 ½0; 1�:

Note that every convex set is g-convex, but the converse is not
true, see Noor (2010a, 2009a,b,c).

Definition 2.2 Noor, 2008b. The function F : K! H is said to
be g-convex, if there exists a function g such that
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FðgðuÞ þ tðv� gðuÞÞÞ 6 ð1� tÞFðgðuÞÞ þ tFðvÞ;
8u; v 2 H : gðuÞ; v 2 K; t 2 ½0; 1�:

Clearly every convex function is g-convex, but the converse is
not true, see Noor (2008a), Noor (2010a), Noor (2009a).

Lemma 2.1 Noor, 2008b. Let F : K! H be a differentiable g-

convex function. Then u 2 H : gðuÞ 2 K is the minimum ofg-con-
vex function F on K, if and only if, u 2 H : gðuÞ 2 K satisfies the
inequality

hF0ðgðuÞÞ; v� gðuÞiP 0; 8v 2 K; ð2:4Þ

where F0ðuÞ is the differential of F at gðuÞ 2 K.

Proof. Let u 2 H : gðuÞ 2 K be a minimum of g-convex func-
tion F on K. Then

FðgðuÞÞ 6 FðvÞ; 8v 2 K: ð2:5Þ

Since K is a g-convex set, so, for all u; v 2 H : gðuÞ; v 2 K; t 2
½0; 1�; gðvtÞ ¼ gðuÞ þ tðv� gðuÞÞ 2 K. Setting v ¼ gðvtÞ in (2.5),

we have

FðgðuÞÞ 6 FðgðuÞ þ tðv� gðuÞÞÞ:

Dividing the above inequality by t and taking t! 0, we have

hF0ðgðuÞÞ; v� gðuÞiP 0; 8v 2 H : v 2 K;

which is the required result (2.4).
Conversely, let u 2 H : gðuÞ 2 K satisfy the inequality (2.4).

Since F is a g-convex function, 8u; v 2 H : gðuÞ; v 2 K; t 2
½0; 1�; gðuÞ þ tðv� gðuÞÞ 2 K and

FðgðuÞ þ tðv� gðuÞÞÞ 6 ð1� tÞFðgðuÞÞ þ tFðvÞ;

which implies that

FðgðvÞÞ � FðgðuÞÞP FðgðuÞ þ tðv� gðuÞÞÞ � FðgðuÞÞ
t

:

Letting t! 0, and using (2.4), we have

FðgðvÞÞ � FðgðuÞÞP hF0ðhðuÞÞ; v� gðuÞiP 0;

which implies that

FðgðuÞÞ 6 FðvÞ; 8v 2 K

showing that u 2 H : gðuÞ 2 K is the minimum of F on K in
H. h

For g ¼ I, the identity operator, the general quasi-varia-

tional inequality (2.1) is equivalent to finding u 2 KðuÞ such
that

hTðuÞ; v� uiP 0; 8v 2 KðuÞ; ð2:6Þ

which is known as the classical quasi-variational inequality,
introduced and studied by Bensoussan and Lions (1978) in

the study of impulse control theory. See also Borwein and
Lewis (2006), Cristescu and Lupsa (2002), Giannessi et al.
(2001), Glowinski et al. (1981), Noor (1975, 1988a, 1993,

1997a,b,c, 2000, 2004, 2007, 2010a, 2009a,b,c, 2010b, 2008b).
If KðuÞ � K, and g ¼ I, the identity operator, then the prob-

lem (2.1) is equivalent to finding u 2 K such that

hTðuÞ; v� uiP 0; 8v 2 K; ð2:7Þ

which is known as the classical variational inequality which
was introduced in 1964 by Stampacchia (1964). For the recent
applications, numerical methods, sensitivity analysis, dynami-

cal systems and formulation of variational inequalities, see
Baiocchi and Capelo (1984), Bensoussan and Lions (1978),
Borwein and Lewis (2006), Cristescu and Lupsa (2002),

Giannessi et al. (2001), Gilbert et al. (2001), Glowinski et al.
(1981), Kravchuk and Neittaanmaki (2007), Noor (1975,
1985, 1988a,b, 1993, 1997a,b,c, 1998, 1999, 2000, 2004, 2007,
2008a, 2010a, 2009a,b,c, 2010b, 2008b), Noor et al. (1993,

2010), Robinson (1992), Shi (1991), Stampacchia (1964) and
the references therein. Thus, we conclude that the general
quasi-variational inequality (2.1) is quite general and includes

several classes of variational inequalities and related optimiza-
tion problems as special cases.

We also need the following standard and classical result.

Lemma 2.2. Let KðuÞbe a closed and convex set in H. Then,

for a given z 2 H; u 2 KðuÞ satisfies the inequality

hu� z; v� uiP 0; 8v 2 KðuÞ;

if and only if

u ¼ PKðuÞz;

where PKðuÞ is the projection of Honto the closed convex set KðuÞ
in H.

We would like to point out that the implicit projection

operator PKðuÞ is not non-expansive. We shall assume that the
implicit projection operator PKðuÞ satisfies the Lipschitz type
continuity, which plays an important and fundamental role in the

existence theory and in developing numerical methods for solving
the quasi- variational inequalities.

Assumption 2.1. For all u; v; w 2 H, the implicit projection
operator PKðuÞ satisfies the condition

kPKðuÞw� PKðvÞwjk 6 mku� vk; ð2:8Þ

where m > 0 is a positive constant.
Assumption 2.1 has been used to prove the existence of a

solution of the quasi-variational inequalities as well as in
analyzing convergence of the iterative methods. One can easily
show that the Assumption 2.1 holds for certain cases.

Remark 2.1. In many important applications (Glowinski et al.,

1981; Noor, 1975, 2000, 2004) the convex-valued set KðuÞ can
be written as

KðuÞ ¼ mðuÞ þ K; ð2:9Þ

where mðuÞ is a point-point mapping and K is a convex set. In
this case, we have

PKðuÞw ¼ PmðuÞþKðwÞ ¼ mðuÞ þ PK½w�mðuÞ�; 8u; v 2 H:

ð2:10Þ

We note that if KðuÞ is defined by (2.9), and mðuÞ is a Lipschitz
continuous mapping with constant c > 0, then

kPKðuÞw� PKðvÞwk ¼ kmðuÞ �mðvÞ þ PK½w�mðuÞ�
� PK½w�mðvÞk
6 2kmðuÞ �mðvÞk 6 2cku� vk;
8u; v;w 2 H:

which shows that Assumption 2.1 holds with m ¼ 2c.



84 M.A. Noor
Definition 2.3. For all u; v 2 H, an operator T : H! H is said

to be:

(i) strongly monotone, if there exists a constant a > 0 such

that
hTðuÞ � TðvÞ; u� viP aku� vk2
(ii) Lipschitz continuous, if there exists a constant b > 0 such
that
kTðuÞ � TðvÞk 6 bku� vk:
If T verifies (i) and (ii), then a 6 b.
3. Existence results

In this section, we consider the existence of a solution of the

general quasi-variational inequality (2.1) under some condi-
tions. First of all, we prove that the general quasi-variational
inequality (2.1) is equivalent to the fixed-point problem using
Lemma 2.2.

Lemma 3.1. u 2 H : gðuÞ 2 KðuÞ is a solution of the general
quasi-variational inequality (2.1) if and only if u 2 H :
gðuÞ 2 KðuÞ satisfies the relation

gðuÞ ¼ PKðuÞ½u� qTðuÞ�; ð3:1Þ

where PKðuÞ is the projection operator and q > 0 is a constant.

Proof. Let u 2 H : gðuÞ 2 KðuÞ be solution of (2.1). Then,
from (2.1), we have

hgðuÞ � ðu� qTðuÞÞ; v� gðuÞiP 0; 8v 2 KðuÞ;

which is equivalent to finding u 2 H : gðuÞ 2 KðuÞ such that

gðuÞ ¼ PKðuÞ½u� qTðuÞ�;

using Lemma 2.1, the required result (3.1).
Lemma 3.1 implies that the general quasi-variational

inequality (2.1) is equivalent to the fixed-point problem (3.1).
This alternative equivalent formulation is very useful from
numerical and theoretical points of view. We use this alterna-
tive fixed-point formulation to discuss the existence of a

solution of the general quasi-variational inequality (2.1) and
this is the main motivation of our next result. h

Theorem 3.1. Let the operators T; g : H! H be both strongly

monotone with constants a > 0; r > 0 and Lipschitz continuous
with constants with b > 0; d > 0, respectively. If Assumption
2.1 holds and there exists a constant q > 0 such that

jq� a

b2
j <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2kð2� kÞ

q
b2

; a > b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð2� kÞ

p
; k < 1;

ð3:2Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2rþ d2

p
þ m; ð3:3Þ

then there exists a solution u 2 KðuÞ satisfying the general quasi-
variational inequality (2.1).

Proof. Let u 2 KðuÞ be a solution of the general quasi-varia-
tional inequality (2.1). Then, using Lemma 3.1, we have
gðuÞ ¼ PKðuÞ½u� qTðuÞ�:

Thus we can define the mapping FðuÞ as:
FðuÞ ¼ u� gðuÞ þ PKðuÞ½u� qTðuÞ�: ð3:4Þ

In order to prove the existence of a solution of (2.1), it is en-
ough to show that the mapping FðuÞ, defined by (3.4), is a con-

traction mapping.
For u1 – u2 2 H, and using Assumption 2.1, we have

kFðu1Þ � Fðu2Þk ¼ ku1 � u2 � ðgðu1Þ � gðu2ÞÞk
þ kPKðu1Þ½u1 � qTðu1Þ� � PKðu2Þ½u2 � qTðu2Þ�k
6 ku1 � u2 � ðgðu1Þ � gðu2ÞÞk
þ kPKðu1Þ½u1 � qTðu1Þ� � PKðu2Þ½u1 � qTðu1Þ�k
þ kPKðu2Þ½u1 � qTðu1Þ� � PKðu2Þ½u2 � qTðu2Þ�k
¼ mku1 � u2k þ ku1 � u2 � ðgðu1Þ � gðu2ÞÞk
þ ku1 � u2 � qðTðu1Þ � Tðu2ÞÞk: ð3:5Þ

Since the operator T is strongly monotone with constant a > 0
and Lipschitz continuous with constant b > 0, it follows that:

ku1 � u2 � qðTðu1Þ � Tðu2ÞÞk2

6 ku1 � u2k2 � 2qhTðu1Þ � Tðu2Þ; u1 � u2i

þ q2kTðu1Þ � Tðu2Þk2

6 ð1� 2qaþ q2b2Þku1 � u2k2: ð3:6Þ

In a similar way, we have

ku1 � u2 � ðgðu1Þ � gðu2ÞÞk2 6 ð1� 2rþ d2Þku1 � u2k2; ð3:7Þ

where we have used the fact that g is strongly monotone with
constant r > 0 and Lipschitz continuous with constant d > 0.

From (3.3), (3.5)–(3.7), we have

Fðu1Þ � Fðu2Þk k 6 mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2rþ d2Þ

q�
þ ð1� 2qaþ q2b2Þ
p �

ku1 � u2k

¼ kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2qaþ q2b2Þ

q� �
ku1 � u2k

¼ hku1 � u2k;

where

h ¼ kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2qaþ q2b2Þ

q
: ð3:8Þ

From (3.2), we see that h < 1. Thus it follows that the mapping
FðuÞ, defined by (3.4), is a contraction mapping and conse-
quently it has a fixed point, which belongs to KðuÞ satisfying
the general quasi-variational inequality (2.1), the required
result. h

Remark 3.1. We would like to emphasize that the conditions
that ensure the existence of the constant q > 0, which satisfies

(3.2) in Theorem 3.1 have been verified in Noor (1988a, 2000,
2004, 2007, 2008a, 2010a, 2009a,b,c) for the quasi-variational
inequalities and their related optimization problems. In several

cases, these conditions have been used in the existing results
and also in the studies of the convergence criteria of the itera-
tive methods for solving the general quasi-variational inequal-

ities. For the examples of the function g, see Noor (2000,
2009c) and the references therein.
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4. Projection iterative method

In this section, we use the fixed-point formulation (3.1) to sug-

gest and analyze the following projection iterative method for
solving the general quasi-variational inequality (2.1).

Algorithm 4.1. For a given u0 2 H, find the approximate
solution unþ1 by the iterative schemes

unþ1 ¼ ð1� anÞun þ anfun � gðunÞ þ PKðunÞ½un � qTðunÞ�g;
n ¼ 0; 1; . . . ð4:1Þ

which is known as the Mann iteration process for solving the
general quasi-variational inequality (2.1).

Note that if g ¼ I, then the Algorithm 4.1 reduces to the
following iterative method for solving the quasi-variational
inequality (2.10) and appears to be a new one.

Algorithm 4.2. For a given u0 2 H, find the approximate solu-

tion unþ1by the iterative schemes

unþ1 ¼ ð1� anÞun þ anPKðunÞ½un � qTðunÞ�; n ¼ 0; 1; . . .

If KðuÞ � K, that is, the convex set KðuÞ is independent of the
solution u, then Algorithm 4.1 reduces to the following algo-
rithm for solving the general variational inequalities (2.2),
which was suggested by Noor (2008a).

Algorithm 4.3. For a given u0 2 H, find the approximate solu-

tion unþ1 by the iterative schemes

unþ1 ¼ ð1� anÞun þ anfun � gðunÞ þ PK½gðunÞ � qTðunÞ�g;
n ¼ 0; 1; . . .

For the convergence analysis of Algorithm 4.3, see Noor

(2008a).
We now consider the convergence analysis of Algorithm 4.1

and this is the main motivation of our next result.

Theorem 4.1. Let the operators T; g : H! H be both strongly

monotone with constants a > 0; r > 0 and Lipschitz continuous
with constants with b > 0; d > 0, respectively. Let Assumption
2.1 hold and h be as in the proof of Theorem 3.1. If (3.1) holds

and 0 6 an 6 1, for all n P 0 and
P1

n¼0an ¼ 1, then the
approximate solution un obtained from Algorithm 4.1 converges
to a solution u 2 KðuÞ satisfying the general quasi-variational

inequality (2.1).

Proof. From Theorem 3.1, it follows that there does exist a
unique solution of the general quasi-variational inequality
(2.1). Let u 2 KðuÞ be a solution of the general quasi-varia-

tional inequality (2.1). Then, from Lemma 3.1, we have

u ¼ ð1� anÞuþ anfu� gðuÞ þ PKðuÞ½u� qTðuÞ�g; ð4:2Þ

where 0 6 an 6 1 is a constant.

From (4.1) and (4.2), we have

kunþ1 � uk ¼ kð1� anÞðun � uÞ þ ankun � u� ðgðunÞ
� gðuÞÞkanfPKðuÞ½un � qTðunÞ� � PKðuÞ½u� qTðuÞ�gk
6 ð1� anÞkun � uk þ ankun � u� ðgðunÞ � gðuÞÞk
þ ankPKðunÞ½un � qTðunÞ� � PKðunÞ½u� qTðuÞ�k
þ ankPKðunÞ½u� qTðuÞ� � PKðuÞ½u� qTðuÞ�k
6 ð1� anÞkun � uk þ ankun � u� ðgðunÞ � gðuÞÞk
þ anmkun � uk þ ankun � u� qðTðunÞ � TðuÞÞk:

ð4:3Þ

From (3.6), (3.7) and (4.3), we have

kunþ1 � uk 6 ð1� anÞkun � uk þ anfmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2rþ d2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2aqþ b2q2

q
gkun � uk

¼ ð1� anÞkun � uk þ ðkþ tðqÞÞkun � uk;
using ð3:3Þ: ¼ ð1� anÞkun � uk þ hkun � uk;

where

tðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2aqþ q2b2:

q
ð4:4Þ

From (3.2), it follows that h < 1.

Thus

kunþ1 � uk 6 ð1� anÞkun � uk þ anhkun � uk
¼ ½1� ð1� hÞan�kun � uk

6

Yn

i¼0
½1� ð1� hÞai�ku0 � uk:

Since
P1

n¼0an diverges and 1� h > 0, we have limn!1
Qn

i¼0½1�
ð1� hÞai� ¼ 0. Consequently the sequence fung convergences
strongly to u. This completes the proof. h
5. Wiener–Hopf equations

In this section, we introduce a new class of Wiener–Hopf

equations (normal maps), which is called the general implicit
Wiener–Hopf equation. Using Lemma 3.1, we establish the
equivalence between the Wiener–Hopf equations and the gen-
eral quasi-variational inequalities. This alternative equivalent

formulation is used to suggest and analyze some iterative
methods for solving the general quasi-variational inequality
(2.1).

To be more precise, let QKðuÞ ¼ I� g�1PKðuÞ, where I is the
identity operator and g�1 exists. For the given nonlinear oper-
ators T; g, we consider the problem of finding

z 2 H; u 2 KðuÞ such that

Tðg�1PKðuÞzÞ þ q�1QKðuÞz ¼ 0; ð5:1Þ

which is called the general implicit Wiener–Hopf equation. We

note that, if KðuÞ � K, then the general Wiener–Hopf equa-
tions (5.1) are due to Noor (2010a). If g ¼ I and KðuÞ � K,
then one can obtain the original Wiener–Hopf equations,

which were introduced and studied by Robinson (1992) and
Shi (1991) using quite different techniques. In this case, prob-
lem (5.1) is equivalent to finding z 2 H such that

TðPKzÞ þ q�1QKz ¼ 0; q > 0:

It has been shown that the Wiener–Hopf equations have
played an important and significant role in developing several
numerical techniques for solving variational inequalities and

related optimization problems, see Borwein and Lewis
(2006); Noor (1975, 1985, 1988a, 1993, 1997a, 1998, 1999,
2000, 2004, 2007, 2008a, 2010a,2009a,b,c, 2010b, 2008b), Noor

et al. (1993, 2010), Robinson (1992), Shi (1991) and the refer-
ences therein.
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Lemma 5.1. The solution u 2 H : gðuÞ 2 KðuÞ satisfies the

general quasi-variational inequality (2.1) if and only if
z 2 H; u 2 KðuÞ is a solution of the general Wiener–Hopf
equation (5.1), where

gðuÞ ¼ PKðuÞz ð5:2Þ
z ¼ u� qTðuÞ; q > 0; a constant: ð5:3Þ

Proof. Let u 2 H : gðuÞ 2 KðuÞ be a solution of (2.1). Then,

from Lemma 3.1, we have

gðuÞ ¼ PKðuÞ½u� qTðuÞ�: ð5:4Þ
Let

z ¼ u� qTðuÞ:

Then

gðuÞ ¼ PKðuÞz: ð5:5Þ

Combining (5.3)–(5.5), we have

z ¼ u� qTðuÞ ¼ g�1PKðuÞz� qTðg�1PKðuÞzÞ;

from which it follows that z 2 H is a solution of the general
Wiener–Hopf equation (5.1), the required result. h

Lemma 5.1 implies that the general quasi-variational
inequality (2.1) and the general implicit Wiener–Hopf equation
(5.1) are equivalent. We use this equivalent formulation to sug-

gest a number of iterative methods for solving the general qua-
si-variational inequalities.

(I) Using (5.2), the Wiener–Hopf equations (5.1) can be

rewritten as:

QKðuÞz ¼ �qTðg�1PKðuÞzÞ;

which implies that

z ¼ g�1PKðuÞz� qTðg�1PKðuÞzÞ ¼ u� qTðuÞ;

This fixed-point formulation enables to suggest the following
iterative method for solving problem (2.1).

Algorithm 5.1. For a given z0 2 H, compute the approximate
solution znþ1 by the iterative schemes

gðunÞ ¼ PKðunÞzn; ð5:6Þ
znþ1 ¼ ð1� anÞzn þ anfun � qTðunÞg; n ¼ 0; 1; . . . ; ð5:7Þ

where 0 6 an 6 1, for all n P 0 and
P1

n¼0an ¼ 1.

(II) By an appropriate and suitable rearrangement of the terms
and using (5.12), the Wiener–Hopf equations (5.1) can be writ-
ten as:

z ¼ g�1PKðuÞz� qTðg�1PKðuÞzÞ þ ð1� q�1ÞQKðuÞz

¼ u� qTðuÞ þ ð1� q�1ÞQKðuÞz;

which is another fixed-point formulation. Using this fixed-
point formulation, we can suggest the following iterative
method.

Algorithm 5.2. For a given z0 2 H, compute the approximate
solution znþ1 by the iterative schemes

gðunÞ ¼ PKðunÞzn

znþ1 ¼ un � qTðunÞ þ ð1� q�1ÞQKðunÞzn; n ¼ 0; 1; . . . :
(III) If T is linear and T�1 exists, then the Wiener–Hopf equa-

tions (5.1) can be written as:

z ¼ I� q�1gT�1
� �

QKðuÞz:

This fixed-point formulation allows us to suggest the following
iterative method for solving the general quasi-variational
inequality (2.1).

Algorithm 5.3. For a given z0 2 H, compute the approximate

solution znþ1 by the iterative schemes

znþ1 ¼ I� q�1gT�1
� �

QKðunÞzn; n ¼ 0; 1; . . . :

If KðuÞ � K, then Algorithms 5.1, 5.2, 5.3 reduce to the follow-

ing iterative methods for solving the general variational
inequality (2.2), which are due to Noor (2008a).

Algorithm 5.4. For a given z0 2 H, compute the approximate
solution znþ1 by the iterative schemes

gðunÞ ¼ PKzn;

znþ1 ¼ ð1� anÞzn þ anfun � qTðunÞg; n ¼ 0; 1; . . . ;

where 0 6 an 6 1, for all n P 0 and
P1

n¼0an ¼ 1.

Algorithm 5.5. For a given z0 2 H, compute the approximate
solution znþ1 by the iterative schemes

gðunÞ ¼ PKzn;

znþ1 ¼ un � qTðunÞ þ ð1� q�1ÞQKzn; n ¼ 0; 1; n ¼ 0; 1; . . . ;

where 0 6 an 6 1, for all n P 0 and
P1

n¼0an ¼ 1.

Algorithm 5.6. For a given z0 2 H, compute the approximate
solution znþ1 by the iterative schemes

znþ1 ¼ I� q�1gT�1
� �

QKzn; n ¼ 0; 1; . . . :

For g ¼ I, the identity operator, Algorithms 5.1, 5.1, 5.3 are
due to Noor (1997a,b, 1998) for solving the quasi-variational

inequality(2.4). In brief, for appropriate and suitable rear-
rangements of the terms of the general Wiener–Hopf equations
(5.1), one can suggest and analyze a number of iterative meth-

ods for solving the general quasi-variational inequality (2.1)
and the related optimization problems. For the investigation
of such type of projection iterative methods and the verifica-

tion of their numerical efficiency, further research efforts are
needed.

We now consider the convergence analysis of Algorithm
5.1. In a similar way, one can study the convergence analysis of

Algorithms 5.2 and 5.3.

Theorem 5.1. Let the operators T; g satisfy all the assumptions
of Theorem 3.1. If the condition (3.2) holds, then the approxi-

mate solution fzng obtained from Algorithm 5.1 converges to a
solution z 2 H satisfying the Wiener–Hopf equation (5.1)
strongly.

Proof. Let u 2 H : gðuÞ 2 KðuÞ be a solution of (2.1). Then,

using Lemma 5.1, we have

gðuÞ ¼ PKðuÞz ð5:8Þ
z ¼ ð1� anÞzþ anfu� qTðuÞg; ð5:9Þ

where 0 6 an 6 1, and
P1

n¼0an ¼ 1.
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From (5.7), (5.9), (3.6) and (3.7), we have

kznþ1 � zk 6 ð1� anÞkzn � zk þ ankun � u� qðTðunÞ � TðuÞÞk

6 ð1� anÞkzn � zk þ an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2qaþ b2

q
kun � uk:

ð5:10Þ

Also, from (5.6), (5.8) and Assumption 2.1, we have

kun � uk 6 kun � u� ðgðunÞ � gðuÞÞk þ kPKðunÞzn � PKðuÞzk
6 kun � u� ðgðunÞ � gðuÞÞk þ kPKðunÞzn � PKðunÞzk
þ kPKðunÞz� PKðuÞzk

6 fmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2dþ r2
p

gkun � uk þ kzn � zk
¼ kkun � uk þ kzn � zk;

from which it follows that:

kun � uk 6 1

1� k
kzn � zk: ð5:11Þ

Combining (5.10) and (5.11), we have

kznþ1 � zk 6 ð1� anÞkzn � zk þ anh1kzn � zk; ð5:12Þ

where

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2aqþ b2q2

p
1� k

( )
: ð5:13Þ

From (3.2), we see that h1 < 1 and consequently

kznþ1 � zk 6 ð1� anÞkzn � zk þ anh1kzn � zk
¼ ½1� ð1� h1Þan�kzn � zk

6

Yn
i¼0
½1� ð1� h1Þai�kz0 � zk:

Since
P1

n¼0an diverges and 1� h1 > 0, we have limn!1
Qn

i¼0½1�
ð1� h1Þai� ¼ 0. Consequently the sequence fzng convergences
strongly to z in H, the required result. h
6. Conclusion

In this paper, we have introduced and considered a new class

of quasi-variational inequalities involving two operators,
which is called the general quasi-variational inequality. We
have shown that the general quasi-variational inequalities are

equivalent to the fixed point and Wiener–Hopf equations.
These equivalent formulations have been used to suggest and
analyse several iterative methods for solving the quasi-varia-
tional inequalities. We have also considered the convergence

analysis of these new iterative methods under suitable condi-
tions. We expect that the ideas and techniques of this paper
will motivate and inspire interested readers to explore its appli-

cations in various fields of pure and applied mathematical
sciences.
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