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The purpose of this paper is to suggest an approach for increasing the convergence speed of Halley’s method
tosolve anon-linear equation. This approach is based on the second order Taylor polynomial and on Halley’s
formula. By applying it a certain number of times, we obtain a new family of methods. The originality of this
family is manifested in the fact that all its sequences are generated from one exceptional formula that

depends on a natural integer parameter p. In addition, under certain conditions, the convergence speed
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of its sequences increases with p. The convergence analysis shows that the order of convergence of all pro-

posed methods is three. A study on their global convergence is carried out. To illustrate the performance of

this family, several numerical comparisons are made with other third and higher order methods.

© 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One of the most encountered problems in science and engineer-
ing is solving nonlinear equation

fx)=0 (1)

where f is a real analytic function. One of the best ways to approx-
imate a simple solution o of Eq. (1) is to use a fixed-point method.
In this method, we find another functionF, called an iteration func-
tion (L.F) for f, and from an initial value x, (Traub, 1964), we define a
sequence

Xpa =F(x,) for n=0,1,2- 2)

The second order Newton’s method (Traub, 1964) is also well
known. In order to increase the convergence speed, new algo-
rithms have been developed: Halley, super-Halley, Chebyshev,
Euler, Chun, Sharma (Sharma et al. (2012)) and Dubeau (2013)
have proposed some third order methods. Ghanbari (2011), Fang

* Corresponding author.
E-mail address: h.bennis@umi.ac.ma (H. Bennis).
Peer review under responsibility of King Saud University.

ELSEVIER

Production and hosting by Elsevier

https://doi.org/10.1016/j.jksus.2020.101291

et al. (2008) Solaiman and Hashim (2019), Noor et al. (2007),
Chun and Ham (2007), Kou and Li (2007), Wang and Zhang
(2014), proposed families of higher-order methods. Zhou and
Zhang (2020) have constructed some interesting algorithms with
variable convergence rate ((1 + 2p)-order). Zhang (2020) has
recently elaborated a fully derivative-free conjugate residual
method, using secant condition.

In this paper, based on Halley’s method and Taylor polynomial,
we construct an interesting family to find simple roots of nonlinear
equations with cubical convergence. The originality of this family
is manifested in its special formula which depends on a natural
integer parameter p, and in the augmentation of the convergence
speed of its sequences with the increase in p, if some hypotheses
are satisfied.

The rest of this article is organized as follow: Section 2 features
the family’s derivation of Halley’s method, Section 3 provides the
convergence study of the new methods, the advantages of the
new family of this article are presented in Section 4. The numerical
results of this work are provided in Section 5 while the last section
gives our conclusion.

2. Family’s derivation of Halley’s method

Among the famous third order methods, we quote Halley’s
methodBO, given by
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X1 =% — S Wo(Ln)

Wo(Ly) = 1—1%Ln 3)
Ly = Ly(xn) :f(?z)f”(;(n)

(xn)

where L, is the degree of logarithmic convexity of f at x,
(Hernandez, 1991).
The second-order Taylor polynomial of f at x, is given by:

' (xa)

YX) = Fon) + () (6 = X0) +757 (X = x0)?

The goal is to find a point (x,,1,0), where the curve of y passes
through the x_axis (Scavo and Thoo, 1995), which is the solution of

2

f (xn)

0= Flotn) + (Xner — %) ( (%) +7 (K1 —X0))
simplifying the above yields
Xet = X — T) forn—01,2-. )

f (%) +1L (Zx,.) (Xns1 — Xn)

Eq. (4) is an implicit scheme because it does not allow to
directly explain x,,1 as a function of x,,. In order to make it explicit,
we replace x,,; placed on the right side of (4) by Halley’s method
BO (3), we get the Super-Halley’s method B1:

XL =X, — D) :xn—f(xn) Wi(L,), neN
" F o) + 100 (0~ x,) £ (%) ’

()

1-1L

where W4 (L,) = e

By repeating the above procedure p times and each time replace
(X011 — X,) located on the right side of (4) with the last correction
found, we derive a following general family of Halley’s method

{Bp}:

,f(Xn)
f (%) +”TX” (xﬁ;} - Xn>

where x9_, is given by (3), and p is a non-zero natural integer
parameter.

(6)

P _
X1 =Xn —

Theorem 1. Let p be a natural integer parameter and fa real function
sufficiently smooth in some neighborhood of zero, o. The family of
Halley’s method {Bp}, defined by the sequences (G), can be expressed
in the following form:
f(xn)

By = Wyl 5 @)
Wi(Ly) =77y

To(L,) =1landTy(L,)=1-
Tpia(Ly) = Tpea(Ly) =5 Tp(Ly)

where L, =&/ &) apd

LneN
 (xa) 2

Proof. Let n e N, (vp),.,, and (V'p),.,, be defined by the sequences

peN
{xﬁ +1} given by (6) and (7) respectively. We will prove by induction
that, forallp e N, v/p = v,

Ifp = 1, the formula (6) leads to the (5) one given by:

ol fen) (138,
U1 = X510 T ) (1—21_,,

Furthermore, according to (7), we have
Ti(L,) =1-% and To(L,) =1 — L, then

/ f(xﬂ) lian
U1 *Xn_f’(xn) (1 —ZLn>
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So
vy =0

Now, we assume that, for a given p, we have v/, = v,, we will
show that ¢/p,1 = vp1.

From (7), we have:
pi1 _y S (xa) (Tm (Ln))

v, 1 =x"1 =
. Tpia(L,)

£ (%)

n+1 — °n

where
Ly
Tpia(Ly) = Tpra(Ly) — 7TP(LH)
and, from (6), we have:
f(xn) _ fxn)
£ (o) 52 (% — )

ypﬂ =Xn —

As
. f(xa) ( Tp(L,) )
Vy=1p =X, —
b P " fJ(Xn) Tp+1 (Ln)
then
f(%n)
Upi1 =Xn — ;
£ ) () [ Tp(Ly)
f (Xn) = of (xn) (Tpil(l'n)>

. f(xn>< Ty (L,) )
" f ) \Tpr (L) — B Ty(L,)

So

o _f(xn) Tpa(L,)
o == o (505)
where

Tpia(ly) = Tpua(Ly) =5 Tp(Ln)

Consequently v,,; = ¢/,,1 and the induction is completed.

Now, let’s try to find the general expression of the polynomial
T, as a function of L,.

From (7), we obtain

where [x] is integer part of x, and

RE=1 for p>0

Rl == for p>1

p-1 1] pil 8

Rﬁf:Omd@%]CJ%fﬂﬁnpzl ®)
2

2
R-R'=-1R? for p>3and2<k< 2]

Thus,

0
fork:QRS:]:(*l) (p+1)!

2° (p+1)0!
fork:l,Rll’:%P:(fzill)l.(pipi;)m
R-R' = 1Rxlz—z
for k=2, Rgilng’z_f%R;lz—a
@—@:%ﬁ
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We deduce that
1
2
knowing that

R =R; - [Rf + -~+R‘1”2]

1, & =) e-2p-1)
R=7 1+Z(z)] S 5
i=2 :
(=D -1
=57 po3 forp>3 9)
We admit that:
n o .
Kk 1) (ki) = MDD FIHD) )50
— i+2
(10)
By using (8)-(10) and by applying the same method, we obtain:
Fork=3and p > 5,
s 17 L1 (1) -9 -3)p-2)
R =R -5 [R+-+RE?] = = .
_ =) p-2)
22 (p-58!

Fork=4andp>7

R R LIRS R _(=D* p-6)p-5P-4)@p-3)
2 24 3!
=D (p-3)
2 (p-7)l

and by conjecture, we obtain for p > 2k — 1:

R — (~D)¥(p—k+1)!
K2k — 2k + 1)k

Corollary 1. Let p be a natural integer parameter and fa real function
sufficiently smooth in some neighborhood of zero,o. The family of
Halley’s method {Bp}, defined by the sequences (7), can be expressed
in the following explicit form:

Xy =Xy — W,,(Ln)j{,(();")) for neN (11)
)~

where ¢ T, (L) = zERz(Ln)" and L, is defined in (3).

RP — D ki)
k T 2K (p—2k+1)k

Proof. We will prove, by induction, that (7) is expressed by (11) for
allp € N.

From (7), we have

To(L,) =1and Ty(L,) = 1 fLZ—“.

From (11), we obtain the same result:

:R3+R}Ln:1—L—”

To(L,) ;

=R)=1andTy(L)
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Now, we assume that, for a given p, T,(L,) and T,1(L,) given by
(11)is equal to the one defined by (7). We will show that T,;»(L,,) is
also the same.

From (7), we have:

Tpia(Ly) = Tpaa(Ly) — 5 Tp(Ly)

Furthermore, according (11), we have

+2
pz: Rp+1 Z Rp+2

k=0
If p is even, we have

|:p + 3:| — |:p + 2:| and R15+1 — R8+2

Tpar(L,) ~ Tpa (L,

2 2
So
[pZLZ] 1 2 K
TP“ (Ln) - TP+2 (Ln) = (R£+ - R£+ )(Lny

k=1

_ 1 2 k
~ L, > (RP+ RP*)(L)

k+1 k+1

As RPTI _Rp2 =

k+1 k+1

1R? and [5] = [25'], then

zZR

Tpia(Ly) — Tpia(L

Consequently

L
TP+2 (Ln) = TP+1 (Ln) - jnTP(Ln)

The case p odd is analogous. We conclude, by induction, that (7)
is expressed by (11) for allp € N.

The scheme (11) is powerful because it regenerates the Halley’s
method BO, the Super-Halley method B1, and several new methods

such as B2 and B8 given by

Xy =X +;(X") AL -4 (12)
(x2) \L2 — 6L, +4

8 :Xn_f(x,,) 16 — 56L, + 60L> — 20L3 + L! (13)

i f (%,) \16 — 64L, + 84L2 — 40L’ + 5L}

3. Convergence study of new methods

3.1. Order of convergence

Theorem 2. Let f be a real function. Assuming that f is sufficiently
smooth in some neighborhood of a simple zero a. Further, assume that
the initial value X, is sufficiently close to a. Then the iteration process
defined by (11) converges cubically to a.

Proof. According to Sharma et al. (2012), the iteration process defined
by:

s

converges cubically to o, provided that

=% and|W”(0)| < oo.

Xny1 = Xn

W(0) =1,W (0)
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From (11), for all p € N, we have

P ro)=0

T,(0) = 1.T,(0) = -5,

and for allp € N* :

So

{For alpeN W,(0)=1 and W,(0) =
Forallpe N W,(0)=1 and W,(0) =
Consequently, the sequences defined by (11) are cubically

convergent for all p € N.

3.2. Global convergence

The following lemmas will be useful for the future.

3.2.1. Important lemmas

Lemma 1. Let p € IN*. We assume that the polynomial T,, defined in
(11), admits real roots of which b, is the smallest. Then, the root b, is
strictly positive and the polynomial T, is strictly positive over the
interval (—oo,by).

Proof. Let p € N*, we have
5 (] (]

Tp(x) =Y R =73 R +x.y Ry &
k=0 k=0 k=0
and T, (b,) = 0.So

L2y 2k
b _ l[:o] ng : (bp) '
p =

PR (b))

As for all (0 < k < [2£1]), we have

RS, >0andR}, , <0
Then
b, >0
We also have
Xgrpx T,(x) = +o0 and T, (b,) = 0 where b, is the smallest root of

T,. As, in addition, the function T, is continuous over (—oc,b,),
then for all x € (—o0, b,),we have

Tp(x) >0

This end the proof of Lemma 1.

In lemma 1, we have assumed that, for a given p, the function T,
admits at least one real root. Now we will show that this is always
true.

Lemma 2. The polynomials T, defined by (11) for different values of
non-zero natural integer p, each admit at least one real root, and the
sequence {bp}, constituted by their smallest positive real roots, is
strictly decreasing.

Proof. By induction, we have

Ty(L,) =1-Ly/2 and Ty(L,) =1—1L,

Journal of King Saud University — Science 33 (2021) 101291
Then
b1 =2 and bz =1
So
(b, and b,) exist and b, < b,
Let p € N*, we suppose that for every k < p + 1, we have
by exist and by < by_;
We will show that
by, exist and by, < by

From (7), we have

Tp1(X) = Tpaa(x) = ETP(X)
and, from lemma 1, we have for all x € (0, b,)
Ty(x) >0
So
Tpi2(X) < Tpia (%)
Since
0 < bpi1 < by
then
Tpia (bP+1) < Tps1(bps1)
As
Tpi1(bp1) =0
then

Tpi2(bpe1) <0
Furthermore, we have
Tp2(0)=1>0
So

Tp2(0).T

: p+2(bP+1) <0

As the function T, is continuous on [0, b,.1], then, from Inter-
mediate value theorem, there existsc ¢ (O, bpﬂ) such as

Tpia(€) =0
As by, is the smallest real root of T, then

Tp+2 (bp+2) =0and bp+2 € (0, bp+])
So

bp2 exists and by, < bpyq

This end the proof of Lemma 2.

In order to study the global convergence of the sequences (11),
we must calculate the derivative of the iterative function F, of f
and study its sign.

Lemma 3. Let p € N.The iterative function F, of f relative to the
sequence (11) is given by:

fx)
F =Xx——W,(L 14
p(X) =X @) »(D) (14)
L=Lix) :f(x/)f”gx) (15)
f®

and
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(5]

Z RPL*, R =
The derivative F;) is given by:

1
T2,,(L)

(=D —k+1)!
2k(p 2k 4 1)!k!

Fix)=1- . [Ap (L) + Gp(L).L* Ly (x)}

min(k, (5] +1)

(D p+2—ip+2—k+i)
1y 2100k = D)1(p +2 — 20)!(p + 2 — 2k + 20)

Opk =
i=max(0,k— |5

and
23]

Z bp kLk

where

(16)

(17)

(18)

(19)

(20)

(k=2i+1)>*(p—i+1)(p—k+i)

1k 5
bp=’<:( ' (p+2)

k+1
2 i= sup Ok [p}

Proof of lemma 3. Let p € N.From (14) and (15) we have

O o (FRN
, (X)> Wy(l) (/ (X)> LW (L)

(f(X)> 1
f (%)

<f(_x)> L=L[1+L(L(x) - 2)]

(=1~

where

f )
and
U= (o) Ly -LRL20
, Co(L)
Woll Ty (L)
where

Cp(L) = T, (L) Tpia (L) = Ty 4 (L) Tp(L)

Using (23) and (24), the formula (22) become

Fox)=1- ] kOt 2.Gy(L) Ly (x)
where
Ap(L) = (1= L) Tp(L)-Tpur (L) + L(1 = 2L).Gy(L)

iik—i+ 1)(p—2i+2)l(p— 2k+2i)!

(21)

(22)

(23)

(24)
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and C,(L) is given by (25). By developing the calculation, we obtain

2[8]

Zb il

(28)

where
b . : )
bIJ.,k = (k - 2i+ 1)' |:_RIP R£+1+1 + Rp+ Rﬁ z+1]
i=sup (0~ ]

(29)
Using Rj given in (11), we obtain

~RV.RPH

k—i+1

LRRP =(*1)k(p*i+])(P7k+1)(k721+])(p+2)
i k—i+1 2k+1k 1 I ~ o
(k—i+1)(p — 2k +2i)!(p — 2i + 2)!i!

(30)

Replacing (30) in (29), we obtain (21). Furthermore, we have:

2 Ly 17k 2 2 k
T2 4 (L) = 2 RLY| = ap_k.L
k= k=0
where
min(k. [p]+l
apk — Rp+1 Rp+}
il 1 :

i=max(0.k—[§]-1)

Using R given in (11), we obtain (19).
Developing the expression of A,(L) given by (27), we obtain

L p+2 [%]*—1 ‘
AL =-p+3)(z) + L 31
W=-0+3(5) + X 1)
where
5o min(li[‘z—’:]ﬂ) (i)k (71) (p—i+2)(p—k+2+i)
pk = 2 ) 2"p+2-2i)(k—i)(p+2— 2k + i)l

i=max(0.k—[5]-1)
(32)

We note that f,, = a,x. So, by using (18) and (31), we obtain
(17).

This end the proof of Lemma 3.

The formulas (16)-(21) are of great importance because they
give the derivatives F;, for all the methods of the family (11). In

the literature, these derivatives are known only for the two follow-
ing cases (Ezquerro and Hernandez (1997) in theorem 6.2):

¢ Halley’s method (p = 0)

Vo LF(x)(3 - 2Ly (x))
Fo(x) = W (33)

e Super Halley’s method (p = 1)

L7 (%) (Ly (%) — Ly (x)
/ f -f
Fix) = ————L— (34)
2(1 - L;(x))
A simple calculation allows us to verify that our formulas give
exactly the same expressions.
Now Let’s look the sign of C, that we will use later.
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Lemma 4. The polynomials Cp, defined in (20) and (21) for different
values of the natural integer p, are all strictly positive on (—oo, bp1),
where by are the smallest real roots of the polynomials Tp,1.

Proof. Let p € N.We have for all x € (o0, bp,1):

Xp+2 =X, — f(xn)
n+1 / Z
f (Xn) +f (an) <Xﬁi} — Xn)
) 1
" x) 1L e ()
f(xﬂ) 1 +m(—f/(xn)wp+l(lfn)>
1 f(%n)
X —x 7f,(xn). =Xy — L,
T ) T Woal) " o
where
P T L Wy (L)
So,
1 L
Wya(ln) = =1- n

P R T
2 \1-5Wp(l)

Using (15), we have

Fpia(x) =x 7]];((?;)) W2 (L)
where L € ] o0, b,,3[ and

L
Woal=1- 1271

By deriving F,.,(x) given above, we find:
1 2 (LY
Crrall) =5 (Ton )+ (5) € )
p

Then, developing the calculations, we obtain :

2[F 0,[5]-1 2k 2 "
G =4 O+ S G 1 w)?] pen
Co(L) =Ci(L) =3
(35)
Consequently, for all p € N and for all L € (—o0, bp41), Cp(L) >0
This end the proof of Lemma 4.
Now, we present a study on the global convergence of the {Bp}

family’s methods (Hernandez (1988); Ezquerro and Hernandez
(1997)).

3.3. Monotonic convergence of new sequences

Let p € N, C, and L are defined by (20), (21) and (15). We con-
sider the function g, defined by:

_p+3 I
&0 =270

(36)
where L € (—o0,bp41)

Theorem 3. Let p € N, f € C*[a,b], f ()0, f ()0, L < b,,; and

Ly (x) < (L) (37)

On an interval [a, b] containing the root « of f. The sequence (11)
is decreasing (resp. increasing) and converges to o from any point

Xo € [a,b] checkingf(xo)f'(xo) >0 (resp. f(xo)f'(xo) < 0).

Journal of King Saud University — Science 33 (2021) 101291

Proof. Let peN, feC*a,bl, f/ (x)#0, f” (x)#0and L < b,,; on
la, b] containing o. Let’s look for the condition on Lf, for convergence
to be monotonous.

If
Fxo)f (Xo) >0 (38)
then
Xo > o

The mean Value Theorem gives
X — o= F,(B) (X0 — %) (39)

where € (a,X0). Using (16) and (17), we have

F,(x) > 0is equivalent to Co(L)LPLy () < Ty (L) — Ay(L) (40)

Using (17) and lemma 4, we obtain

p+3 I’
(X) <

W=7 Gm

Thus, if the condition (37) is satisfied for all L € (—oo, bp,1), then
we have:
F,(x)>0
for all x € [«, b], especially
F,(B) =0

Since xo > o, then, from (39), we obtain
xb >

By induction, we obtain that, foralln e N
X >a

Furthermore, from (11), we have

X
X —xp = —W,,(Lo)f,( o)
f (x0)

From lemma 1, the function T, (resp.T,.,1) is strictly positive on
(—00,bp) [resp.(—oc0,bp.1)]. As

bp+1 < bp and Ly < bp+]

Then,
Tp(Ly)

W, (L) = =2"%_>0
p( 0) Tp+1(Lo)
So

xb < xo

By induction we obtain for all n € N
D
Xn+1 S Xﬁ

Thereby, the sequence (11) is decreasing and converges to a
limit r € [«, b], so

fW, (L) =0
Since, from lemma 1, we have
Ty(Ls(r)) >0
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then
W, (L (r))#0
o)
f(r)=0
As o is the unique root of f, then
r=o.

This end the proof of theorem 3.

Corollary 2. Let p € N, f € C*[a,b], f (x)#0, f (x)#0, 0 <L < by,
and Lf (x) <0 on an interval [a,b] containing the root o of f. The
sequence (11) is decreasing (resp. increasing) and converges to o, from

any point xg € [a, b] checkingf(xo)f' (%0) >0 (rep.f(xo)f' (x0) < 0).

Proof. For 0 <L < b,.1, we have
I’ >0and Gy(L) >0
So
p+3 I
A RN
As, by hypothesis

Lf’ (X) < 0

then
Lf’ (X) < gp (L)

By applying theorem 3, we obtain the thesis.
The formula (37) is of great importance because it gives the nec-
essary conditions on Lf, to ensure the monotonous convergence of

all the methods of the new Halley’s family (11). In the literature,
these conditions are known only for the cases of Halley’s method
Ly <3/2) and Super Halley’s method Ly <L) (Hernéndez

(1988) in theorem (i)).

3.3.1. Convergence of the Bp methods

Here, we treat the case where the convergence of (11) is
ensured in any form: monotonic convergence, oscillating conver-
gence or non-regular oscillation (between two successive itera-
tions, it sometimes there is oscillation, sometimes no). This case
is guaranteed if for all x € [a, b], we have

~1<F,(x) <1

We consider the functions h, defined on

Jpi1 = (=00,0)U (0,bp,1) by:
Ty (L) + (p +3)(L/2)"

and k,

_ p+l
hy(L) = 26,0 and
-T2 () + (p+3)(L/2)0 7
k(L) = Ze0 (41)

Where L is defined in (15), (Tp.1 (L))2 and C,(L) are given in (18)
and (20).

Theorem 4. Let peN, f ¢ C4[a, b}, f (%)#0, f”(x);éO and L < bp4
on an interval I = [a, b] containing the root o of f, and
kp(L) < Lo (x) < hy(L) (42)

for all x e I' = [a, o) U («, b]. The sequence (11) converges to o from
any point xo where

a<Fp(xo)<b
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Proof. Let €N, f e C*[a,b], f (x)7=0, f (x)#0andL < b,.1 on
la, b]containing o. We treat the case where o < Xo < b. By the Mean
Value Theorem, we have:

X — o =F,(A)(X — o)

Where 7 € (o,X0). From (16), we can prove that if the condition
(42) is satisfied, then for all x € I', we have

~1<F,(x) <1

As
F,(a)=0
then for all x € [a, b], we obtain
“1<F,(x) <1

Thus, there exists M, € (0, 1) such that, for all x € [a, b], we have
‘Flp (X)’ < MP

So
X7 — o] < Mplxo —

By induction, we get, for alln € N
X — o] < (M,)"[xo —

In addition, since
a<Fy(xo)<b
it follows that, for all n € N
a<xh<b

and therefore, the sequence (11) converges to a.

4. Advantages of the new family

It is interesting to study the variation of the convergence speed
of the sequences (11) as a function of the parameter p. For this, we

will compare (xﬁ“)and(xﬁ).

Lemma 5. Let p € N, (up),,y and (vn),oy be defined respectively by
{xﬁ“ }and {xh} given by (11). We have:

(&
ot = == <Tp+1(Ln>.Tp+z<Ln> men *3)

Proof. We have

Upi1 — Un1 = Fp+1 (xn) - Fp(xn)
) (Tor2(Ln).Ty(La) = Ty (L)
Fen o) Tpoa(ln)

Using (7), it follows that

Tpea(Ln)T,(La) = T2, (L) = % [To (L)Tp1(La) = Ty (L)

So

2 P 2
Tpa@a)T, ) = T (0 = () [Fala)Toll) ~ (P11

Ln p+2
e

and (43) is completed.
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Theorem 5. Let p € N, f € C*[a,b], f (x)0, f (x)#0, 0 <L < by.,
and Lf, (x) < 0 on an interval [a, b], containing the root o of f. Starting
from the same initial point X € [a,b], the convergence’s rate of the

sequence {xﬁ“} given by (11) is higher than the one of {x}}.

Proof. By induction, Let p € N and we assume that the assumptions
of theorem 5 are verified. If

f(x0)f (%) > 0
then
Xo > o

From corollary 2 and lemma 2, if, for all x € [a, b], we have
L, x)<0 and 0 <L < b,,, then the sequence (v,) and (u,) are

decreasing and converge to « from any point xo € [a, b].
Since ug = v9 = Xo then ugy < vy

We have
O
2
(T,,H (Lo)Tps2 (L0)>

f(%o)
f (Xo)
and from lemma 1, for all 0 < Ly < by, we have
Tp+1(Lo) > 0and Tp.n(Lo) > 0
So
up < o1

U — v =—

We assume that
Up < Uy

Since, F,,; is increasing on [a, b], we get
FP+1 (Lln) < Fp+1(7/n)

In addition, we have:
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This end the proof of theorem 5.

The theorem 5 announces a result of high importance: under
some conditions, the convergence speed of the methods Bp
improves if the parameter p increases. Thus, since p can take high
values, then the convergence speed can always be improved with
p. As the methods of Halley and Super Halley are obtained for
p=0andp =1, then their rate’s convergence will be lower than
the one of the other methods of our family.

5. Numerical results

Numerical computations reported here were carried out in
MATLAB R2015b and the stopping criterion was taken as

[Xns1 — Xo| < 107" and [f(x,)| < 107",
5.1. Numerical Comparison between some methods of new family

We consider f(x) = x> — 9x + 20 on[2,4] and we take xo = 2.1.
The conditions of theorem 5 are satisfied for our methods
(B0,B2,B3,B5 and B6) given by (11) for p=0,2,3,5and6. In
Table 1, we note that:

e All sequences are increasing and converge to the zero
a=4of f;

e The convergence speed of methods
parameter p;

e Our methods B2, B3, B5 and B6 converge more rapidly than
Halley’s method BO.

increases with the

This example confirms the importance of the theorem 5.

5.2. Comparison with other methods

The tests functions used in Table 3 are given in Table 2.

L (0n) P+2 We indicate the number of iterations (NI) and the number of
f(vn) T) function evaluations (NOFE) required to meet the shutdown
Fpi1(0n) —Fp(vn) = - <0 o
f(n) \ Tor (Ls(20)) Tz (L (7)) criterion.
On the left side of the Table 3, we compare our methods B6 and
So B11, given by (11) for p=6 and 11, with Newton’s method (N)
defined by (1) (Sharma et al. (2012)) and some cubically conver-
Fpa(u,) < Fp(v,) gent methods: Sharma (S) defined by (17)(« = 0.5), Jiang-Han’s
thus method (J) defined by (19) (¢« = 1) in Sharma et al. (2012), Chun’s
method (U) defined by (23) (a, =1) in Chun (2007), Halley’s
Uni1 < Uni method (B0) defined by (2.3) before.
Table 1
Convergence’s comparison of some methods Bp.
BO B2 B3 B5 B6
Xo 2.1 2.1 2.1 2.1 2.1
3.608727895037079 3.58200315543224 3.91411497158407 3.96485646880613 3.977250615324
3.977250615324702 3.99239178714579 3.99999975520541 3.99999999999823 4.0
3.999988994594171 3.99999999674939 4.0 4.0 -
4.0 4.0 - - -
Table 2
Test functions and their roots.
Test functions Root (o) Test functions Root (o)
f1(x)=x2 —=5x+6 3.00000000000000 f7(x) = xinx 1.000000000000000
fa(x) = 14(x — 3)e 2.947530902542285 fa(x) = e* — 4x? 0.714805912362777
Fax) = (x—2)% — Inx 3.057103549994738 fo®) =(x-2)* -1 3.000000000000000
fa(x)=2coshx + 2cosx — 6 1.85792082915019 Fro(x) = 2sinx — 1 0.5235987755982989
f5(x)=0.5x% +0.75x —3x — 1 2.000000000000000 frx) =e -3 0.910007572488709
fe(x) =x12 - 2x3 —x+1 0.5903344367965851 —0.458962267536948
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Table 3
Comparison with order methods.
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Comparison with third order methods

Comparison with higher order methods

f X0 NI f X0 NOFE
N S U ] BO B6 B11 c w R B2 B8
fi 5 7 4 5 5 4 2 2 fi 5 12 21 12 9 6
fa 2.55 6 5 5 5 4 3 3 fa 2.55 12 15 12 9 9
fs 2.45 6 7 5 7 4 3 3 f3 2.6 12 18 12 9 9
fs 13 4 8 8 7 4 3 3 fa 14 12 18 12 9 9
fs 0.5 6 6 5 7 4 3 3 fe 0.26 12 12 12 9 9
fs 0.4 6 5 5 5 4 3 3 fs 0.58 12 18 12 9 9
fo 2.7 6 5 5 5 4 3 3 fs 0.4 12 12 12 9 9
f1o 1.2 5 9 5 5 4 3 3 fo 2.72 12 12 12 9 9
i 0.5 6 5 6 5 4 3 3 fi -0.1 12 9 12 9 9
On the right side of the same Table, we compare our methods References

B2 and B8, given by (11) for p =2 and 8, with some higher order
methods: Wang and Zhang (2014) (W) defined by (19) (y =B = —
0.6), a fourth-order method; Chun and Ham (2007) (C) defined
by ((10)-(12)), a sixth-order methods; Noor et al. (2007) (R)
defined by (Algorithm 2.4), a fifth-order method.

The results obtained for our methods are similar or better than
those of other third and higher order methods, as they require the
same number of iterations/number of function evaluations or less.
These results are promising and show the efficiency and speed of
the new family.

6. Conclusion

In this paper, we constructed a new Halley’s family of third
order iterative techniques for solving nonlinear equations with
simple roots. The originality of this family lies first in the fact that
these sequences are governed by one exceptional formula depend-
ing on a natural integer parameter p, and then, in the case where
certain conditions are met, the convergence speed of its methods
improves when the value of p increases. In addition, a study on
the global convergence of the new methods has been carried out.
Finally, the performance of our methods is compared with some
methods of similar or higher order. The numerical results showed
the robustness, efficiency and speed of the proposed family’s
techniques.
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