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Abstract The Pearson type II distribution is well known and is used in the general framework of

real normed division algebras and Riesz distribution theory. Also, the so called Pearson type

II-Riesz distribution, based on the Kotz–Riesz distribution, is presented in a unified way valid in

the context of real, complex, quaternion and octonion random matrices. Specifically, the central

nonsingular matric variate generalised Pearson type II-Riesz distribution and beta-Riesz type I dis-

tributions are derived in the addressed multiple numerical field settings.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Matrix distribution theory has transformed the vision of statis-
tics applications in the last century; the usual real and univari-
ate setting was generalised for large random objects in the

standard numerical fields, constituting powerful techniques
used in several branches of knowledge. That tendency allowed
that any imaginable approach and application of univariate

statistics could be taught in a greater framework. As usual,
matrix generalisations based on real Gaussian models
appeared in numerous papers over the past 50 years; verbatim

copies of those classical results were translated separately into
the complex and quaternion cases, without showing the under-
lying fact explained by certain abstract theories of

mathematics.
Extensions to matrix variate non-Gaussian models opened

an interesting perspective in the context of generalised invariant

statistics and propitiate some strong results which are now
widely applied in recent areas such as statistical shape theory
and MANOVA. For example, transition to unified studies, of
special families of distributions such asPearson type II, took sev-

eral years and required strong mathematical theories, which
were usually out of the scope of statistical papers. In this case,
the addressed distribution emerges in the following context: let

X and U1 be random matrices independently distributed as
matrix multivariate normal distribution and aWishart distribu-

tion, respectively; then the randommatrixR ¼ L�1X, whereL is

any square root of U ¼ L�L ¼ U1 þ X�X, has a matric variate
Pearson type II distribution. In the real case under normality,
the matric variate Pearson type II distribution (also known as

matric variate inverted T distribution) was studied separately by
Khatri (1959), Dickey (1967) and Press (1982). Recently, in a
general and unified setting, Dı́az-Garcı́a and Gutiérrez-Jáimez

(2012) studied the real, complex, quaternion and octonion ver-
sions of this distribution.
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Within the context of Bayesian inference, the posterior
mean and generalised maximum likelihood estimators were
found by Fang and Li (1999), assuming a matric variate Pear-

son type II distribution as the sampling model, and considering
the posterior and marginal laws as the corresponding nonin-
formative prior distributions. Meanwhile, with the frequentist

approach, Dı́az-Garcı́a and Gutiérrez-Jáimez (2006) and Kotz
and Nadarajah (2004) studied the normal regression based on
Studentised errors.

In multivariate analysis the matric variate Pearson type II
distribution is a source of interesting potential studies, for
example, let R be a matric variate Pearson type II random
matrix, then R�R follows a matrix multivariate beta type I dis-

tribution, a law which plays a fundamental role in MANOVA
theory, see Khatri (1959, 1970) and Muirhead (1982).

A family of distributions on symmetric cones, termed the

matrix multivariate Riesz distributions, was first introduced
by Hassairi and Lajmi (2001) under the name of Riesz natural
exponential family (Riesz NEF); it was based on a special case

of the so-termed Riesz measure from Faraut and Korányi
(1994, p. 137), going back to Riesz (1949). This Riesz distribu-
tion generalises the matrix multivariate gamma and Wishart

distributions, containing them as particular cases. Subse-
quently, Dı́az-Garcı́a (2015c,a) proposed two versions of the
Riesz distribution and two generalisations of a class of Kotz
type distributions. The addressed general laws are termed

matrix multivariate Kotz–Riesz distribution and contains the
matrix multivariate normal distribution as a particular case.

With a similar philosophy, we can search a generalisation

of the matric variate Pearson type II distribution, in the fol-

lowing way: let R ¼ XL�1, where L is a upper triangular
matrix such that U ¼ L�L ¼ U1 þ X�X; if we assume that X

and U1 are independently distributed matrix multivariate
Kotz–Riesz distribution and matrix multivariate Riesz distri-
bution, then we can derive the required distribution of R,

which will be called the matric variate Pearson type II-Riesz
distribution.

In the last 30 years, the theory of random matrix distri-

butions has reached a substantial development involving cer-
tain special areas of mathematics. Essentially, these advances
have been archived through two approaches based on the

theory of Jordan algebras and the theory of real normed divi-
sion algebras. A basic source of the mathematical tools of
theory of random matrices distributions under Jordan alge-
bras can be found in Faraut and Korányi (1994); and specif-

ically, some works in the context of theory of random
matrix distributions based on Jordan algebras are provided
in Massam (1994), Casalis and Letac (1996), Hassairi and

Lajmi (2001) and Hassairi et al. (2005), and the references
therein. Parallel results on theory of random matrix distribu-
tions based on real normed division algebras have been also

developed in random matrix theory and statistics, see Gross
and Richards (1987), Dumitriu (2002), Forrester (2005) and
Dı́az-Garcı́a and Gutiérrez-Jáimez (2011, 2013), among
others. Instead of using Jordan algebras, Ishi (2000) and

Boutouria and Hassiri (2009) studied several basic properties
of the matrix multivariate Riesz distribution under the
structure theory of normal j-algebras and theory of Vinberg

algebras, respectively.
Finally, the application of some particular fields as the octo-

nions seems to be unclear at present. An excellent review of the
history, construction and properties of octonions can be found
in Baez (2002); moreover, that author comments:

‘‘Their relevance to geometry was quite obscure until 1925,
when Élie Cartan described ‘triality’ – the symmetry between

vector and spinors in 8-dimensional Euclidian space. Their
potential relevance to physics was noticed in a 1934 paper
by Jordan, von Neumann and Wigner on the foundations of

quantum mechanics. . .Work along these lines continued quite
slowly until the 1980s, when it was realised that the octionions
explain some curious features of string theory. . . However,

there is still no proof that the octonions are useful for under-

standing the real world.We can only hope that eventually this
question will be settled one way or another.”

For the sake of completeness, the octonions will be consid-
ered in this work, but we must recognise that the application of

the associated results can only be conjectured. Even so, some
expectations are emerging, for example, Forrester (2005,
Section 1.4.5, pp. 22-24) proved that the bi-dimensional eigen-

value density function of a 2� 2 octonionic matrix Gaussian
ensemble is obtained from the eigenvalue general joint density
function of a Gaussian ensemble with m ¼ 2 and b ¼ 8, see

notation in Section 2. Moreover, according to Faraut and
Korányi (1994) and Sawyer (1997), it is easy to check that
the results of this work are valid for the algebra of Albert,
i.e., when the involved hermitian matrices or certain products

of hermitian matrices are 3� 3 octonionic matrices.
The present paper is organised as follows: basic concepts

and notations of abstract algebra and Jacobians are sum-

marised in Section 2; and, definitions and properties of the
nonsingular central matric variate Pearson type II-Riesz and
beta type I distributions are studied in Section 3. We emphasise

that the results are derived in the context of real normed divi-
sion algebras, a useful integrated and unified approach recently
implemented in matrix distribution theory.

2. Preliminary results

A detailed discussion of real normed division algebras can be

found in Baez (2002) and Neukirch et al. (1990). For conve-
nience, we shall introduce some notation, although in general
we adhere to standard notation forms.

Let F be a field. An algebra A over F is a pair ðA;mÞ, where
A is a finite-dimensional vector space over F and multiplication
m : A�A ! A is an F-bilinear map; that is, for all
k 2 F; x; y; z 2 A,

mðx; kyþ zÞ ¼ kmðx; yÞ þmðx; zÞ;
mðkxþ y; zÞ ¼ kmðx; zÞ þmðy; zÞ:
Two algebras ðA;mÞ and ðE; nÞ over F are said to be isomor-
phic if there is an invertible map / : A ! E such that for all
x; y 2 A,

/ðmðx; yÞÞ ¼ nð/ðxÞ;/ðyÞÞ:
By simplicity, we write mðx; yÞ ¼ xy for all x; y 2 A.

Let A be an algebra over F. Then A is said to be

1. alternative if xðxyÞ ¼ ðxxÞy and xðyyÞ ¼ ðxyÞy for all

x; y 2 A,
2. associative if xðyzÞ ¼ ðxyÞz for all x; y; z 2 A,
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3. commutative if xy ¼ yx for all x; y 2 A, and

4. unital if there is a 1 2 A such that x1 ¼ x ¼ 1x for all x 2 A.

If A is unital, then the identity 1 is uniquely determined.

An algebra A over F is said to be a division algebra if A is
nonzero and xy ¼ 0A ) x ¼ 0A or y ¼ 0A for all x; y 2 A.

The term ‘‘division algebra”, comes from the following
proposition, which shows that, in such an algebra, left and

right division can be unambiguously performed.
Let A be an algebra over F. Then A is a division algebra if,

and only if, A is nonzero and for all a; b 2 A, with b–0A, the

equations bx ¼ a and yb ¼ a have unique solutions x; y 2 A.
In the sequel we assume F ¼ R and consider classes of divi-

sion algebras over R or ‘‘real division algebras” for short.

We introduce the algebras of real numbers R, complex
numbers C, quaternions H and octonions O. Then, if A is an
alternative real division algebra, then A is isomorphic to R,
C;H or O.

Let A be a real division algebra with identity 1. Then A is
said to be normed if there is an inner product ð�; �Þ on A such
that

ðxy; xyÞ ¼ ðx; xÞðy; yÞ forall x; y 2 A:

Let A be a division algebra over the real numbers. Then A
has dimension either 1, 2, 4 or 8. In other branches of mathe-
matics, the parameters a ¼ 2=b and t ¼ b=4 are used, see

Edelman and Rao (2005) and Khatri (1984), respectively.
Finally, observe that

R is a real commutative associative normed division
algebra,
C is a commutative associative normed division algebra,
H is an associative normed division algebra,

O is an alternative normed division algebra.

Let Lb
n;m be the set of all n�m matrices of rank m 6 n over

A with m distinct positive singular values, where A denotes a

real finite-dimensional normed division algebra. Let An�m be the

set of all n�m matrices over A. The dimension of An�m over

R is bmn. Let A 2 An�m, then A� ¼ �AT denotes the usual con-

jugate transpose.
Table 1 sets out the equivalence among the same concepts

in the four normed division algebras.

We denote bySb
m the real vector space of all S 2 Am�m such

that S ¼ S�. In addition, let Pb
m be the cone of positive definite

matrices S 2 Am�m. Thus, Pb
m consist of all matrices S ¼ X�X,

with X 2 Lb
n;m; then Pb

m is an open subset of Sb
m.

Let Db
m consisting of all D 2 Am�m, D ¼ diagðd1; . . . ; dmÞ

and let Tb
UðmÞ be the subgroup of all upper triangular matrices

T 2 Am�m such that tij ¼ 0 for 1 < i < j 6 m.
Table 1 Notation.

Real Complex Quaternion

Semi-orthogonal Semi-unitary Semi-symplectic

Orthogonal Unitary Symplectic

Symmetric Hermitian Quaternion hermi
For any matrix X 2 An�m; dX denotes thematrix of differen-

tials ðdxijÞ. Finally, we define the measure or volume element

ðdXÞ when X 2 An�m;Sb
m, D

b
m or Vb

m;n, see Dı́az-Garcı́a and

Gutiérrez-Jáimez (2011, 2013).

If X 2 An�m then ðdXÞ (the Lebesgue measure in An�m)

denotes the exterior product of the bmn functionally indepen-
dent variables

ðdXÞ ¼
n̂

i¼1

m̂

j¼1

dxij where dxij ¼
b̂

k¼1

dx
ðkÞ
ij :

If S 2 Sb
m (or S 2 Tb

UðmÞ with tii > 0; i ¼ 1; . . . ;m) then

ðdSÞ (the Lebesgue measure in Sb
m or in Tb

UðmÞ) denotes the

exterior product of the mðm� 1Þb=2þm functionally indepen-
dent variables,

ðdSÞ ¼
m̂

i¼1

dsii

m̂

i>j

b̂

k¼1

ds
ðkÞ
ij :

Observe that the Lebesgue measure ðdSÞ requires that S 2 Pb
m,

i.e., S must be a non singular Hermitian matrix (Hermitian
definite positive matrix).

If K 2 Db
m then ðdKÞ (the Lebesgue measure in Db

m) denotes

the exterior product of the bm functionally independent

variables

ðdKÞ ¼
n̂

i¼1

b̂

k¼1

dkðkÞi :

If H1 2 Vb
m;n then

ðH�
1dH1Þ ¼

m̂

i¼1

n̂

j¼iþ1

h�j dhi:

where H ¼ ðH�
1jH�

2Þ� ¼ ðh1; . . . ; hmjhmþ1; . . . ; hnÞ� 2 UbðnÞ. It

can be proved that this differential form does not depend on

the choice of the H2 matrix. When n ¼ 1;Vb
m;1 defines the unit

sphere in Am, an ðm� 1Þb-dimensional surface in Am. When
n ¼ m and denoting H1 by H, ðHdH�Þ is termed the Haar mea-

sure on UbðmÞ.
The surface area or volume of the Stiefel manifold Vb

m;n is

VolðVb
m;nÞ ¼

Z
H12Vb

m;n

ðH1dH
�
1Þ ¼

2mpmnb=2

Cb
m½nb=2�

; ð1Þ

where Cb
m½a� denotes the multivariate Gamma function for the

space Sb
m. This can be obtained as a particular case of the gen-

eralised gamma function of weight j for the space Sb
m with

j ¼ ðk1; k2; . . . ; kmÞ 2 Rm, taking j ¼ ð0; 0; . . . ; 0Þ 2 Rm. In
Octonion Generic notation

Semi-exceptional type Vb
m;n

Exceptional type UbðmÞ
tian Octonion hermitian Sb

m
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general, for ReðaÞ P ðm� 1Þb=2� km, Gross and Richards

(1987) and Faraut and Korányi (1994) have defined,

Cb
m½a; j� ¼

Z
A2Pb

m

etrf�AgjAja�ðm�1Þb=2�1
qjðAÞðdAÞ

¼ pmðm�1Þb=4Ym
i¼1

C½aþ ki � ði� 1Þb=2� ð2Þ

¼ ½a�bjCb
m½a�; ð3Þ

where etrð�Þ ¼ expðtrð�ÞÞ; j � j denotes the determinant, and for

A 2 Sb
m

qjðAÞ ¼ jAmjkm
Ym�1

i¼1

jAijki�kiþ1 ð4Þ

with Ap ¼ ðarsÞ; r; s ¼ 1; 2; . . . ; p; p ¼ 1; 2; . . . ;m is termed the

highest weight vector, see Gross and Richards (1987). Also,

Cb
m½a� ¼

Z
A2Pb

m

etrf�AgjAja�ðm�1Þb=2�1ðdAÞ

¼ pmðm�1Þb=4Ym
i¼1

C½a� ði� 1Þb=2�;

and ReðaÞ > ðm� 1Þb=2.
In other branches of mathematics the highest weight vector

qjðAÞ is also termed the generalised power of A and is denoted
as DjðAÞ, see Faraut and Korányi (1994) and Hassairi and

Lajmi (2001).
Several properties of qjðAÞ can be easily obtained, a list of

them is given next:

1. Let A ¼ L�DL be the L’DL decomposition of A 2 Pb
m,

where L 2 Tb
U ðmÞ with lii ¼ 1; i ¼ 1; 2; . . . ;m and

D ¼ diagðk1; . . . ; kmÞ; ki P 0; i ¼ 1; 2; . . . ;m. Then
qjðAÞ ¼
Ym
i¼1

kkii : ð5Þ
2.
qjðA�1Þ ¼ q��j� ðAÞ; ð6Þ

where

j� ¼ ðkm; km�1; . . . ; k1Þ; �j� ¼ ð�km;�km�1; . . . ;�k1Þ,
q�jðAÞ ¼ jAmjkm
Ym�1

i¼1

jAijki�kiþ1 ð7Þ

and
q�jðAÞ ¼
Ym
i¼1

kkm�iþ1

i ; ð8Þ

see Faraut and Korányi (1994, pp. 126–127 and
Proposition VII.1.5).
Alternatively, let A ¼ T�T the Cholesky decomposition of

matrix A 2 Pb
m, with T ¼ ðtijÞ 2 Tb

UðmÞ, then

ki ¼ t2ii; tii P 0; i ¼ 1; 2; . . . ;m. See Hassairi and Lajmi

(2001, p. 931, first paragraph), Hassairi et al. (2005, p. 390,
lines -11 to -16) and Kołodziejek (2014, p.5, lines 1-6).
3. if j ¼ ðp; . . . ; pÞ, then

qjðAÞ ¼ jAjp; ð9Þ

in particular if p ¼ 0, then qjðAÞ ¼ 1.
4. if s ¼ ðt1; t2; . . . ; tmÞ; t1 P t2 P � � � P tm P 0, then
qjþsðAÞ ¼ qjðAÞqsðAÞ; ð10Þ

in particular if s ¼ ðp; p; . . . ; pÞ, then

qjþsðAÞ � qjþpðAÞ ¼ jAjpqjðAÞ: ð11Þ
5. Finally, for B 2 Tb
U ðmÞ in such a manner that

C ¼ B�B 2 Sb
m,
qjðB�ABÞ ¼ qjðCÞqjðAÞ ð12Þ
and
qjðB��1AB�1Þ ¼ ðqjðCÞÞ�1
qjðAÞ ¼ q�jðCÞqjðAÞ; ð13Þ

see Hassairi et al. (2008, p. 776, Eq. (2.1)).
Remark 1. Let PðSb
mÞ be the algebra of all polynomial

functions on Sb
m, and PkðSb

mÞ the subspace of homogeneous

polynomials of degree k and let PjðSb
mÞ be an irreducible

subspace of PðSb
mÞ such that

PkðSb
mÞ ¼

X
j

� PjðSb
mÞ:

Note that qj is a homogeneous polynomial of degree k, more-

over qj 2 PjðSb
mÞ, see Gross and Richards (1987).

In (3), ½a�bj denotes the generalised Pochhammer symbol of

weight j, defined as

½a�bj ¼
Ym
i¼1

ða� ði� 1Þb=2Þki

¼ pmðm�1Þb=4Qm
i¼1C½aþ ki � ði� 1Þb=2�

Cb
m½a�

¼ Cb
m½a; j�
Cb

m½a�
;

where ReðaÞ > ðm� 1Þb=2� km and

ðaÞi ¼ aðaþ 1Þ � � � ðaþ i� 1Þ
is the standard Pochhammer symbol.

An alternative definition of the generalised gamma function
of weight j is proposed by Khatri, 1966:

Cb
m½a;�j� ¼

Z
A2Pb

m

etrf�AgjAja�ðm�1Þb=2�1
qjðA�1ÞðdAÞ ð14Þ

¼ pmðm�1Þb=4Ym
i¼1

C½a� ki � ðm� iÞb=2�

¼ ð�1ÞkCb
m½a�

½�aþ ðm� 1Þb=2þ 1�bj
; ð15Þ

where ReðaÞ > ðm� 1Þb=2þ k1.
Consider also the following generalised beta functions ter-

med, generalised c-beta function, see Faraut and Korányi
(1994, p. 130) and Dı́az-Garcı́a (2015b),
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Bb
m½a; j; b; s�
¼

Z
0<S<Im

jSja�ðm�1Þb=2�1
qjðSÞjIm � Sjb�ðm�1Þb=2�1

qsðIm � SÞðdSÞ

¼
Z
R2Pb

m

jRja�ðm�1Þb=2�1
qjðRÞjIm þ Rj�ðaþbÞ

q�ðjþsÞðIm þ RÞðdRÞ

¼ Cb
m½a; j�Cb

m½b; s�
Cb

m½aþ b; jþ s� ;

where j ¼ ðk1; k2; . . . ; kmÞ 2 Rm; s ¼ ðt1; t2; . . . ; tmÞ 2 Rm,
ReðaÞ > ðm� 1Þb=2� km and ReðbÞ > ðm� 1Þb=2� tm.

Similarly defined is the generalised k-beta function as, see
Dı́az-Garcı́a (2015b),

Bb
m½a;�j;b;�s�
¼
Z
0<S<Im

jSja�ðm�1Þb=2�1
qjðS�1ÞjIm�Sjb�ðm�1Þb=2�1

qs ðIm�SÞ�1
� �

ðdSÞ

¼
Z
R2Pb

m

jRja�ðm�1Þb=2�1
qjðR�1ÞjImþRj�ðaþbÞ

q�ðjþsÞ ðImþRÞ�1
� �

ðdRÞ

¼Cb
m½a;�j�Cb

m½b;�s�
Cb

m½aþb;�j�s� ;

where j ¼ ðk1; k2; . . . ; kmÞ 2 Rm; s ¼ ðt1; t2; . . . ; tmÞ 2 Rm,
ReðaÞ > ðm� 1Þb=2þ k1 and ReðbÞ > ðm� 1Þb=2þ t1.

Finally, the following Jacobians involving the b parameter,
reflects the generalised power of the algebraic technique; they

can be seen as extensions of the full derived and unconnected
results in the real, complex or quaternion cases, see Faraut and
Korányi (1994) and Dı́az-Garcı́a and Gutiérrez-Jáimez (2011).

These results are the base for several matrix and matric variate
generalised analyses.

Proposition 1. Let X and Y 2 Lb
n;m be matrices of functionally

independent variables, and let Y ¼ AXBþ C, where

A 2 Lb
n;n;B 2 Lb

m;m and C 2 Lb
n;m are constant matrices. Then

ðdYÞ ¼ jA�Ajmb=2jB�Bjmnb=2ðdXÞ: ð16Þ

Proposition 2. Let X and Y 2 Sb
m be matrices of functionally

independent variables, and let Y ¼ AXA
� þ C, where A 2 Lb

m;m

and C 2 Sb
m are constant matrices. Then

ðdYÞ ¼ jA�
Ajðm�1Þb=2þ1ðdXÞ: ð17Þ

Proposition 3. Let X 2 Lb
n;m be matrix of functionally indepen-

dent variables, and write X ¼ V1T, where V1 2 Vb
m;n and

T 2 Tb
UðmÞ with positive diagonal elements. Define

S ¼ X�X 2 Pb
m. Then

ðdXÞ ¼ 2�mjSjbðn�mþ1Þ=2�1ðdSÞðV�
1dV1Þ; ð18Þ
3. Matric variate Pearson type II-Riesz distribution

Two versions of the matric variate Pearson type II-Riesz distri-
butions and the corresponding generalised beta type I distribu-

tions are obtained in this section.
A discussion of Riesz distribution may be found in Hassairi
and Lajmi (2001) and Dı́az-Garcı́a (2015a); and a description
of Kotz–Riesz distribution is given in Dı́az-Garcı́a (2015b).

For convenience, we adhere to standard notation stated in
Dı́az-Garcı́a (2015a,b). Now, consider the following two
definitions.

Definition 1. Let R 2 Ub
m; H 2 Ub

n , l 2 Lb
n;m and

j ¼ ðk1; k2; . . . ; kmÞ 2 Rm. And let Y 2 Lb
n;m and

UðBÞ 2 Tb
UðnÞ, such that B ¼ UðBÞ�UðBÞ is the Cholesky

decomposition of B 2 Sb
m, then:

1. It is said that Y has a Kotz–Riesz distribution of type I and
its density function isPm
bmnb=2þ
i¼1

kiCb
m½nb=2�

pmnb=2Cb
m½nb=2; j�jRjnb=2jHjmb=2

� etr �btr R�1ðY� lÞ�H�1ðY� lÞ� �� �
� qj UðRÞ��1ðY� lÞ�H�1ðY� lÞUðRÞ�1

h i
ðdYÞ ð19Þ

with Reðnb=2Þ > ðm� 1Þb=2� km; denoting this distribu-
tion as

Y 	 KRb;I
n�mðj; l;H;RÞ:

2. And it is said that Y has a Kotz–Riesz distribution of type

II and its density function is
b
mnb=2�

Xm
i¼1

ki

Cb
m½nb=2�

pmnb=2Cb
m½nb=2;�j�jRjnb=2jHjmb=2

� etr �btr R�1ðY� lÞ�H�1ðY� lÞ� �� �
� qj UðRÞ��1ðY� lÞ�H�1ðY� lÞUðRÞ�1=2

� ��1
� 	

ðdYÞ

ð20Þ
with Reðnb=2Þ > ðm� 1Þb=2þ k1; denoting this distribu-
tion as
Y 	 KRb;II
n�mðj; l;H;RÞ:

Definition 2. Let N 2 Ub
m and j ¼ ðk1; k2; . . . ; kmÞ 2 Rm, then:

1. It is said that V has a Riesz distribution of type I if its den-
sity function is

bamþ
Pm

i¼1
ki

Cb
m½a; j�jNjaqjðNÞ

etrf�bN�1VgjVja�ðm�1Þb=2�1
qjðVÞðdVÞ ð21Þ

for V 2 Pb
m and ReðaÞ P ðm� 1Þb=2� km; denoting this

distribution as V 	 Rb;I
m ða; j;NÞ.

2. And, it is said that V has a Riesz distribution of type II if its
density function is

bam�
Pm

i¼1
ki

Cb
m½a;�j�jNjaqjðN�1Þ etrf�bN�1VgjVja�ðm�1Þb=2�1

qjðV�1ÞðdVÞ

ð22Þ



364 J.A. Dı́az-Garcı́a, F.J. Caro-Lopera
for V 2 Pb
m and ReðaÞ > ðm� 1Þb=2þ k1; denoting this

distribution as V 	 Rb;II
m ða; j;NÞ.

Theorem 1. Let j ¼ ðk1; k2; . . . ; kmÞ 2 Rm, and

s ¼ ðt1; t2; . . . ; tmÞ 2 Rm. Also define R 2 Lb
n;m as

R ¼ XL�1;

where L 2 Tb
UðmÞ is such that U ¼ L�L ¼ U1 þ X�X is the

Cholesky decomposition of U,

1. with U1 	 Rb;I
m ðmb=2; j; ImÞ;Reðmb=2Þ > ðm� 1Þb=2� km;

independent of X 	 KRb;I
n�mðs; 0; In; ImÞ, Reðnb=2Þ > ðm� 1Þ

b=2� tm. Then U 	 Rb;I
m ððmþ nÞb=2; jþ s; ImÞ independent

of R with Reððmþ nÞb=2Þ > ðm� 1Þb=2� km � tm. Further-
more, the density of R is
Cb
m½nb=2� Im � R�Rj jðm�mþ1Þb=2�1

pmnb=2Bb
m½mb=2; j; nb=2; s�

qj Im � R�Rð Þqs R�Rð ÞðdRÞ;

ð23Þ
which shall be termed the matric variate Pearson type

II-Riesz distribution type I, where Im � R�R 2 Pb
m.

2. with U1 	 Rb;II
m ðmb=2; j; ImÞ;Reðmb=2Þ > ðm� 1Þb=2þ k1;

independent of X 	 KRb;II
n�mðs; 0; In; ImÞ, Reðnb=2Þ > ðm� 1Þ

b=2þ t1. Then U 	 Rb;II
m ððmþ nÞb=2; jþ s; ImÞ independent

of R with Reððmþ nÞb=2Þ > ðm� 1Þb=2þ k1 þ t1. Further-
more, the density of R is
Cb
m½nb=2� Im � R�Rj jðm�mþ1Þb=2�1

pmnb=2Bb
m½mb=2;�j; nb=2;�s� qj Im � R�Rð Þ�1

h i
� qs R�Rð Þ�1

h i
ðdRÞ; ð24Þ

which shall be termed the matric variate Pearson type II-

Riesz distribution type II, where Im � R�R 2 Pb
m.

Proof.

1. From Definitions 1 and 2, the joint density of U1 and X is

/ jU1jðm�mþ1Þb=2�1
etrf�b U1 þ X�Xð ÞgqjðU1Þqs X�Xð ÞðdU1ÞðdXÞ;

where the constant of proportionality given by
c ¼ b
mmb=2þ

Xm
i¼1

ki

Cb
m½mb=2; j�

� b
mnb=2þ

Xm
i¼1

ti

Cb
m½nb=2�

pmnb=2Cb
m½nb=2; s�

:

Making the change of variable U1 ¼ ðU� X�XÞ and
X ¼ RL, where U ¼ L�L, then by (16)
ðdU1ÞðdXÞ ¼ jL�Ljnb=2ðdUÞðdRÞ ¼ jUjnb=2ðdUÞðdRÞ;
and observing that jU1j ¼ jU� X�Xj ¼ jU� L�R�RLj ¼
jUjjIm � R�Rj, the joint density of U and R is
/ jUjðmþn�mþ1Þb=2�1
etr �bUf gqjþsðUÞjIm

� R�Rjðm�mþ1Þb=2�1 � qjðIm � R�RÞqs R�Rð ÞðdUÞðdRÞ:

Finally, note that the joint density of U and R is
¼ b
ðmþnÞmb=2þ

Xm
i¼1

ðkiþtiÞ

Cb
m½ðmþnÞb=2;jþs� jUjðmþn�mþ1Þb=2�1

etr �bUf gqjþsðUÞðdUÞ�Cb
m½mb=2;j�jIm�R�Rjðm�mþ1Þb=2�1

pmnb=2Bb
m½mb=2;j;nb=2;s�

qjðIm�R�RÞqs R�Rð ÞðdRÞ

which shows that U 	 Rb;I
m ððmþ nÞb=2; jþ s; ImÞ and is

independent of R.
2. The proof follows the same method used for proving

item 1. h

An alternative way to define the matric variate Pearson

type II-Riesz distributions is collected in the following
result.

Corollary 1. Let j1 ¼ ðk11; k12; . . . ; k1nÞ 2 Rn, and

s1 ¼ ðt11; t12; . . . ; t1nÞ 2 Rn. Also define R1 2 Lb
n;m as

R1 ¼ L�1
1 Y;

with L�
1 2 Tb

UðnÞ is such that V ¼ L1L
�
1 ¼ V1 þ YY� is the Cho-

lesky decomposition of V,

1. where V1 	 Rb;I
n ðab=2; j1; InÞ;Reðab=2Þ > ðn� 1Þb=2� k1n;

independent of Y ¼ X� 	 KRb;I
n�mðs1; 0; In; ImÞ, Reðmb=2Þ >

ðn� 1Þb=2� t1n. Then U 	 Rb;I
n ððaþ mÞb=2; j1 þ s1; InÞ

independent of R1 with Reððaþ mÞb=2Þ > ðn� 1Þb=2�
k1n � t1n. Furthermore, the density of R1 is
Cb
n ½mb=2� In � R1R

�
1



 

ða�nþ1Þb=2�1

pmnb=2Bb
n ½ab=2; j1; nb=2; s1�

qj1 In � R1R
�
1

� �
� qs1 R1R

�
1

� �ðdR1Þ; ð25Þ

which shall be termed the matric variate Pearson type II-

Riesz distribution type I, where Im � R1R
�
1 2 Pb

m.

2. where V1 	 Rb;II
n ðab=2; j1; InÞ;Reðmb=2Þ > ðn� 1Þb=2þk11;

independent of Y ¼ X� 	 KRb;II
n�mðs1; 0; In; ImÞ, Reðmb=2Þ >

ðn� 1Þb=2þ t11. Then V 	 Rb;II
n ððaþ mÞb=2; j1 þ s1; InÞ

independent of R1 with Reððaþ mÞb=2Þ > ðn� 1Þb=2þ
k11 þ t11. Furthermore, the density of R1 is
 

Cb
n ½mb=2� In � R1R

�
1


 
ða�nþ1Þb=2�1

pmnb=2Bb
n ½ab=2;�j1; nb=2;�s1�

qj1 In � R1R
�
1

� ��1
h i

� qs1 R1R
�
1

� ��1
h i

ðdR1Þ;
ð26Þ

which shall be termed the matric variate Pearson type II-

Riesz distribution type II, where In � R1R
�
1 2 Pb

n .
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Proof. The proof is a verbatim copy of the proof of Theorem 1.

Alternatively, observe that densities (25) and (26) can be
obtained from densities (23) and (24), respectively, making
the following substitutions,

R ! R�
1 m ! n; n ! m; m ! a; ð27Þ

and thus, j ! j1; s ! s1, and ki ! k1i ti ! t1i. h

Corollary 2. Let Q ¼ UðXÞ�1
RUðNÞ þ l, R as in Theorem 1,

and UðXÞ 2 Tb
UðnÞ and UðNÞ 2 Tb

UðmÞ are constant matrices

such that X ¼ UðXÞ�UðXÞ 2 Pb
m and N ¼ UðNÞ�UðNÞ 2 Pb

n ,

respectively, and l 2 Lb
m;n is constant.

1. Then, from (23) the density of Q is

/ N� ðQ� lÞ�XðQ� lÞj jðm�mþ1Þb=2�1

� qj N� ðQ� lÞ�XðQ� lÞ½ �qs ðQ� lÞ�XðQ� lÞ½ �ðdQÞ;
with constant of proportionality
Cb
m½nb=2�jXjmb=2

pmnb=2Bb
m½mb=2; j; nb=2; s�jNjðmþn�mþ1Þb=2�1

qjþsðNÞ
where N� ðQ� lÞ�XðQ� lÞ 2 Pb

m. This distribution is

denoted as
Q 	 PIIRb;I
n�mðm; j; s; l;X;NÞ:
2. And from (24) the density of Q is

/ N� ðQ� lÞ�XðQ� lÞj jðm�mþ1Þb=2�1

� qj N� ðQ� lÞ�XðQ� lÞð Þ�1
h i

qs ðQ� lÞ�XðQ� lÞð Þ�1
h i

ðdQÞ;
with constant of proportionality
Cb
m½nb=2�jXjmb=2

pmnb=2Bb
m½mb=2;�j; nb=2;�s�jNjðmþn�mþ1Þb=2�1

qjþs N�1
� �

where N� ðQ� lÞ�XðQ� lÞ 2 Pb
m. This distribution is

denoted as

Q 	 PIIRb;II
m�nðm; j; s; l;X;NÞ:

Proof.

1. The proof follows from (23) and (24), respectively, observ-
ing that, by (16)
ðdRÞ ¼ jXjmb=2jNj�nb=2ðdQÞ;
and

ðIm � R�RÞ ¼ ðIm � UðNÞ��1ðQ� lÞ�UðXÞ�UðXÞðQ� lÞUðNÞ�1Þ
¼ UðNÞ��1ðN� ðQ� lÞ�XðQ� lÞÞUðNÞ�1

:

2. It can be obtained by applying a similar procedure for

proving item 1. h

Next some basic properties of the matric variate Pearson
type II-Riesz distributions are studied.

Corollary 3. Let Q1 ¼ UðXÞRUðNÞ�1 þ l, R as in Corollary 1,

and UðXÞ� 2 Tb
UðnÞ and UðNÞ� 2 Tb

UðmÞ are constant matrices
such that X ¼ UðXÞUðXÞ� 2 Pb
m and N ¼ UðNÞUðNÞ� 2 Pb

n,

respectively, and l 2 Lb
m;n is constant.

1. From (25) the density of Q1 is

/ X�ðQ1�lÞNðQ1�lÞ�j jða�nþ1Þb=2�1
qj1 X�ðQ1�lÞNðQ1�lÞ�½ �

�qs1 ðQ1�lÞNðQ1�lÞ�½ �ðdQ1Þ;

with constant of proportionality
Cb
n ½mb=2�jNjnb=2

pmnb=2Bb
n ½ab=2; j1;mb=2; s1�jXjðaþm�nþ1Þb=2�1

qj1þs1ðXÞ
where X� ðQ1 � lÞNðQ1 � lÞ�Þ 2 Pb

n . This distribution is

denoted as

Q1 	 PIIRb;I
n�mða; j1; s1; l;X;NÞ:

2. Similarly, from (26) the density of Q1 is

/ X� ðQ1 � lÞNðQ1 � lÞ�j jða�nþ1Þb=2�1
qj1 X� ðQ1 � lÞNðQ1 � lÞ�ð Þ�1

h i
� qs1 ðQ1 � lÞNðQ1 � lÞ�ð Þ�1

h i
ðdQ1Þ;

with constant of proportionality

Cb
n ½mb=2�jNjnb=2

pmnb=2Bb
n ½ab=2;�j1;mb=2;�s1�jXjðaþm�nþ1Þb=2�1

qj1þs1ðX�1Þ
where X� ðQ1 � lÞNðQ1 � lÞ�Þ 2 Pb

n . This distribution is

denoted as

Q1 	 PIIRb;II
m�nða; j; s; l;X;NÞ:

Proof.

1. The proof follows from (25) and (26), respectively, observ-

ing that, by (16)

ðdR1Þ ¼ jXj�mb=2jNjnb=2ðdQ1Þ;
and

ðIn � R1R
�
1Þ ¼ ðIm � UðXÞ�1ðQ1

� lÞUðNÞUðNÞ�ðQ1 � lÞ�UðXÞ��1Þ
¼ UðXÞ�1ðX� ðQ1 � lÞNðQ1 � lÞ�ÞUðXÞ��1

:

2. It can be obtained by applying a similar procedure for
proving item 1. h

Now c-beta-Riesz type I and k-beta-Riesz type I distribu-
tions can be obtained, see Dı́az-Garcı́a (2015b). Let n P m

and let B 2 Pb
m defined as B ¼ R�R then, under the conditions

of Theorem 1, we have

B ¼ R�R ¼ L��1X�XL�1 ¼ L��1WL�1

where W ¼ X�X;L 2 Tb
UðmÞ and U ¼ L�L ¼ U1 þ X�X is the

Cholesky decomposition of U. Therefore:

Theorem 2.

1. Assuming that R 	 PIIRb;I
n�mðm; j; s; 0; In; ImÞ. Then, the den-

sity of B, such that Im � B 2 Pb
m is
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jBjðn�mþ1Þb=2�1

Bb
m½mb=2; j; nb=2; s�

jIm � Bjðm�mþ1Þb=2�1
qjðIm � BÞqsðBÞðdBÞ:

ð28Þ
B is said to have a matric variate c-beta-Riesz type I
distribution.

2. Suppose that R 	 PIIRb;II
n�mðm; j; s; 0; In; ImÞ. Then the den-

sity of B, such that Im � B 2 Pb
m is

jBjðn�mþ1Þb=2�1

Bb
m½mb=2;�j; nb=2;�s� jIm � Bjðm�mþ1Þb=2�1

qj½ðIm � BÞ�1� ð29Þ

�qs½ðBÞ�1�ðdBÞ. B is said to have a matric variate k-beta-

Riesz type I distribution.

Proof.

1. From (23) the density function of R is
/ Im � R�Rj jðm�mþ1Þb=2�1
qj Im � R�Rð Þqs R�Rð ÞðdRÞ:

Now make the change of variable B ¼ R�R, so that
ðdRÞ ¼ 2�mjBjðn�mþ1Þb=2�1ðdBÞðV�
1dV1Þ;

with V1 2 Vb
m;n. The joint density of B and V1 is then
/ Im � Bj jðm�mþ1Þb=2�1
qj Im � Bð Þqs Bð ÞjBjðn�mþ1Þb=2�1ðdRÞ

� ðV�
1dV1Þ:

Integrating with respect to V1 using (1), gives the stated
marginal density of B.

2. This is obtained in a similar way to the obtained in item

1. h

In addition, assume that n < m and let B1 2 Pb
n defined as

B1 ¼ R1R
�
1 then, under the conditions of Corollary 1 we have

eB ¼ L�1
1 YY�L��1

1 ¼ L�1
1 W1L

��1
1 ;

where W1 ¼ YY�. Hence:

Theorem 3.

1. Assuming that R 	 PIIRb;I
n�mða; j1; s1; 0; In; ImÞ. Then, the

density of B1 is
jB1jðm�nþ1Þb=2�1

Bb
n ½ab=2;j1;mb=2;s1�

jIn�B1jða�nþ1Þb=2�1
qj1 ðIn�B1Þqs1 ðB1ÞðdB1Þ;

ð30Þ
where In � B1 2 Pb

n , also, we say that B1 has a matric variate

c-beta-Riesz type I distribution.

2. Similarly, assuming that R 	 PIIRb;II
n�mða; j1; s1; 0; In; ImÞ.

Then the density of B1 is
jB1jðm�nþ1Þb=2�1

Bb
n ½ab=2;�j1;mb=2;�s1�

jIn�B1jða�nþ1Þb=2�1
qj1 ½ðIn�B1Þ�1�

ð31Þ
�qs1 ½ðB1Þ�1�ðdB1Þ, where In � B1 2 Pb

n . We say that B1 has a

matric variate k-beta-Riesz type I distribution.
Proof. The proof follows a similar procedure given for

Theorem 2. h

Alternatively, observe that densities (30) and (31) can be

obtained from densities (28) and (29), respectively, by making
the following substitutions

B ! B1; m ! n; n ! m; m ! a; ð32Þ
and consequently j ! j1; s ! s1, and ki ! k1i ti ! t1i.

We end this section, deriving the non-standardised densities
of the c-, and k-beta distributions.

Corollary 4. Define C ¼ UðHÞ�BUðHÞ, where UðHÞ 2 Tb
UðmÞ is

such that H ¼ UðHÞ�UðHÞ is the Cholesky decomposition of H.

1. Assume that B has the density (28), then the density of the
random matrix C is
/ jCjðn�mþ1Þb=2�1jH� Cjðm�mþ1Þb=2�1
qjðH� CÞqsðCÞðdCÞ;

ð33Þ
with constant of proportionally
1

Bb
m½mb=2; j; nb=2; s�jHjðmþn�mþ1Þb=2�1

qjþsðHÞ
;

for H� C 2 Pb
m.

2. Suppose that B has the density (29), then the density of the
random matrix C is
jCjðn�mþ1Þb=2�1jH�Cjðm�mþ1Þb=2�1
qj½ðH�CÞ�1�qsðC�1ÞðdCÞ;

ð34Þ

with constant of proportionally
1

Bb
m½mb=2;�j; nb=2;�s�jHjðmþn�mþ1Þb=2�1

qjþsðH�1Þ
;

for H� C 2 Pb
m.

Proof. This immediate from (17). h
4. Conclusions

Modern, integrated and unified statistics requires a number of

concepts and results of abstract algebra; the generalised theory
has a robust, concise and elegant exposition; but it is out of the
common language of statisticians. In opposite context, a noto-

rious tendency about unconnected translations of matrix dis-
tribution results in real-Gaussian to real-non Gaussian,
complex-Gaussian, complex-non Gaussian, ruled the statistical

theory for decades. We expect that publications in the line pro-
posed in this work will increase their impact on statistical the-
ory. Some of these statistical results can be cited, for example

Micheas et al. (2006) addressed the problem of point estima-
tion of parameters in complex shape theory. Also, Khatri
(1965) considered the estimation of parameters of a complex
matrix multivariate normal distribution and established a test

of hypothesis about the mean. In the quaternionic context,
Bhavsar (2000) set test statistics and their corresponding
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asymptotic distributions for two interesting particular hypoth-
esis. As suggested by the reviewer of this work, classical and
influential statistical results provided by Muirhead (1982)

and Fang and Zhang (1990) can be studied in the context of
real normed division algebras; but first we need to research
upon several aspects, in fact, some of them were obtained here.

In particular, Pearson type II distribution in the context of real
normed division algebras and Riesz theory, performs a crucial
role in the addressed generalised theory; taking into account

the published parallel results involving the Kotz type
distribution.

Acknowledgements

The authors wish to thank the Editor and the anonymous
reviewers for their constructive comments on the preliminary

version of this paper. This article was written under the exist-
ing research agreement between the first author and the
Universidad Autónoma Agraria Antonio Narro, Saltillo, Méx-
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