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Objective: The Aldo-keto reductase family consists of a number of enzymes which are essential to the
catalysis of redox transformation and which are also involved in intermediate metabolism and detoxifi-
cation. Several studies have been reported that the catalytic-dependent function of AKR1C family mem-
bers isoforms and their essential roles in various cancer types including prostate cancer and play a key
role in drug resistance and drug detoxification. The aim of the current study was to predict and analyze
the deleterious single nucleotide polymorphism (SNP) that is highly associated with prostate cancer. In
addition, to find the potent bioactive compounds as effective inhibitors against prostate cancer.
Methods: Various computational methods are employed to analyze the various non-synonymous single
nucleotide polymorphisms (nsSNPs) in the AKR1C3 gene.
Results: A total of 18,594 SNPs data set of deleterious and non-coding synonymous were retrieved from
the dbSNP database followed by various computational SNP prediction tools were performed to find the
most deleterious nsSNP. A total of eight high-risk nsSNPs were predicted and most of the residue is pre-
sent in the structural and functional conserved domain, hence, both wild type and mutant forms of
AKR1C3 were selected for structural analysis. Besides, molecular docking, ADME, and Prime MM/GBSA
calculations were also performed with plant derived bioactive compounds with AKR1C3 receptors. The
results of the study depicted that the rs62621365 and its possible mutation A258C was considered as
the most deleterious nsSNP and plant compounds such as Ginkgetin andWithaferin A shows best binding
affinity with both wild type and mutant from of AKR1C3.
Conclusion: The overall results depicted that nsSNPs may be considered for risk assessment against pros-
tate cancer and for cure, the suggested plant derived bioactive compounds may act as potent inhibitors.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aldo-keto reductase family 1 C3 (AKR1C3) is one of the essential
members of the Aldo-keto reductase family that play a crucial role
in oxidoreductase with a number of substrates involved in the
production of extra-testicular androgens (Karunasinghe et al.,
2017). It highly expressed in major organs like liver, kidney, brain,
placenta, and testis, though it abundantly expressed in the liver
hence it significantly involved in steroid hormone metabolism
(AKR1C1-AKR1C3) and metabolism of bile salts (AKR1C4) and also
it plays an essential role in detoxification of drugs. Among the 4
members, except AKR1C4, these enzymes may be a crucial factor
of tobacco-induced cancers including prostate and breast cancer
types (Chen and Zhang, 2012). A number of environmental factors
and genetic variants have significantly influenced the activity of
AKR1C3 (Liu et al., 2008). Mainly the genetic variants are essential
to produce variable testosterone expression levels and for the acti-
vation of androgen receptor (AR) (Davey and Grossmann, 2016).
Prostate cancer is the second most cancer type commonly occur-
ring in men and fourth-most cancer commonly occurring overall
cancer types (Rawla, 2019). The highest rate of prostate cancer
was recorded in countries including France, Ireland, Norway, and
Sweden. American chemical society reported that about 191, 930
new cases and 33,330 deaths from prostate cancer in the United
States for 2020 (Siegel et al., 2020). Currently, endocrine-based
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therapy has been practiced for advanced prostate cancer type
though it does not show significant results in complete ablation
of cancer. The metabolism of adrenal androgens in the prostate
cancer cell is an important mechanism associated with the pro-
gression of castration-resistant prostate cancer (Banerjee et al.,
2018). AKR1C3 is the important Aldo-keto reductase family mem-
ber that plays a crucial role in the conversion of adrenal androgen
dehydroepiandrosterone (DHEA) into high-affinity ligands for
testosterone and dihydrotestosterone (Hamid et al., 2012). In
human, AKR1C3 gene located in chromosome 10 which encode
the enzyme, AKR1C3 is also known as 17b-hydroxysteroid dehy-
drogenase type 5 (17b-HSD5) involved in the biosynthesis of
androgen (Penning, 2019). Hence, it acts like a potent drug target
for prostate cancer treatment. The studies reported that AKR1C3
significantly induces abiraterone resistance via overexpression of
intracrine androgen synthesis and improves the androgen signals
and subsequently leads to the activation of the androgen receptor
(AR) (Liu et al., 2017). The high expression leads to abiraterone
resistance whereas the less expression of AKR1C3 leads to the high
sensitivity of abiraterone in resistance cells. In prostate cancer,
intracrine androgen levels are highly expressed hence, the treat-
ment of these resistance cells results in a low level of intracrine
androgen level and reduces the AR transcriptional activity subse-
quently increasing the efficiency of abiraterone therapy (Liu
et al., 2015). Recently the studies have been recorded that tobacco
smoking associated with prostate cancer and there is a shred of
evidence that Aldo-keto reductase 1C3 enzymes involved in the
metabolic activation of chemical carcinogens such as polycyclic
aromatic hydrocarbons which are a rich source of tobacco
(Karunasinghe et al., 2019). Besides AKR1C3 significantly catalyzes
the extra-testicular androgen synthesis, therefore the process of
tobacco metabolism is highly required AKR1C3. In the same stud-
ies, it was mentioned that four androgen pathways related genetic
polymorphism (rs12529) is associated with a high risk of prostate
cancer (Flück et al., 2011). This AKR1C3 rs12529 G allele, in partic-
ular, showed a negative association with serum PSA level when
compared to healthy controls (Karunasinghe et al., 2019;
Mansouri et al., 2020). The patients carrying variant allele G of
rs12529 genetic polymorphisms can be detected in prostate cancer
when interacting with environmental factors (Karunasinghe et al.,
2017, 2019). The experimental studies reported the AKR1C3
rs12529 polymorphism can be an impenetrable variable for the
prostate cancer patient stratification along with tobacco smoking
status. The studies have been reported that single-nucleotide poly-
morphism in AKR1C3 is significantly linked to disease progression
and aggressiveness in prostate cancer. In addition, several studies
reported that the single nucleotide substitution in AKR1C1,
AKR1C2 and AKR1C3 play a key role in intracrine androgen biosyn-
thesis andmetabolism. It highly induces the resistance of a number
of anticancer drugs including oracin, cisplatin, and doxorubicin,
and also it significantly elevated the protein levels which are asso-
ciated with radio-resistance in lung cancer. Recently, phytocom-
pounds have great attention due to no side effects and act as
promising therapeutic candidates for the treatment of various
types of cancers. For instance, the plant compound withaferin
and its derivatives were used as a potentially effective alternative
therapy against several types of cancers such as glioblastoma, lung,
leukemia, and breast cancer via induction of apoptosis no studies
reported that potent effective agents at the controlling of overex-
pression of AKR1C3 in prostate cancer (Khan et al., 2019). Hence
in the current study, we performed in silico methods to find the
deleterious SNPs and their corresponding genetic alterations in
AKR1C3 and to investigate this genetic variation can alter the func-
tion of AKR1C3. Besides molecular docking, prime MM/GBSA and
ADME were performed to analyze the molecular interaction of
plant compounds with the AKR1C3 target receptor.
2

2. Materials and methods

The SNPs of AKR1C3 were retrieved from the Single-nucleotide
Polymorphism (SNP) database and their related protein sequences
in AKR1C3 were retrieved from Uniprot. The collected SNPs data
were used for various In silico analysis.
2.1. Exploration of functional effects of coding nsSNPs by SIFT method

The alteration in the single amino acid at a certain position sig-
nificantly affects the protein function, hence the prediction of sin-
gle amino acid substitutions has great attention to insights the
proteins and their implications in diseases. The genetic variants
and mutations found in polymorphism sites that are responsible
for complications are functionally and structurally important.
Hence in this study, we used In silico tool SIFT program (Available
at http://sift.jcvi.org/), which is used to predict and understand the
mutation-associated polymorphism in AKR1C3 genes. SIFT is a
multistep homology-based program that sorts tolerant amino acid
substitution. Initially filter the closely related sequences that share
similar functions and predict deleterious amino acid substitution
at a particular position in a protein that may have a phenotypic
effect (Ng and Henikoff, 2001). In the second step, it acquires the
multiple alignments of the selected sequences and calculates the
normalized probabilities of the amino acid substitutions at every
position based on the multiple alignments and predicts the possi-
bilities less than a cutoff value is deleterious (0.00 to 0.05); those
have greater cutoff value are categorized as to be tolerated (above
0.05) (Hassan et al., 2019).
2.2. Prediction of functional changes on coding nsSNPs by Polyphen2

Identification of deleterious and damaged coding nsSNPs at the
structural level is the important step to insights the functional
changes in the protein. Polyphen2 is one of the commonly used
programs for the probabilities of amino acid alterations and its
impact on both structural and functional levels (Adzhubei et al.,
2013). The amino acid sequence is utilized as input in a polyphen2
server with amino acid change and its position to characterize the
polymorphism. It searches the three-dimensional structure and
multiple alignments of similar amino acid sequences and mapping
the substitution site which altogether is taken as a parameter by
PolyPhen server and calculates the Position-Specific Independents
Counts (PSIC) scores for each amino acids substitution and then
computes the difference between the scores (Lopes et al., 2012).
These scoring differences categorize the SNPs as probably damag-
ing, potentially damaging, and damaging (Hepp et al., 2015).
(Available at: http:// genetics.bwh.harvard.edu/pph).
2.3. Examining the stability change in mutation by I-mutant 2.0

To evaluate the structure–function relationships in SNPs were
predicted by using I-mutant (Capriotti et al., 2005). It estimates
the free energy changes by computing the Gibbs free energy for
the wild type protein and subtracting it from a mutant form. The
predicted values of all mutant types in AKR1C3 may change the
protein stability of the AKR1C3 with related free energy. Four dif-
ferent outputs can be retrieved from the analysis (Younus et al.,
2018). The positive DDG values indicate the high stability of the
mutated proteins, whereas the negative score indicates lower sta-
bility. Available at http://gpcr2.biocomp.unibo.it/cgi/predictors/
IMutant3.0/I-Mutant3.

http://sift.jcvi.org/
http://gpcr2.biocomp.unibo.it/cgi/predictors/IMutant3.0/I-Mutant3
http://gpcr2.biocomp.unibo.it/cgi/predictors/IMutant3.0/I-Mutant3
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2.4. PHD-SNP

PHD-SNP is a vector machine-based online tool widely used to
predict the site-directed mutation in protein sequence and provide
information about the deleterious amino acid substitutions and
their impact on diseases (Capriotti and Fariselli, 2017). The output
of this program calculates the reliability index score and predicts
whether the single point amino acid change leads to diseases.
Available at http://snps.biofold.org/phd-snp/phdsnp.html.
2.5. Analysis of amino acid evolutionary conservation

Consurf is used to analyze the evolutionary conservation of
AKR1C3 amino acids. It determines the conserved amino acids with
an empirical Bayesian method to identify the structural and func-
tional residues in the conserved regions (Ashkenazy et al., 2016).
Based on the conservation score and color indications it predicts
the amino acids into a variable (range between 1 and 4), interme-
diate (range between 5 and 6), and conserved amino acids (range
between 7 and 9) (Ashkenazy et al., 2010). Available at http://con-
surf.tau.ac.il/.
2.6. PROVEAN (Protein variation effect analyzer)

To predict the alterations in the biological functions of a protein
owing to the single amino acid substitutions based on the
sequence clustering and alignment scoring. A score less than
�2.5 to be predicted as deleterious (Choi and Chan, 2015). Avail-
able at http://provean.jcvi.org/index.php.
2.7. Preparation of ligands and protein

Plant compounds reported with biological activity against pros-
tate cancer were selected based on the literature. Around 30 com-
pounds were selected, and the 2-dimensional structures of the
compounds were initially retrieved from the PubChem database
(Kim, 2016). The 3D conversion and minimization of the selected
compounds were performed using the Ligprep module imple-
mented in Maestro with the OPLS-2005 force field (Smak et al.,
2021; Vijayalakshmi et al., 2013). Initially, 32 stereoisomers and
possible ionizations were generated per ligand at pH of 7.0, using
Confgen maximum of 1000 conformers per ligand were generated
with default parameters (Shafreen et al., 2013). The 3D structure of
AKR1C3 was retrieved from the PDB database (PDB ID: 6GXK) and
subjected to protein preparation using the Protein Preparation
Wizard script implemented in Maestro. Initially, all the missing
residues were added and removed all the co-crystalized water
molecules. The structure was optimized with contacts by changing
the hydroxyl group orientations and flipping the side chain resi-
dues followed by energy refinement with the OPLS-AA force field
(Selvaraj et al., 2014b).
2.8. ADME

ADME properties of the selected compounds were analyzed
using the QikProp module (QikProp, version 3.8. Schrodinger LLC)
of Schrodinger. Both physical and pharmaceutically relevant
parameters are important descriptors to validate the drug-like
properties of the compound (Muralidharan et al., 2015). The
parameters such as Lipinski rule of five, number of hydrogen bond
acceptor, donor, and molecular weight of the molecule, and logP
values are some of the essential parameters which are required
as basic features for drug-likeness of the molecules (Mansouri
et al., 2020).
3

2.9. Molecular docking

Grid-Based Ligand Docking with Energetic (GLIDE) is one of the
widely used techniques used to evaluate the molecular interaction
of small molecules with their potential drug targets. In this study,
the selected plant compounds are docked with both wild-type and
mutated type AKR1C3 target proteins. Before the molecular dock-
ing, the binding site of the proteins was predicted by the SiteMap
program and the receptor grid was generated with a grid box
enclosing centered to the active site residues (Reddy et al., 2013).
Then the molecular docking was performed with XP mode which
performs via a conformational search for a ligand and also determi-
nes all the reasonable orientations for each ligand. The complete
search of docked molecules provides the scoring function (G-
score) to select the best conformation of the small molecules.
The protein and ligands were adjusted and minimized up to
0.3 Å RMSD with OPLS-AA force field (Suryanarayanan et al.,
2013). The hydrogen bonds, bond lengths, and hydrophobic inter-
actions between AKR1C3 and plant compounds were determined
by using PyMol and Maestro.

2.10. Binding energy calculation

The binding free energies of the ligand and receptor complexes
of docked molecules were predicted using Prime MM/GBSA imple-
mented in Schrodinger. In this process, two methods were com-
bined such as the optimized potential for liquid simulation- all-
atom (OPLS-AA) and molecular mechanics energy, an SGB solva-
tion model for polar solvation (GSGB), and a nonpolar solvation
term (GNP) composed of the nonpolar solvent accessible surface
area and van der Waals interactions (Selvaraj et al., 2014a). Binding
energy was calculated by the following formula:

DE ¼ Ecomplex � Eprotein � Eligand

where, Ecomplex is the energy of the protein-inhibitor complex,
Eprotein is the energy of protein and Eligand is the energy of ligand
(Chinnasamy et al., 2020).

2.11. Molecular dynamics simulations

Structural analysis for the stability of ligands with the AKR1C3
receptor and the also the mutant apo state is carried out for MD
simulation, trajectory analysis with the molecular dynamics simu-
lation package – GROMACS 5.0 (Shafreen et al., 2013; Shree et al.,
2020). For apo state, only protein is included in the system, and for
ligand bound complex, the topology of ligand is included from
PRODRG external server, followed by similar protocol of apo pro-
tein (Selvaraj et al., 2020a, 2020b). The orthorhombic box is filled
with TIP3P solvent (water) molecules, measuring 2.5 nm from
the protein and protein–ligand complex. For neutralizing the
Na + and Cl- ions are added along with the solvent and steepest
descent method is applied for energy minimization of the system
(Choudhary et al., 2020; Sivakamavalli et al., 2016). Room temper-
ature is set to 300 K v-rescale thermostat for the control of temper-
ature coupling and for maintaining the pressure 1 bar, the
Parrinello-Rahman with coupling constant is set to 2.0 ps
(Sasidharan et al., 2020). For controlling the electrostatic and
vdW interactions, the Partial Mesh Ewald (PME) is applied and
bond length between the atoms are constrained by using the LINCS
algorithm (Umesh et al., 2020). EM and NPT followed by NVT
ensembles are simulated for 100 ps for equilibration and MD sim-
ulations are processed for 20 ns for understand the stability of apo
protein and ligand bound complex (Muralidharan et al., 2015).
Results of MD simulations are analyzed using the RMSD graph cal-
culated based on reference initial position.

http://snps.biofold.org/phd-snp/phdsnp.html
http://consurf.tau.ac.il/
http://consurf.tau.ac.il/
http://provean.jcvi.org/index.php
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3. Results

3.1. nsSNP retrieval and function prediction by SIFT and PolyPhen
method

A total of 18,594 SNPs in AKR1C3 gene were retrieved from
dbSNP database, among them around 279 SNPs were predicted
as non-synonymous, 136 were in non-coding region 30 UTR and 5
were in 50 UTR regions and rest of the SNPs were found in the intro-
nic region. In the current study, we selected all the non-
synonymous, 50UTR, and 30 UTR SNPs for computational analysis.
Various computational tools such as SIFT, PolyPhen, I-mutant, PRO-
VEAN, molecular docking, and ADME were used in this study to
predict the deleterious nsSNPs. Among the 276 nsSNPs, only eight
SNPs were found to be deleterious with the tolerance index score
range from 0.00 to 0.009 (Table 1). From these eight SNPs, two
nsSNPs had high tolerance scores 0.00, 2 had 0.001, and remaining
SNPs showed 0.003, 0.004, 0.005 and 0.009. This low index of SIFT
score values indicate the predicted nsSNPs are had low tolerance
and may lead the functional changes in the amino acids sequence
and also it may significantly affect the stability and functions of the
proteins. The structural level changes in the protein sequences, the
predicted nsSNPs were subjected to the PolyPhen server. A
position-specific Independent Count score (PSIC score) was calcu-
lated and the difference of 1.5 and above were predicted to be
damaging SNP. All the eight nsSNPs show a PSIC score ranging from
0.666 to 1.000 was shown in Table 1.
3.2. Stability analysis of I-mutant

Out of eight nsSNPs, I-mutant server predicts the two non-
synonymous SNPs such as rs199934766 and rs11551177 showed
a DDG value of >�1.0. The remaining deleterious SNPs such as
rs62621365, rs139011578, rs145644085, rs370390057,
rs370769193, and rs377392226 have less DDG score (<�1.0). The
support vector machine (I-Mutant) effectively predicts the change
of protein stability free energy (DDG or DDG) on a specific nsSNP.
The high negative score DDG score indicates highly deleterious,
except for two nsSNPs such as rs199934766 and rs11551177, the
remaining four nsSNPS were predicted as less stable than the given
point mutation.
3.3. PHD-SNP and project HOPE

PHD-SNP is the widely used tool used for the prediction of dis-
eases associated with nsSNP. All the eight deleterious SNPs were
subjected to PHD-SNP analysis and it was predicted that all the
eight SNPs were found to be diseases related polymorphism
(Table 2). The amino acid substation of the deleterious SNPs was
predicted by HPOE software. Based on the results of other SNP pre-
diction tools such as SIFT, Poly Phen, I mutant, nsSNP rs62621365
was depicted as most deleterious and damaging hence this single
nsSNP alone was selected and subjected to HOPE software. The
Table 1
Shows of nonsynonymous SNPs predicted with SIFT and Polyphen have chosen SNPs with

SNP ID SIFT Score Amino acid change

rs11551177 0.009 E54G
rs62621365 0.005 R258C
rs139011578 0.001 A52G
rs145644085 0.000 V111D
rs199934766 0.000 R199W
rs370390057 0.004 Y296S
rs370769193 0.003 K247N
rs377392226 0.001 A52P

4

results obtained from the HOPE server depicted that the mutant
residue is smaller than wild-type residues hence the mutated
amino acid may contact with structural domains and the mutant
residues was not in the other residues types observed at this posi-
tion this may due to some rare case mutation which occurs in the
protein (Fig. 1 & Fig. 2.).
3.4. Analysis of amino acid evolutionary conservation and PROVEAN

The evolutionary changes in the amino acid sequence and evo-
lutionary conservation profile of the AKR1C3 gene were examined
using the ConSurf server which uses the Bayesian method to detect
the evolutionary profile of the gene and also determine the evolu-
tionarily conserved amino acids in proteins. Fig. 3 shows the pre-
dicted results of ConSurf of AKR1C3 based on the conserved
residues; there are 9 color variations and conservation scale of
each residue which indicates the evolutionary relationship. In
Fig. 3, it was noticed that conservation scale e, b, f, and s; where
e; represent the exposed residue, f represent the highly conserved
residues, b; indicated the buried residues and s; represent the
highly conserved structural residues, and f; indicates the highly
conserved functional residues. The color variation ranges from
light to dark purple indicate the scale of conserved region, from
the Fig. 3 it was noticed that the important amino acids that were
involved in binding mechanism such as Tyr216, Leu268, Leu219,
Asn167, Tyr24, Asp50, Tyr55, Phe311 were in dark purple color
region which indicates the most of the binding pocket amino acids
were present in conserved region. Further, the PROVEAN results
also predict the impact of deleterious SNPs may cause significant
biological function in protein. All the eight nsSNPs of AKR1C3 were
predicted as deleterious and the rs62621365 shows highly delete-
rious with PROVEAN score �7.238 (Table 2).
3.5. ADME

In the drug designing process, the prediction of small molecule
scaffolds with good binding affinity and potent ADME properties is
the main criteria. In this study, ADME properties of all the selected
plant compounds were predicted using the QikProp module. Basic
significance of both physical and pharmaceutically relevant prop-
erties was analyzed. The significant parameters such as QPlogBB,
logP, (Octanol/Water), QPlogS, APPCaco, and permeability via
Madin-Darby Canine Kidney (MDCK) cells in mm/sec, Lipinski’s
rule of five, molecular weight, and human oral absorption were
examined for this study and values are shown in table 3. The par-
tition coefficient (QplogPo/w) and the QPlogS are important crite-
ria and essential for evaluating the absorption and distribution of
drug molecules in the body. The values calculated for QPlogPo/w
and QPlogS (water solubility) range from �0.161 to 4.564 and
�2.883 to �8.067 respectively. The brain barrier coefficients of
all the plant compounds range from 0.243 to 107.54, the value of
the permeability via MDCK cells significantly mimics the blood–
brain barrier.
PSIC score and TOLERANCE INDEX range.

Tolerance PSIC score DDG

DELETERIOUS 0.946 �0.34
DELETERIOUS 0.000 �0.48
DELETERIOUS 1.000 �1.23
DELETERIOUS 1.000 �1.42
DELETERIOUS 0.666 �1.25
DELETERIOUS 0.787 �1.88
DELETERIOUS 1.000 �0.15
DELETERIOUS 0.918 �0.77



Table 2
Represent the predicted amino acid change, PROVEAN score, and value of PHD-SNP results of selected deleterious nsSNPs.

SNP ID Amino acid change PROVEAN score Prediction (Cutoff = -2.5) PhD-SNP (PhD-Predictor of human Deleterious)

rs11551177 E54G �5.777 Deleterious Neutral, Disease-related Polymorphism
rs62621365 R258C �7.238 Deleterious Neutral (6) Disease-related Polymorphism
rs139011578 A52G �3.596 Deleterious Neutral (1) Disease-related Polymorphism
rs145644085 V111D �6.259 Deleterious Neutral (1) Disease-related Polymorphism
rs199934766 R199W �3.043 Deleterious Neutral 7 Disease-related Polymorphism
rs370390057 Y296S �3.840 Deleterious Neutral 4 Disease-related Polymorphism
rs370769193 K247N �3.879 Deleterious Neutral 5 Disease-related Polymorphism
Rs377392226 A52P �4.533 Deleterious Disease 9 Disease-related Polymorphism

Fig. 1. Shows the schematic structure of the original (left) and mutant (right) amino acid predicted by HOPE software.

Fig. 2. Shows the AKR1C3 protein with a mutated amino acid. Proteins are represented in red color in ribbon model (a) and purple surface enabled with highlight of mutant in
red color (b).
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3.6. Molecular docking interaction analysis

The molecular interaction of protein–ligand complex plays an
essential role in the structure-based drug discovery process. The
molecular docking of plant-based compounds with AKR1C3. The
binding energies and interaction residues of the best four com-
pounds with both wild type and mutant form of AKR1C3 were tab-
ulated in table 4. A total of 30 plant compounds that show potent
anticancer activity were selected for this study among them Gink-
5

getin, Withaferin A, resveratrol, and Genistin show the best scoring
and binding energy with AKR1C3 receptor. These results suggested
that Ginkgetin shows the greatest binding energy (-13.326 k/cal),
and forms hydrogen bond interaction and p-p interaction with
Tyr216 and Phe360, respectively. Followed by Ginkgetin, Witha-
ferin A (-10.620 k/Cal), Resveratrol (-10.086 k/Cal) shows the more
or less similar binding score and glide energy. Molecular interac-
tion analysis (Fig. 4) depicted that the best four bioactive com-
pounds with wild type AKR1C3 showed good interaction with its



Fig. 3. Evolutionary conserved amino acid profile of AKR1C3 retrieved from ConSurf. The color-coding bar shows the conservation score.

Table 3
Pharmacokinetic properties of bioactive compounds.

Compound Name QPPMD CKa QPlog HERG QPPCacob QPlog BBc QPlog Sd QPlog Po/we M.W Rule of fiveg % of oral absorbance

Ginkgetin 7.987 �7.379 21.98 �3092 �8.067 4.564 566.50 1 64
Withaferin A 107.54 �4.493 243.68 �1.340 �4.961 2.97–3 470.60 0 87
Resveratrol 0.243 �5.89 0.867 �4.509 �3.699 �0.259 458.40 2 0.000
Genistin 8.300 �5.81 22.782 �2.833 �2.935 �0.161 432.40 1 37

a Predicted apparent MDCK cell permeability in nm/s (mimic for brain/blood barrier) (<25 is poor, >500 great. b Predicted apparent Caco2 cell permeability in nm/s (<25 is
poor, >500 great). c Predicted brain/blood partition co-efficient; logBB (acceptable range 3.0 to 1.2). d Predicted aqueous solubility; S in mol/l (acceptable range 6.5 to 0.5). e
QPlogPo/w: Partition coefficient; recommended range 2.0 to 6.5. f Predicted percentage of human oral absorption (<25% is poor). g Number of property or descriptor values
that fall outside the 95% range of similar values for known drugs (range: 1–5).

Table 4
Docking score, binding free energy and molecular interaction of plant compounds with AKR1C3 receptor.

S. No Compound
name

Glide score (Kcal/mol) Glide energy
(Kcal/mol)

MMGBSA DG-bind
energy (Kcal/mol)

Interaction residues

Wild type Mutant Wild type Mutant Wild type Mutant

1 Ginkgetin �13.326 �12.239 �96.350 �96.350 �79.26 Tyr216, Phe306 (p-p) Asn167, Phe306(p-p),
Asp50, Tyr24

2 Withaferin A �10.620 �11.272 �97.896 84.410 �92.30 Leu268, Leu219, Asn167 Tyr216 (3 p-p), Glu192
3 Resveratrol �10.086 �10.342 �82.945 �85.311 �55.38 Trp227, Tyr24 (p-p), Asn167,

Tyr55, Asp50
Gln222, Ser217

4 Genistin �9.239 �8.305 �72.592 �67.293 �74.16 Phe311, Phe306, (p-p), Asp50,
Asn167, Tyr55

Trp227 (p-p), Ser217, Leu268

Saleh Abdullah Aloyuni Journal of King Saud University – Science 33 (2021) 101514

6



Fig. 4. Represent the molecular interaction of the best-docked plant compounds Ginkgetin (A), Withaferin A (B), Resveratrol (C) and Genistin (D).
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active site residues. The binding mode of Ginkgetin depicted that it
makes interaction with binding site residues via p-p interaction
with Tyr216, Phe306. Another compound Withaferin A forms
hydrogen bond interaction with Lue268 via –O- and –OH– atoms
(O. . .H, CO.. Leu268) with a distance of 2.09 Å and Leu219 via –
N– and –OH– (O. . .H, NH. . . Leu219) with a distance of 2.42 Å
and Asn167 via –CH– and –NH– (C. . .H, NH. . . Asn167) with dis-
tance of 2.03 Å, Resveratrol makes two hydrogen forms with
Asp50 via –O– and –OH– (C. . .O, OH. . .Asp50) with distance of
1.67 and Tyr24 via –O– and –NH– (O. . .H, NH. . .Tyr24) with dis-
tance of 2.20 Å, and p-p interaction with Trp227, Tyr24. Genistin
forms hydrogen bond interaction with Asp50 via –C– and OH
(C. . .O, HO. . .Ap50) with distance of 2.50 Å, and two hydrogen
bonds with Asn167 via –N–, –OH– (N. . .H, OC, Asn167) with dis-
tance of 2.69 Å, and 2.38 Å, and with Tyr55 via –H– and –OH–
(H. . .O, HO. . . Tyr55) with a distance of 2.12 Å, in addition it also
forms p-p interaction with Phe311, Phe306. Fig. 5 represents the
molecular interaction analysis of mutant form of AKR1C3 with four
plant compounds. From the Fig. 5 it was observed that all the four
plant compounds showed more or less similar docking score and
also similar interactions compared to wild type, Ginkgetin forms
four hydrogen bond interaction with Asn167 via –N– and –CO–
(N..H, OC. . .As167) with distance of 1.92 Å, and Asp50 via –O–
and –OH– (C. . .O, OH. . .Asp50) with distance of 1.98 Å, Tyr24 via
–N– and –OC– (N. . .H, OC. . .Asp24) with distance of 2.44, and
forms hydrogen bond with Ser217 via –O– and –NH– (C. . .O,
NH. . .Ser217) with distance of 1.97 Å, Withaferin A form three
hydrogen bonds with Gln192 via –O– and –OH– (C. . .O,
OH. . .Gln192) with distance of 2.29 Å, and Ser219 via –O– and –
OH– (C. . .O, OH. . .Ser219) with distance of 2.18 Å and forms three
7

p–p interaction with Tyr216. Resveratrol form single hydrogen
bond interaction Ser217 via –O– and OH (O. . .H, OC. . .Ser217) with
distance of 1.92 Å, and Genistin forms hydrogen bond interaction
with Ser217 via –O– and –OH– (O. . .H, OC. . .ser217) with distance
of 2.42 Å, Leu268 via –O– and OH. . . (C. . .H, OH. . .Leu268) with dis-
tance of 2.40 Å and Lys270 via –N– and –OH– (N. . .H, OC. . .Lys270)
with distance of 2.15 Å and also forms p-p interaction with Trp227.

3.7. Binding energy calculation

The calculation of binding energies provides the more reliable
binding affinity of the complex than molecular docking and also
enhances the scoring functions of the docked complex for the
ordering of the docked poses. The prime MM/GBSA calculation of
the results in the best complexes was given in Table 3. The low
and negative binding energy of all the complexes strongly indi-
cated the all the plant compounds are in the most favorable confor-
mation. The ligand-binding complex of all the best compounds
ranged from �55.38 to �92.30 kcal/mol (Table 4). This low energy
of the complex may be contributed by the other energies including
van der Waals, h-bond, and electrostatic interactions.

3.8. Molecular Dynamics Simulations

For getting the stability of the mutant form of protein and pro-
tein ligand interactions, the MD simulation is carried out for the
timescale of 20 ns for getting the RMSD values difference from
its original position (Selvaraj et al., 2018). RMSD values from
20 ns of MD simulations are plotted against the initial position
and provided in the Fig. 6, showing the RMS deviations for apo pro-



Fig. 5. Represent the molecular interaction of the best-docked plant compounds Ginkgetin (A), Withaferin A (B), Resveratrol (C) and Genistin (D) with mutant form of AKR1C3
(A258C).
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tein and also for the four-ligand bound complex. The simulation
data shows that, for the whole 20 ns of MD simulations, the protein
is stable inside the system by showing the RMSD values between
~0.3 to 0.4 nm and for the ligand bound complexes, the RMSD lies
between the ~0.3 to 0.6 nm. This is clearly shown in the Fig. 6 rep-
resent the stability in the MD simulations for both apo and ligand
bound complex. None of ligand bound complex loss its stability in
the 20 ns of timescale represents the compounds are well bound
inside the active site and stable inside the protein, by means of
its bonding interactions.
Fig. 6. Molecular dynamics simulations of apo form of AKR1C3 along with Ginkgetin, Wit
timescale of 20 ns.
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4. Discussion

From the SNP results available in the table 1, it shows that
eight nsSNPs were predicted to be deleterious from the SIFT pro-
gram and the PolyPhen analysis showed that all were found to
be probably damaging. Hence, we could infer the predicted
results from both PolyPhen and SIFT which specifies the struc-
tural details. Stability analysis prediction shows that the nsSNPs
rs62621365 and rs145644085 were seen to be less stable, dele-
terious, and found damaging. PHD-SNP program-based results
haferin A, Resveratrol and Genistin bound complex showing the RMSD values for the
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shows that, both wild-type and mutant type residues form hydro-
gen bonds with Glu262 and Val283. Also, the difference in
hydrophobicity is noted in the site and it may affect the hydrogen
bond formation in themutant conditions. Depending on the homol-
ogy and similarity of the proteins it calculates the evolutionary pro-
file and predicts the substitution of the deleterious effect. From the
results obtained from the Consurf, it was observed that most of the
amino acids are present in conserved regions. Consurf result also
shows that the highly deleterious SNP and the AKR1C3 variant
A258C have the conserved scale 8 and the residue was located in
the highly conserved functional residue domain hence the Consurf
results also indicates that the rs62621365 mutation may make
important functional residue changes in protein. In terms of ADME
physiochemical property analysis, all the best four compounds fol-
low the rule of five and human oral absorption and other parame-
ters within the desirable range. The present results indicate that
all the bioactive compounds follow all the ADME properties within
the acceptable range. Based on the docking score and energy scores,
the best four compounds are subject to molecular docking with
mutant form of AKR1C3 (A258C). Molecular docking results shows
that the taken plant compounds may act as a potent inhibitor for
both wild and mutant (A258C) with more or less similar binding
mode of interactions. For conformations, MM/GBSA based binding
energy calculations are executed, and results revealed that the
plant compound shows a potent binding affinity with the AKR1C3
receptor. For confirming its efficiency in the dynamic state of the
mutant protein and complex system with plant compounds, the
MD simulations for 20 ns provides the support for the interactions
and binding. MD simulations shows both apo and ligand bound
complex are stable inside the system. There is lack of high fluctua-
tions seen in both apo and ligand complex shows, that ligands are
well bound inside the active site and also shows prominent binding
feature helps the ligand to stay inside the pocket, even in the
dynamic state. The overall study concluded that the in-silico predic-
tion and molecular interaction studies suggested that rs62621365
was considered as the most deleterious nsSNP and the plant com-
pounds such as Ginkgetin and Withaferin A may act as potent inhi-
bitors that can effectively suppress the level of AKR1C3 expression
in prostate cancer.
5. Conclusion

AKR1C3 is reported as a potential biomarker to identify pros-
tate cancer and the high expression of AKR1C3 levels may amen-
able to a novel form of hormonal treatment and it can convert the
androgen into active growth-stimulating androgen which inter-
fering with the AKR1C3 protein activity. In this study, we selected
several nsSNP of AKR1C3 and most of the nsSNPs are non-coding
regions. The structural analysis of selected high-risk nsSNPs pre-
dicted that the amino acid substitutions in AKR1C3 had a delete-
rious impact on the stability and function of the protein. The
amino acid residues such as R258C (rs62621365) and V111D
(rs145644085) undergo mutation. Molecular docking and ADME
and MM/GBSA calculation revealed that the selected plant-
derived compounds show good binding energy and molecular
interaction with the AKR1C3 receptor. The overall results
depicted that nsSNPs may be considered for risk assessment
against prostate cancer.
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