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A B S T R A C T

Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and
information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics
is quantitative structure–property relationship (QSPR) modeling which is a computational approach that cor-
relates the structural attributes of chemical compounds with their physical, chemical, or biological properties
to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver
contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors
is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of
a 𝜐-vertex graph 𝛺 = (𝑉𝛺 , 𝐸𝛺) has a general structure 𝐺𝐷𝑑 =

∑

𝑖𝑗∈𝐸𝛺
𝜋
(

deg𝑥𝑖 , deg𝑥𝑗
)

, where 𝜋 is bivariate
symmetric map, and deg𝑥𝑖 is the degree of vertex 𝑥𝑖 ∈ 𝑉𝛺. For 𝛼 ∈ R ⧵ {0}, if 𝜋 = (deg𝑥𝑖 × deg𝑥𝑗 )

𝛼 (resp.
𝜋 = (deg𝑥𝑖 + deg𝑥𝑗 )

𝛼 , then 𝐺𝐷𝑑 is called the general product-connectivity 𝑃𝐶𝛼 (resp. sum-connectivity 𝑆𝐶𝛼)
index of 𝛺. Moreover, the general Sombor index 𝑆𝑂𝛼 has the structure 𝜋 = (deg2𝑥𝑖 × deg2𝑥𝑗 )

𝛼 . By choosing
the heat capacity 𝛥𝐻 and the entropy 𝐸 as representatives of thermodynamic properties, we in this paper
find optimal value(s) of 𝛼 which deliver the strongest potential of the predictors 𝐺𝐷𝑑 ∈ {𝑃𝐶𝛼 , 𝑆𝐶𝛼 , 𝑆𝑂𝛼} for
predicting 𝛥𝐻 and 𝐸 of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete
optimization and multivariate regression analysis. This, in turn, study completely solves two open problems
proposed in the literature.
1. Introduction

Cheminformatics employs quantitative structure–property relation-
ship (QSPR) studies (Katritzky et al., 2001) in order to estimate var-
ious thermodynamical and physicochemical characteristics of molec-
ular compounds especially, organic structures. QSPR modeling uti-
lizes contemporary mathematical and computational tools (Basak and
Mills, 2001) in order to predict these properties. The historical root
of this chemical modeling dates back to the pioneering of Wiener
(1947) which provides the notion of a path number (the sum of
pairwise distance) in estimation of boiling point of alkanes. Later,
researchers named this invariant the Wiener index of graphs. Structure-
based molecular descriptors (Gutman and Furtula, 2010) provide the
contemporary mathematical tools required for QSPR modeling. Graph-
related molecular descriptors also known as graphical invariants or
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topological indices (Balaban et al., 1983) deliver one of the extensively
studied family of descriptors. Graphical invariants take up hydrogen-
disregarded chemical structure (also known as a molecular/chemical
graph) as input and transform it into a non-zero mathematical real
number. These molecular graphs (Gutman and Polansky, 1986) are
generated by constructing a correspondence between edges (resp. ver-
tices) and bonds (resp. atoms). In order to effectively estimate a given
physicochemical property like heat of formation (Allison and Burgess,
2015) and boiling point, graphical invariants propose a regression
equation (Diudea et al., 2001) incorporating underlying chemical in-
formation of a compound by characterizing its structure. Wazzan and
Ahmed (2024b) employed eccentric neighborhood forgotten indices for
prediction of boiling point. Moreover, domination-based (Wazzan and
Ahmed, 2024a) (resp. symmetry-adapted domination-based (Wazzan
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and Ahmed, 2023)) topological indices were employed for their role
n QSPR studies of isomeric octanes.

A graphical invariant could be degree-related (Gutman, 2013)
based on vertices’ degrees), distance-based (Xu et al., 2014) (defined

on distances), spectral (Consonni and Todeschini, 2008) (basing on
igenvalues of graphical matrices) and counting-related (Hosoya, 1988)
olynomial and invariants (obtained by counting certain substructures).

New graphical invariants are being introduced (Todeschini and Con-
sonni, 2009) every passing day and sometimes without delivering
 significant chemical applicability (Gutman and Furtula, 2010). To

encounter the proliferation of these invariants, a firm criterion must
e adopted in putting forwarding new descriptors. It is unfortunate
hat frequently these insignificant molecular descriptors are graphical.

Gutman and Tošović (2013) used a mild phrase asserting that not
following a firm criterion result in proliferation of these invariants and
currently there are a lot more graphical invariant than there should be.
These facts deliver a strong motivation for considering new emerging
families of graphical descriptors to test their quality in structure–
property modeling to put forward efficient descriptors, while singling
out inefficient ones.

One of the contemporary research topics in mathematical chemistry
nowadays is to consider a family of graphical invariants and conduct a
comparative testing for predicting physicochemial/theromodynamical
properties. The study was initiated Gutman and Tošović (2013) who
considered commonly occurring degree-related graphical invariants
for estimating physicochemical characteristics of octanes’ isomers and
howed that the augmented Zagreb index (AZI) is the only degree-based
nvariant which qualifies to be considered for QSPR modeling. The
tudy was extended to the thermodynamic properties (by opting the

heat capacity 𝛥𝐻 and entropy 𝐸 as their representatives) of benzenoid
hydrocarbons (BHs) by Hayat et al. (2023). Note that they selected
the lower 30 initial member of BHs as test molecules of the study.
Hayat et al. (2024) further extended the similar study to temperature-
based graphical descriptors. For structure–property modeling of lead
ulphide, we refer to Lal et al. (2024b). Computational results on graph

entropies and degree-based graphical indices are reported in Lal et al.
(2024a). Other topics such as vertex-edge resolvability and face index
of chemical structure are investigated in Negi and Bhat (2024) and
Sharma et al. (2024). Applications of degree-based indices in fuzzy
graphs are studied in Islam et al. (2024), Islam and Pal (2021, 2024a)
nd Islam and Pal (2024b).

In existing studied by Gutman and Tošović (2013) and later by
Hayat et al. (2023), the general sum-connectivity 𝑆 𝐶𝛼 index and the
general product-connectivity 𝑃 𝐶𝛼 were considered only for test values
𝛼 ∈ {±1,± 1

2 ,±2,±3}. Since Gutman and Tošović (2013) conducted their
comparative testing for physicochemical properties, their results are
rrelevant to the current study. However, Hayat et al. (2023) conducted
heir testing for thermodynamic properties of BHs and concluded that
 𝐶𝛼 with 𝛼 = −3 and 𝑃 𝐶𝛼 with 𝛼 = −1,− 1

2 are the best three
egree-based invariants for predicting thermodynamic properties of
Hs. Thus, they concluded their study by naturally asking the following

two questions:

Problem 1.1. Find the optimal value(s) of 𝛼 ∈ R ⧵ {0} for which the
correlation value between 𝛥𝐻 , 𝐸 and 𝑆 𝐶𝛼 for the lower 30 BHs is the
strongest.

Problem 1.2. Find the optimal value(s) of 𝛼 ∈ R ⧵ {0} for which the
correlation value between 𝛥𝐻 , 𝐸 and 𝑃 𝐶𝛼 for the lower 30 BHs is the
strongest.

This paper intends to employ discrete optimization and multivariate
egression analysis to answer both of the above problems. In addition,
e also study the above two problems for the general Sombor index.
2 
2. Preliminaries

A graph 𝛺 is a pair (𝑉𝛺 , 𝐸𝛺) in which 𝑉𝛺 is the vertex set and
𝐸𝛺 ⊆

(𝑉𝛺
2

)

is the edge set. The valency/degree deg𝑥 of a vertex 𝑥 ∈ 𝑉𝛺
is defined as deg𝑥 =∣ {𝑧 ∈ 𝑉𝛺 ∶ 𝑥𝑧 ∈ 𝐸𝛺} ∣. A degree-based graphical
descriptor/invariant of a 𝜐-vertex graph 𝛺 = (𝑉𝛺 , 𝐸𝛺) has a general
tructure:

𝐺 𝐷𝑑 =
∑

𝑖𝑗∈𝐸𝛺

𝜋
(

deg𝑥𝑖 , deg𝑥𝑗
)

, (2.1)

where 𝜋 is bivariate symmetric map (i.e. 𝜋(𝑥, 𝑦) = 𝜋(𝑦, 𝑥)), and deg𝑥𝑖 is
he degree of vertex 𝑖 ∈ 𝑉𝛺.

Having 𝜋(deg𝑥𝑖 , deg𝑥𝑗 ) =
1

√

deg𝑥𝑖×deg𝑥𝑗
, the product-connectivity in-

ex was proposed by Randić (1975). It has been known as one of
earliest degree-based index. It is defined as:

𝑃 𝐶(𝛺) =
∑

𝑖𝑗∈𝐸𝛺

1
√

deg𝑥𝑖 × deg𝑥𝑗
. (2.2)

Independent of its connection to the product-connectivity index, Bollobá
and Erdös (1998) delivered the generalized version of 𝑃 𝐶 index.

𝑃 𝐶𝛼(𝛺) =
∑

𝑖𝑗∈𝐸𝛺

(

deg𝑥𝑖 × deg𝑥𝑗
)𝛼

, (2.3)

where 𝛼 ∈ R ⧵ {0}. One can observe that 𝑃 𝐶− 1
2
(𝛺) = 𝑃 𝐶(𝛺), for an

rbitrary graph 𝛺.
The additive version of 𝑃 𝐶 index called the sum-connectivity 𝑆 𝐶

index was proposed by Zhou and Trinajstić (2009) in 2009. Mathemat-
cally, it has 𝜋(deg𝑥𝑖 , deg𝑥𝑗 ) =

1
√

deg𝑥𝑖+deg𝑥𝑗
.

𝑆 𝐶(𝛺) =
∑

𝑖𝑗∈𝐸𝛺

1
√

deg𝑥𝑖 + deg𝑥𝑗
. (2.4)

Diverse applicability of 𝑆 𝐶 index across different disciplines motivated
Zhou and Trinajstić, 2010) to introduce the generalized version of the

sum-connectivity index symbolized as 𝑆 𝐶𝛼 , where 𝛼 ∈ R ⧵ {0}. Thus,
we have 𝐺 𝐷𝑑 = 𝑆 𝐶𝛼 , if 𝜋(deg𝑥𝑖 , deg𝑥𝑗 ) =

(

deg𝑥𝑖 + deg𝑥𝑗
)𝛼

.

𝑆 𝐶𝛼(𝛺) =
∑

𝑖𝑗∈𝐸𝛺

(

deg𝑥𝑖 + deg𝑥𝑗
)𝛼

. (2.5)

Notice that 𝑆 𝐶− 1
2
(𝛺) = 𝑆 𝐶(𝛺), for an arbitrary graph 𝛺.

By considering 𝜋(deg𝑥𝑖 , deg𝑥𝑗 ) =
1

√

deg2𝑥𝑖+deg
2
𝑥𝑗

, Gutman (2021) re-

cently put forwarded another degree-based graphical descriptor known
as the Sombor 𝑆 𝑂 index.

𝑆 𝑂(𝛺) =
∑

𝑖𝑗∈𝐸𝛺

1
√

deg2𝑥𝑖 + deg2𝑥𝑗
. (2.6)

There has been numerously papers published on the mathematical
properties as well as chemical applicability of the Sombor index. This
delivered motivation to Phanjoubam et al. (2023) to consider the gen-
ralized version of the Sombor index by considering 𝜋(deg𝑥𝑖 , deg𝑥𝑗 ) =
(

deg2𝑥𝑖 + deg2𝑥𝑗
)𝛼

in the standard formula of 𝐺 𝐷𝑑 .

𝑆 𝑂𝛼(𝛺) =
∑

𝑖𝑗∈𝐸𝛺

(

deg2𝑥𝑖 + deg2𝑥𝑗
)𝛼

, (2.7)

where 𝛼 ∈ R ⧵ {0}. One can notice that 𝑆 𝑂− 1
2
(𝛺) = 𝑆 𝑂(𝛺), giving the

name ‘‘general’’ to this version of the Sombor index.
Discrete optimization is a branch of optimization in applied mathe-

matics and operations research that deals with finding the best solution
from a finite or countable set of possible solutions. Unlike continuous
optimization, where variables can take any value within a range, dis-
crete optimization restricts variables to discrete values, often integers
or elements from a specific set.
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A general discrete optimization problem can be formulated as fol-
lows:

max ∕ min 𝑓 (𝑥)

subject to
𝑥 ∈ 𝑆 ⊂ Z𝑛 or 𝑥 ∈ 𝑆 ⊂ {0, 1}𝑛,

where:

• 𝑓 (𝑥) ∶ 𝑆 → R is the objective function, which we aim to maximize
or minimize.

• 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛) is a vector of decision variables.
• 𝑆 ⊂ Z𝑛 (or, sometimes 𝑥 ∈ 𝑆 ⊂ {0, 1}𝑛) represents the feasible set

defined by constraints, which limits 𝑥 to discrete values, such as
integers or binary values.

Multivariate regression analysis is a statistical technique used to
model the relationship between multiple independent (predictor) vari-
ables and multiple dependent (response) variables. Unlike simple or
multiple regression, which typically models a single dependent vari-
able, multivariate regression allows for multiple outcomes to be ana-
lyzed simultaneously, capturing any correlations among them.

Let:

• 𝑌 ∈ R𝑛×𝑚: the matrix of dependent variables, where 𝑛 is the num-
ber of observations (samples) and 𝑚 is the number of dependent
variables.

• 𝑋 ∈ R𝑛×𝑝: the matrix of independent variables, where 𝑝 is the
number of independent variables.

• 𝐵 ∈ R𝑝×𝑚: the matrix of regression coefficients, with each column
𝐵𝑗 representing the coefficients for the 𝑗th dependent variable.

• 𝐸 ∈ R𝑛×𝑚: the matrix of error terms or residuals.

The model for multivariate regression can be written as:

𝑌 = 𝑋 𝐵 + 𝐸 ,
where:

• 𝑌𝑖,𝑗 represents the 𝑖th observation of the 𝑗th dependent variable.
• 𝑋𝑖,𝑘 represents the 𝑖th observation of the 𝑘th independent vari-

able.
• 𝐵𝑘,𝑗 represents the effect of the 𝑘th independent variable on the
𝑗th dependent variable.

• 𝐸𝑖,𝑗 captures the residuals for each observation and each depen-
dent variable.

3. Materials and methods

Note that a BH generally belongs to the class of benzenoid system
(BS). A BS (having BHs as a subclass) is a connected finite graph com-
prising no cut-vertices having internal faces encompassed by regular
hexagon with unit sides. Fig. 1 delivers a benzenoid system 𝐿.

The degree sequence in a graph 𝛺 is (deg𝑥1 , deg𝑥2 ,… , deg𝑥𝜐 ) hav-
ing vertex sequencing 𝑥1 … , 𝑥𝜐, 𝑥𝑖 ∈ 𝑉𝛺. On the perimeter of 𝐿
in Fig. 1, there exists different paths with degree-sequence (2,3,3,2),
(2,3,2), (2,3,3,3,2), and (2,3,3,3,3,2) called bay, fissure, cove and fjord,
respectively. Altogether, they are collectively called inlets. Let

𝜐𝑎𝑏 =∣ {𝑥𝑧 ∈ 𝐸𝛺 ∶ deg𝑥 = 𝑎, deg𝑧 = 𝑏}|.

Assume a BS comprises 𝜐 vertices, 𝜂 hexagons and 𝜏 inlets. Cruz
et al. (2013) proved:

Lemma 3.1. Suppose 𝐿 is a BS with 𝜐 vertices, 𝜏 inlets and 𝜂 hexagons.
Then,

𝜐33 = 3𝜂 − 𝜏 − 3, 𝜐23 = 2𝜏 , 𝜐22 = 𝜐 − 2𝜂 − 𝜏 + 2.
3 
Fig. 1. Instances of a fjord, cove, fissure and a bay in a BS.

Employing Lemma 3.1 on an arbitrary BS comprising 𝜐 vertices, 𝜏
inlets and 𝜂 hexagons, one can calculate 𝑆 𝐶𝛼 , 𝑃 𝐶𝛼 and 𝑆 𝑂𝛼 as follows:

𝑆 𝐶𝛼 =
∑

𝑖𝑗∈𝐸𝛺

(

deg𝑥𝑖 + deg𝑥𝑗
)𝛼

,

= 𝜐33(3 + 3)𝛼 + 𝜐23(2 + 3)𝛼 + 𝛼22(2 + 2)𝛼 ,
= 6𝛼(3𝜂 − 𝜏 − 3) + 5𝛼(2𝜏) + 4𝛼(𝜐 − 2𝜂 − 𝜏 + 2). (3.8)

𝑃 𝐶𝛼 =
∑

𝑖𝑗∈𝐸𝛺

(

deg𝑥𝑖 × deg𝑥𝑗
)𝛼

,

= 𝜐33(3 × 3)𝛼 + 𝜐23(2 × 3)𝛼 + 𝛼22(2 × 2)𝛼 ,
= 9𝛼(3𝜂 − 𝜏 − 3) + 6𝛼(2𝜏) + 4𝛼(𝜐 − 2𝜂 − 𝜏 + 2). (3.9)

And, similarly for the general Sombor index, we have:

𝑆 𝑂𝛼 =
∑

𝑖𝑗∈𝐸𝛺

(

deg2𝑥𝑖 + deg2𝑥𝑗
)𝛼

,

= 𝜐33(32 + 32)𝛼 + 𝜐23(22 + 32)𝛼 + 𝛼22(22 + 22)𝛼 ,
= 18𝛼(3𝜂 − 𝜏 − 3) + 13𝛼(2𝜏) + 8𝛼(𝜐 − 2𝜂 − 𝜏 + 2). (3.10)

In sections that immediately follow, we evaluate 𝑆 𝐶𝛼 , 𝑃 𝐶𝛼 and 𝑆 𝑂𝛼
for the 30 BHs (chosen test molecules) by utilizing Eqs. (3.8), (3.9), and
(3.10) respectively.

4. Optimization problem and algorithm

Following Hayat et al. (2023), we consider the heat capacity 𝛥𝐻 and
the entropy 𝐸 to be the representatives of thermodynamic properties of
a chemical compound. Moreover, we choose the 30 lower benzenoid
hydrocarbons (BHs) as our test molecules. Fig. 2 delivers the lower 30
BHs. Table 1 presents the heat capacity 𝛥𝐻 , the entropy 𝐸, the general
Randić index 𝑅𝛼 , the general sum-connectivity index 𝑆 𝐶 𝐼𝛼 , and the
general Sombor index 𝑆 𝑂𝛼 of 30 lower BHs.

Let 𝑅(𝛼) = 𝑅𝛼(𝑌 , 𝑋) be the correlation function between 𝑌 ∈
{𝛥𝐻 , 𝐸} and 𝑋 ∈ {𝑅𝛼 , 𝑆 𝐶 𝐼𝛼 , 𝑆 𝑂𝛼}. Then, we formulate the following
optimization problem:
min
𝛼

|𝑅𝛼(𝑌 , 𝑋)|

s.t. 0 ≤ |𝑅(𝛼)| ≤ 1

𝛼min < 𝛼 < 𝛼max

(4.11)

Next, we present the pseudo code of corresponding to the above
optimization formulation in Algorithm 1.

Note that Algorithm 1 optimizes a correlation function by deter-
mining the best value of the parameter 𝛼. It constructs a data vector
𝑦 based on given coefficients and 𝛼, then fits a linear model between
𝑦 and the input data 𝑥, calculating the coefficient of determination
𝑅2 as a measure of fit. The objective function is defined to minimize
− log(1 +𝑅2), aiming to find the optimal 𝛼 that maximizes correlation.
Finally, the algorithm returns the optimal 𝛼 and the corresponding 𝑅2

value.
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Fig. 2. The 30 lower BHs.
5. Computational results

In this section, a robust linear correlation is established between
key molecular attributes — such as the number of atoms, molecular
weight, and molecular surface area — and the thermodynamic prop-
erties, specifically heat capacity (𝛥𝐻) and entropy (𝐸), for the 30
lower benzenoid hydrocarbons. The study demonstrates that as these
the molecular features increase, there is a corresponding rise in both
𝛥𝐻 and 𝐸, underscoring the predictability of thermodynamic proper-
ties based on molecular structure. This foundational insight sets the
stage for further exploration of how molecular characteristics influence
thermodynamic behavior.

Entropy is the thermodynamic function for predicting the spontaneity of
a reaction. Whereas, the heat capacity of a substance is defined as the
amount of heat required to raise the temperature of a given quantity of the
substance by one degree Celsius. Several factors can affect the entropy
and heat capacities of the substances, including, number of atoms,
4 
molecular weight, volume, molecular surface area, boiling point and
melting point (Latimer, 1921; Origlia et al., 2001). As the number of
atoms in the system increases, regardless of their masses, its entropy
and heat capacity values increase. The higher the boiling point and
melting point, the larger entropy and heat capacity of the system. In
addition, as the volume or the molecular surface area of the compound
increases, the entropy and the heat capacity also increase. The entropies
(𝐸) and heat capacities (𝛥𝐻), the molecular formula (𝑀 𝐹 ), number of
atoms (𝑁𝑎𝑡𝑜𝑚𝑠), molecular weights (𝑀 𝑊 ) and molecular surface area
(𝑀 𝑆 𝐴) of the 30 lower benzenoids are listed in Table 2.

Results obtained show that there are adequate linear correlations
between the number of atoms in the molecule (𝑁𝑎𝑡𝑜𝑚𝑠) versus the heat
capacity (Fig. 3(a)) and the entropy (Fig. 3(b)) with 𝑅2 of 0.9994
and 0.9774, respectively. For entropy property, the deviation of the
linear correlation is found for 𝑁𝑎𝑡𝑜𝑚𝑠 > 36. A closer examination of
Table 2 reveals that substances with similar molecular formula or
number of atoms have almost similar 𝐸, and 𝛥𝐻 values. For examples,
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Table 1
The molecular structure, heat capacity 𝛥𝐻 , entropy 𝐸, general Randić index 𝑅𝛼 , general sum-connectivity index 𝑆 𝐶 𝐼𝛼 , and general Sombor
index of 30 lower benzenoid hydrocarbons.
Molecule 𝛥𝐻 𝐸 𝑅𝛼 𝑆 𝐶 𝐼𝛼 𝑆 𝑂𝛼

Benzene 83.019 269.722 6 ⋅ 4𝛼 6 ⋅ 4𝛼 6 ⋅ 8𝛼

Naphthalene 133.325 334.155 6 ⋅ 4𝛼 + 4 ⋅ 6𝛼 + 9𝛼 6 ⋅ 4𝛼 + 4 ⋅ 5𝛼 + 6𝛼 6 ⋅ 8𝛼 + 4 ⋅ 13𝛼 + 18𝛼
Anthracene 184.194 389.475 6 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 2 ⋅ 9𝛼 6 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 2 ⋅ 6𝛼 6 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 2 ⋅ 18𝛼
Phenanthrene 183.654 395.882 7 ⋅ 4𝛼 + 6 ⋅ 6𝛼 + 3 ⋅ 9𝛼 7 ⋅ 4𝛼 + 6 ⋅ 5𝛼 + 3 ⋅ 6𝛼 7 ⋅ 8𝛼 + 6 ⋅ 13𝛼 + 3 ⋅ 18𝛼
Tetracene 235.165 444.724 6 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 3 ⋅ 9𝛼 6 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 3 ⋅ 6𝛼 6 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 3 ⋅ 18𝛼
Benzo[c]phenanthrene 233.497 447.437 8 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 5 ⋅ 9𝛼 8 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 5 ⋅ 6𝛼 8 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 5 ⋅ 18𝛼
Benzo[a]phenanthrene 234.568 457.958 7 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 4 ⋅ 9𝛼 7 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 4 ⋅ 6𝛼 7 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 4 ⋅ 18𝛼
Chrysene 234.638 455.839 8 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 5 ⋅ 9𝛼 8 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 5 ⋅ 6𝛼 8 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 5 ⋅ 18𝛼
Triphenylene 233.558 450.418 9 ⋅ 4𝛼 + 6 ⋅ 6𝛼 + 6 ⋅ 9𝛼 9 ⋅ 4𝛼 + 6 ⋅ 5𝛼 + 6 ⋅ 6𝛼 9 ⋅ 8𝛼 + 6 ⋅ 13𝛼 + 6 ⋅ 18𝛼
Pyrene 200.815 399.491 6 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 5 ⋅ 9𝛼 6 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 5 ⋅ 6𝛼 6 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 5 ⋅ 18𝛼
Pentacene 286.182 499.831 6 ⋅ 4𝛼 + 16 ⋅ 6𝛼 + 4 ⋅ 9𝛼 6 ⋅ 4𝛼 + 16 ⋅ 5𝛼 + 4 ⋅ 6𝛼 6 ⋅ 8𝛼 + 16 ⋅ 13𝛼 + 4 ⋅ 18𝛼
Benzo[a]tetracene 285.056 513.857 7 ⋅ 4𝛼 + 14 ⋅ 6𝛼 + 5 ⋅ 9𝛼 7 ⋅ 4𝛼 + 14 ⋅ 5𝛼 + 5 ⋅ 6𝛼 7 ⋅ 8𝛼 + 14 ⋅ 13𝛼 + 5 ⋅ 18𝛼
Dibenzo[a,h]anthracene 284.037 508.537 8 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 6 ⋅ 9𝛼 8 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 6 ⋅ 6𝛼 8 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 6 ⋅ 18𝛼
Dibenzo[a,j]anthracene 284.088 507.395 8 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 6 ⋅ 9𝛼 8 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 6 ⋅ 6𝛼 8 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 6 ⋅ 18𝛼
Pentaphene 285.148 506.076 7 ⋅ 4𝛼 + 14 ⋅ 6𝛼 + 5 ⋅ 9𝛼 7 ⋅ 4𝛼 + 14 ⋅ 5𝛼 + 5 ⋅ 6𝛼 7 ⋅ 8𝛼 + 14 ⋅ 13𝛼 + 5 ⋅ 18𝛼
Benzo[g]chrysene 284.595 512.523 10 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 8 ⋅ 9𝛼 10 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 8 ⋅ 6𝛼 10 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 8 ⋅ 18𝛼
Pentahelicene 284.870 500.734 9 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 7 ⋅ 9𝛼 9 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 7 ⋅ 6𝛼 9 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 7 ⋅ 18𝛼
Benzo[c]chrysene 284.503 510.307 9 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 7 ⋅ 9𝛼 9 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 7 ⋅ 6𝛼 9 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 7 ⋅ 18𝛼
Picene 284.785 509.210 9 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 7 ⋅ 9𝛼 9 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 7 ⋅ 6𝛼 9 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 7 ⋅ 18𝛼
Benzo[b]chrysene 284.740 513.879 8 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 6 ⋅ 9𝛼 8 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 6 ⋅ 6𝛼 8 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 6 ⋅ 18𝛼
Dibenzo[a,c]anthracene 284.233 511.770 9 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 7 ⋅ 9𝛼 9 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 7 ⋅ 6𝛼 9 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 7 ⋅ 18𝛼
Dibenzo[b,g]phenanthrene 284.552 509.611 8 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 6 ⋅ 9𝛼 8 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 6 ⋅ 6𝛼 8 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 6 ⋅ 18𝛼
Perylene 251.175 461.545 8 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 8 ⋅ 9𝛼 8 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 8 ⋅ 6𝛼 8 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 8 ⋅ 18𝛼
Benzo[e]pyrene 250.568 463.738 8 ⋅ 4𝛼 + 8 ⋅ 6𝛼 + 8 ⋅ 9𝛼 8 ⋅ 4𝛼 + 8 ⋅ 5𝛼 + 8 ⋅ 6𝛼 8 ⋅ 8𝛼 + 8 ⋅ 13𝛼 + 8 ⋅ 18𝛼
Benzo[a]pyrene 251.973 468.712 7 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 7 ⋅ 9𝛼 7 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 7 ⋅ 6𝛼 7 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 7 ⋅ 18𝛼
Hexahelicene 336.098 555.409 10 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 9 ⋅ 9𝛼 10 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 9 ⋅ 6𝛼 10 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 9 ⋅ 18𝛼
Benzo[ghi]perylene 267.543 472.295 7 ⋅ 4𝛼 + 10 ⋅ 6𝛼 + 10 ⋅ 9𝛼 7 ⋅ 4𝛼 + 10 ⋅ 5𝛼 + 10 ⋅ 6𝛼 7 ⋅ 8𝛼 + 10 ⋅ 13𝛼 + 10 ⋅ 18𝛼
Hexacene 337.204 554.784 6 ⋅ 4𝛼 + 20 ⋅ 6𝛼 + 5 ⋅ 9𝛼 6 ⋅ 4𝛼 + 20 ⋅ 5𝛼 + 5 ⋅ 6𝛼 6 ⋅ 8𝛼 + 20 ⋅ 13𝛼 + 5 ⋅ 18𝛼
Coronene 285.041 468.796 6 ⋅ 4𝛼 + 12 ⋅ 6𝛼 + 12 ⋅ 9𝛼 6 ⋅ 4𝛼 + 12 ⋅ 5𝛼 + 12 ⋅ 6𝛼 6 ⋅ 8𝛼 + 12 ⋅ 13𝛼 + 12 ⋅ 18𝛼
Ovalene 368.518 551.708 6 ⋅ 4𝛼 + 16 ⋅ 6𝛼 + 19 ⋅ 9𝛼 6 ⋅ 4𝛼 + 16 ⋅ 5𝛼 + 19 ⋅ 6𝛼 6 ⋅ 8𝛼 + 16 ⋅ 13𝛼 + 19 ⋅ 18𝛼
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Algorithm 1 Optimization of correlation function
1: Input: Coefficients for 𝑦 ∈ {𝛥𝐻 , 𝐸} values; data 𝑥 ∈

{𝑅𝛼 , 𝑆 𝐶 𝐼𝛼 , 𝑆 𝑂𝛼}
2: Output: (𝛼̂ , 𝑅(𝛼̂))
3:
4: function CalculateY(𝛼)
5: Construct data vector 𝑦 using coefficients and 𝛼 value
6: end function
7:
8: function CalculateRho(𝛼)
9: 𝑦 ← CalculateY(𝛼)

10: Fit linear model Mod ← 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖
11: 𝑅2 ← coef. of determination from Mod
12: return 𝑅
13: end function
14:
15: function ObjFun(𝛼)
16: return − log(1+ CalculateRho(𝛼))
17: end function
18:
19: 𝛼̂ ← argmax ObjFun(𝛼)
20: 𝑅̂ ← CalculateRho(𝛼̂)
21: return (𝛼̂ , 𝑅̂)

systems with 𝑁𝑎𝑡𝑜𝑚𝑠 = 30, 𝛥𝐻 value (measured in cal/mol.K) lies in
the range from 50.938 to 52.44 with an average of 52.125, while 𝐸
alue (measured in cal/mol.K) is ranged from 105.261 − 110.0.37 with

an average of 108.055. Additionally, systems with 𝑁𝑎𝑡𝑜𝑚𝑠 = 36 have 𝛥𝐻
values range from 63.813 to 64.388 with an average of 64.089, while
their 𝐸 values lie in the range from 115.262 − 123.493 with an average
of 120.773.

A closer examination of Table 2 reveals that smaller molecules
ith lower molecular weights have lower 𝐸 and 𝛥𝐻 values, while the

opposite is true. For example, Table 2 shows that the smallest 𝐸 of
5 
69.028 and 𝛥𝐻 of 17.151 belong to benzene molecule with molecular
weight of 78.048 g/mol. The picture is not similar for larger molecules,
Whereas, the maximum 𝐸 of 84.491 belongs to Ovalene molecule with
molecular weight of 398.112 g/mol, while the maximum 𝛥𝐻 value
of 133.95 corresponds to Hexacene with molecular weight of 328.128
/mol. This deviation in the results of obtained for the larger molecule

can be clearly viewed by plotting the linear correlation between the
𝑀 𝑊 versus 𝐸 and 𝛥𝐻 values as shown in Fig. 3. The linear correlation
coefficient 𝑅2 of 0.9862 and 0.9298 are belong, correspondingly, to
𝛥𝐻 (Fig. 3(a)) and 𝐸 (Fig. 3(b)) properties. As can be seen in Fig. 3,
the deviation of the linear correlation is clearly observed for larger
molecules. In addition, the degree of deviation is greater for 𝐸 property
than for the 𝛥𝐻 one.

Fig. 3 shows good linear correlations between the molecular weight
(𝑀 𝑊 ) of the investigated benzenoids and their 𝛥𝐻 and 𝐸 values. The
inear correlations coefficients 𝑅2 of 0.9862 and 0.9298 are belong,
orrespondingly, to 𝛥𝐻 (Fig. 3(a)) and 𝐸 (Fig. 3(b)) properties. As

can be seen in Fig. 3, the deviation of the linear correlation is clearly
observed for larger molecules. In addition, the degree of deviation is
greater for 𝐸 property than for the 𝛥𝐻 one.

Fig. 3 shows good linear correlations between the molecular weight
(𝑀 𝑊 ) of the investigated benzenoids and their 𝛥𝐻 and 𝐸 values.

The entropy and heat capacity of a substance are also correlated
with its molecular surface area (MSA); see Fig. 3 for details. Examina-
tion of Table 2 illustrates that the smaller the 𝑀 𝑆 𝐴, the smaller 𝐸 and
𝛥𝐻 values. It is found that benzene molecule with the smallest 𝑀 𝑆 𝐴
value of 135.58 𝐴̊2 has the smallest 𝐸 and 𝛥𝐻 values of 69.028 and
17.151, respectively. On the other hand, Ovalene with the maximum
𝑀 𝑆 𝐴 of 467.46 𝐴̊2 has the 𝐸 and 𝛥𝐻 values of 133.467 and 84.491,
respectively. Notice that, the maximum 𝐸 value of 133.95 belongs
to Hexacene molecule with 𝑀 𝑆 𝐴 of 442.77 𝐴̊2. An excellent linear
correlation is found between the 𝑀 𝑆 𝐴 and both 𝐸 and 𝛥𝐻 properties
with 𝑅2 of 0.9744 and 0.9929, respectively. Again, the entropies of the
larger systems are deviated from these linear relationships.

Optimized geometries of the thirty investigated aromatic hydrocar-
bon molecules at the 𝐵3𝐿𝑌 𝑃∕6 − 31𝐺(𝑑) level of theory in the gas phase
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Fig. 3. Correlation curves between 𝑁𝑎𝑡𝑜𝑚𝑠, 𝑀 𝑊 and 𝑀 𝑆 𝐴 with the chosen properties.
computed by Gaussian 09 (Frisch, 2009) and visualized by GaussView
05 (Dennington et al., 2007) software packages as implemented in Aziz
supercomputer (http://hpc.kau.edu.sa) at King Abdulaziz University’s
High-Performance Computing Centre.

In general, it can be concluded that the entropies and heat capacities
of the 30 lower benzenoids are well correlated with the number of
atoms, molecular surface area and molecular weights, however, some
deviation from the linear correlation is observed for larger systems.

In conclusion, the analyses in the next two subsections offer comple-
mentary approaches to predicting thermodynamic properties. This sec-
tion establishes strong linear correlations based on physical molecular
attributes, such as the number of atoms, molecular weight, and surface
area. In contrast, the next two subsections refine this understand-
ing by introducing and optimizing mathematical indices (𝑅 , 𝑆 𝐶 𝐼 ,
𝛼 𝛼

6 
and 𝑆 𝑂𝛼), which more precisely capture these relationships. Together,
these studies enhance our understanding of the influence of molec-
ular structure on thermodynamic properties, effectively bridging the
gap between direct physical observations and advanced mathematical
modeling through graphical indices.

In this section, we present our computational results by employ-
ing Algorithm 1 on different computational platforms such as Octave
and R Studio. For results from the next subsection, we employed the
computational platform Octave.

Note that, in order to be suited for a linear regression analysis the
data is supposed to be tested for normality. There are several tests
for normality, including Shapiro–Wilk, Lilliefors, and the tests reported
in Jäntschi (2019). Other tests such as Anderson–Darling, Cramér-von
Mises, Kolmogorov–Smirnov are reported in Jäntschi (2020). Moreover,

http://hpc.kau.edu.sa
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Table 2
Substance, heat capacity, entropy, molecular formula, number of atoms, molecular weights and molecular surface area of the 30 lower
benzenoids.
Number Name 𝛥𝐻 𝐸 𝑀 𝐹 𝑁𝑎𝑡𝑜𝑚𝑠 𝑀 𝑊 𝑀 𝑆 𝐴
1 Benzene 17.151 69.028 C6H6 12 78.048 135.58
2 Naphthalene 28.816 81.955 C10H8 18 128.064 198.46
3 Anthracene 40.652 94.94 C14H10 24 176.064 261.3
4 Phenanthrene 40.561 95.176 C14H10 24 176.064 259.85
5 Tetracene 52.516 107.952 C18H12 30 228.096 320.22
6 Benzo[c]phenanthrene 50.938 105.261 C18H12 30 228.096 318.01
7 Benzo[a]phenanthrene 52.327 108.154 C18H12 30 228.096 325.3
8 Chrysene 52.402 108.871 C18H12 30 228.096 320.69
9 Triphenylene 52.44 110.037 C18H12 30 228.096 313.26
10 Pyrene 44.539 97.259 C16H10 26 202.080 286.42
11 Pentacene 64.388 120.96 C22H14 36 278.112 381.68
12 Benzo[a]tetracene 64.185 121.281 C22H14 36 278.112 379.3
13 Dibenzo[a,h]anthracene 64.079 121.741 C22H14 36 278.112 376.8
14 Dibenzo[a,j]anthracene 64.087 121.595 C22H14 36 278.112 377.3
15 Pentaphene 64.155 121.385 C22H14 36 278.112 379.59
16 Benzo[g]chrysene 63.834 120.473 C22H14 36 278.112 368.36
17 Pentahelicene 63.858 120.109 C22H14 36 278.112 392.09
18 Benzo[c]chrysene 63.813 120.199 C22H14 36 278.112 370.06
19 Picene 64.178 121.984 C22H14 36 278.112 374.67
20 Benzo[b]chrysene 64.156 121.463 C22H14 36 278.112 377.2
21 Dibenzo[a,c]anthracene 64.21 123.493 C22H14 36 278.112 374.76
22 Dibenzo[b,g]phenanthrene 63.858 120.108 C22H14 36 278.112 372.71
23 Perylene 56.484 112.373 C20H12 32 252.096 334.51
24 Benzo[e]pyrene 56.41 111.423 C20H12 32 252.096 332.24
25 Benzo[a]pyrene 56.381 110.484 C20H12 32 252.096 336.06
26 Hexahelicene 75.654 131.693 C26H16 42 328.128 446.78
27 Benzo[ghi]perylene 60.38 113.229 C22H12 34 276.096 353.2
28 Hexacene 76.264 133.95 C26H16 42 328.128 442.77
29 Coronene 64.354 115.262 C24H12 36 300.096 378.24
30 Ovalene 84.491 133.467 C32H14 46 398.112 467.46
T
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it is very important to not have outliers and extreme values, since both
may leverage your regression.

5.1. Linear correlation analysis of general graphical indices

The statistical analysis of Figs. 4 and 5 demonstrates the correlation
between three general indices (𝑅𝛼 , 𝑆 𝐶 𝐼𝛼 , and 𝑆 𝑂𝛼) and the thermo-
ynamic properties of lower benzenoid hydrocarbons, specifically heat

capacity (𝛥𝐻) and entropy (𝐸). The curves in these figures show how
the correlation coefficients vary with the parameter 𝛼. These curves
have been generated by using the software Octave. Notably, the optimal
𝛼 values for 𝑅𝛼 , 𝑆 𝐶 𝐼𝛼 , and 𝑆 𝑂𝛼 provide strong correlations with both
𝛥𝐻 and 𝐸. For 𝑅𝛼 , the optimal value is 𝛼 = −1.845, achieving a cor-
relation coefficient of 𝜌 = 0.997 with both 𝛥𝐻 and 𝐸. The 𝑆 𝐶 𝐼𝛼 index
is optimal at 𝛼 = −0.319, with a corresponding correlation coefficient
of 𝜌 = 0.997. The 𝑆 𝑂𝛼 index shows the highest correlation across both
properties at 𝛼 = −1.067, with a correlation coefficient of 𝜌 = 0.998,
indicating its superior predictive potential. These results emphasize the
effectiveness of these indices, particularly 𝑆 𝑂𝛼 , when they are properly
optimized for the prediction of thermodynamic properties in benzenoid
hydrocarbons.

Figs. 4 and 5 provide a magnified view of the regions around the
best values of the parameter 𝛼 for the general indices 𝑅𝛼 , 𝑆 𝐶 𝐼𝛼 , and
𝑆 𝑂𝛼 when predicting the thermodynamic properties of lower benzenoid
hydrocarbons. These figures emphasize the intervals of 𝛼 where the
correlation with the properties is at its peak. Specifically, for predicting
heat capacity (𝛥𝐻) in Fig. 4, the optimal intervals are approximately
𝛼 = [−2,−1.5] for 𝑅𝛼 , [−0.5,−0.1] for 𝑆 𝐶 𝐼𝛼 , and [−1.5,−0.5] for 𝑆 𝑂𝛼 .
Similarly, for predicting entropy (𝐸) in Fig. 5, the best intervals for
these indices are also within these ranges: 𝑅𝛼 = [−2,−1.5], 𝑆 𝐶 𝐼𝛼 =
[−0.5,−0.1], and 𝑆 𝑂𝛼 = [−1.5,−0.5].

These intervals represent the ranges of 𝛼 where each index reaches
its highest predictive potential, with the 𝑆 𝑂𝛼 index particularly stand-
ing out due to its consistent performance across both thermodynamic
properties. By focusing on these specific intervals, Figs. 4 and 5 under-
core the importance of fine-tuning the parameter 𝛼 to maximize the
 p
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predictive accuracy of 𝑅𝛼 , 𝑆 𝐶 𝐼𝛼 , and 𝑆 𝑂𝛼 indices for estimating the
thermodynamic properties of benzenoid hydrocarbons.

It has been observed that the optimal 𝛼 intervals for the three gen-
eral indices, highlighting the regions above the horizontal dashed lines
where the correlation coefficient (𝜌) is strong. For the general Randić
index (𝑅𝛼), the optimal interval for predicting heat capacity (𝛥𝐻)
is approximately [−1.8384,−0.5499], while for entropy [2.5110, 1.3334].

he general sum-connectivity index (𝑆 𝐶 𝐼𝛼) shows strong correlation
ithin the interval [−3.3914,−1.1480] for 𝛥𝐻 and [−4.4900,−2.7642] for
, indicating its effectiveness within these ranges. The general Sombor

ndex (𝑆 𝑂𝛼) demonstrates the broadest and most stable interval of
trong correlation, approximately [−1.5559,−1.4797] for both 𝛥𝐻 and
, making it the most versatile and reliable predictor across a wider

ange of 𝛼 values compared to the other indices. This analysis under-
scores the importance of selecting the correct 𝛼 interval for each index
to achieve optimal predictive accuracy for thermodynamic properties.

5.2. Multiple prediction potential of general graphical indices

Note that Section 5 consider the two chosen thermodynamic proper-
ties i.e. 𝛥𝐻 and 𝐸 individually to investigate their prediction potential
with 𝐺 𝐷𝑑 ∈ {𝑆 𝐶𝛼 , 𝑃 𝐶𝛼 , 𝑆 𝑂𝛼}. This section investigate the same prob-
em with 𝐺 𝐷𝑑 ∈ {𝑆 𝐶𝛼 , 𝑃 𝐶𝛼 , 𝑆 𝑂𝛼} and simultaneously choosing both
𝛥𝐻 and 𝐸. In order to perform this study, we employ multivariate
regression analysis as we now have more than one independent vari-
bles. The multivariate regression analysis has been performed on the
tatistical environment R Studio.

Let 𝑥1 = 𝛥𝐻 , 𝑥2 = 𝐸 (resp. 𝑦 = 𝑃 𝐶𝛼) the two independent
ariables (resp. dependent variable). Since there are more than one
ndependent variables are involved, we employ multivariate correlation
oefficient to investigate the prediction ability of the general product-
onnectivity index for predicting 𝛥𝐻 and 𝐸. Let 𝑅(𝛼) = 𝜌(𝑃 𝐶𝛼 ;𝛥𝐻 , 𝐸)

be the multivariate correlation function between 𝑃 𝐶𝛼 and the two
hosen properties 𝛥𝐻 and 𝐸. Thus, optimizing 𝑅(𝛼) would deliver us
he optimal value(s) of 𝛼 (let us denote that with 𝛼̂) for which the
rediction ability of 𝑃 𝐶 and the two test properties 𝛥𝐻 and 𝐸 is the
𝛼
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Fig. 4. Far and new views of the correlation curves between general indices and 𝛥𝐻 of lower benzenoids.
Fig. 5. Far and new views of the correlation curves between general indices and 𝐸 of lower benzenoids.
strongest. We apply the following same algorithm as we did in Section 5
by replacing the correlation function with the multivariate correlation
function.

The main difference between Algorithm 2 and the previous algo-
rithm (Algorithm 1) is the use of multiple independent variables (𝑥1
and 𝑥2) in the linear model. In Algorithm 1, the linear model is a simple
regression with a single predictor variable 𝑥, whereas in Algorithm 2,
the linear model is a multiple regression with two predictor variables,
𝑥1 and 𝑥2. This modification requires adjusting the calculation of the
correlation (specifically 𝑅2), as Algorithm 2 now considers the com-
bined effect of both predictors on 𝑦. The objective function and the
optimization process remain similar, aiming to find the optimal 𝛼 that
maximizes the correlation in this multivariate context.

A built-in optimizing tool in R Studio language is used by applying
Algorithm 2 to generate the required 𝛼 vs 𝑅(𝛼) curves. Fig. 6 depicts
such a plot incorporating the bivariate relationship between 𝑅(𝛼) and
𝛼 delivering 𝛼̂ = −0.319 and the corresponding correlation value of
𝜌 = 0.997.

Applying the same computational process and Algorithm 2, we
obtain Fig. 7 for the general sum-connectivity index 𝑆 𝐶𝛼 . Multiple
correlation curve between 𝑅(𝛼) and 𝛼 show that the optimal value of 𝛼
is 𝛼max = −1.845 and the corresponding correlation value of 𝜌 = 0.997.

A similar computational process by employing Algorithm 2 deliver
Fig. 8 for the general Sombor index 𝑆 𝑂 . Multiple correlation curve
𝛼
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Algorithm 2 Optimization of Multiple Correlation
1: Input: Coefficients for 𝑦 values; data 𝑥1, 𝑥2
2: Output: (𝛼̂ , 𝑅(𝛼̂))
3:
4: function CalculateY(𝛼)
5: Construct data vector 𝑦 using coefficients and 𝛼 value
6: end function
7:
8: function CalculateMultipleRho(𝛼)
9: 𝑦 ← CalculateY(𝛼)

10: Fit linear model Mod ← 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖
11: 𝑅2 ← coef. of determination from Mod
12: return 𝑅
13: end function
14:
15: function ObjFun(𝛼)
16: return − log(1+ CalculateMultipleRho(𝛼))
17: end function
18:
19: 𝛼̂ ← argmax ObjFun(𝛼)
20: 𝑅̂ ← CalculateMultipleRho(𝛼̂)
21: return (𝛼̂ , 𝑅̂)
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Fig. 6. Multiple correlation curve between 𝑅(𝛼) and 𝛼 delivering 𝛼̂ = −0.319 and the corresponding correlation value of 𝜌 = 0.997.
Fig. 7. Multiple correlation curve between 𝑅(𝛼) and 𝛼 delivering 𝛼max = −1.845 and the corresponding correlation value of 𝜌 = 0.997.
Fig. 8. Multiple correlation curve between 𝑅(𝛼) and 𝛼 delivering 𝛼max = −1.067 and the corresponding correlation value of 𝜌 = 0.998.
between 𝑅(𝛼) and 𝛼 show that the optimal value of 𝛼 is 𝛼max = −1.067
and the corresponding correlation value of 𝜌 = 0.998.

6. Conclusion

Contributions

In this work, we:
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• Developed optimal predictive models using three general degree-
related indices–general sum/product connectivity and Sombor
indices–offering high predictive accuracy for thermodynamic
properties of benzenoid hydrocarbons.

• Addressed open problems by determining optimal parameter val-
ues of 𝛼 that maximized correlations between graphical indices
and properties such as heat capacity and entropy.
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• Validated the effectiveness of each index through discrete opti-
mization and multivariate regression analysis, highlighting the
superior performance of the general product-connectivity index
over other degree-based indices.

Study implications

As potential study implications, this work:

• Provides a mathematical framework that enhances the use of
cheminformatics for predicting thermodynamic properties, sup-
porting the integration of graphical indices in QSPR modeling.

• Establishes that molecular features like the number of atoms,
molecular weight, and surface area significantly influence entropy
and heat capacity, guiding future molecular property predictions.

• Highlights the general product-connectivity index as particularly
effective, suggesting broader applications in chemical graph the-
ory for structure–property modeling.

Limitations

Here we highlight the limitations of this study.

• The study is limited to benzenoid hydrocarbons, restricting gen-
eralizability to other classes of chemical compounds.

• Evaluated only a few thermodynamic properties (heat capacity
and entropy), which may limit understanding of the indices’
predictive potential for other properties such as physicochemical
properties.

Future study

Based on the limitations above, here are some possible research
irections:

• Extend the application of these indices to a broader range of
physicochemical and quantum-theoretic properties.

• Investigate the use of these indices for non-benzenoid and more
complex molecular structures to test generalizability.

• Further explore temperature-based graphical indices to enhance
predictive capability across various chemical environments and
applications.
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