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Objectives: In pose estimation, semi-supervised learning is a crucial approach to overcome the lack of information 
problem of labeled data. However, for semi-supervised learning, the insufficient number of labeled samples also 
severely affects its functionality. The fewer labeled the data, the less stable the prediction. Deep ensemble is a 
good way to improve model accuracy and stability. However, the training time of model ensemble is long and the 
resource consumption is high, so it cannot be applied in many practical scenarios. Therefore, the methods we 
propose the Decomposed Channel based Multi-Stream Ensemble (DCMSE) network, which can extend a single 
model to a stream-ensemble structure and generate the ensemble prediction to solve the large variance of pre-
diction from the lack of labeled data, and improve the performance. The Channel Deconstruction and Ensembling 
(CDE) module makes the network benefits from both diversity and commonality by implementing ensemble 
without increasing the size of parameters. The output features are split into two parts, common-channels and 
private-channels. In feature sampling, on the one hand, common channels can provide commonality between 
streams. On the other hand, private channels can provide diversity for each stream and avoid homogenization of 
the predictions for each stream. Both diversity and commonality allow the network to not only gain in the 
ensemble of streams, but also improve the prediction accuracy of each stream itself. 
Results: Moreover, we propose mean-stream consistency constraints and cross-stack consistency constraints to 
obtain gains from unlabeled data. The Mean-Stream (MS) consistency constraint uses multi-stream ensemble 
prediction to additionally supervise each stream. Based on the characteristics of the Stacked Hourglass model, 
the Cross-Stage consistency constraint (CS) uses the forecasting results of later stages to supervise the forecasting 
of previous stages from the perspective of stages. 
Conclusion: Our approach achieves better results than SOTAs on the FLIC and Openfield-Pranav and our Sniffing 
data-set. Specifically, on the MSE, our method achieves at least 0.88, 0.13, and 0.08 improvements over the 
SOTA method on the FLIC, Openfield-Pranav, and our Sniffing datasets, respectively.   

1. Introduction 

Pose estimation is an essential subject in computer vision, and it has 
achieved many outstanding results, such as (Newell et al., 2016; Sun 
et al., 2019; Tompson et al., 2014; Wei et al., 2016; Xiao et al., 2018). All 
the above methods achieve excellent results with sufficient labeled data. 
However, these methods are highly sensitive to the amount of labeled 
data. Manual annotation of poses is complex and costly. Therefore, 
reducing the amount of labeled data has become a focus of research. 

Currently, unsupervised pose estimation based on transfer learning 
has achieved exciting results. The main idea of UDA-AP (Li et al., 2021) 

is to gain knowledge from synthetic animal data and apply this knowl-
edge to target domain recognition using transfer learning. However, due 
to the great difficulty of pose estimation, when the difference between 
source and target domains is large, a few of labeled data is still needed to 
guide the model training. Therefore, semi-supervised pose estimation 
based on few labeled samples still plays an essential role. 

The main role of semi-supervised learning is to use a small amount of 
labeled data and a large amount of unlabeled data simultaneously, so 
that the model can achieve better predictive performance. Currently, 
semi-supervised learning methods are mainly applied to classification 
tasks. In general, there are two categories of semi-supervised learning: 
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consistency-based and pseudo-label-based method. 
The idea of consistency-based methods (Berthelot et al., 2019; Laine 

and Aila, 2016; Sajjadi et al., 2016; Sohn et al., 2020; Tarvainen and 
Valpola, 2017) is that the model should have consistent predictions for 
different augmented samples of the same sample. Therefore, the main 
approach of such methods is to construct long-term stable and effective 
consistency-based supervision, thereby obtaining additional supervision 
from unlabeled data. 

In pseudo-label-based methods (Arazo et al., 2020; Berthelot et al., 
2019; Lee et al., 2013; Radosavovic et al., 2018; Wang et al., 2018; Xie 
et al., 2020; Zhai et al., 2019), an initial model is first trained using 
labeled data, and then use the initial model predicts the unlabeled data 
to generate pseudo-labels. Finally, using pseudo-labels to train the initial 
model itself. The bottleneck of this approach is that the quality of the 
generated pseudo-labels deeply depends on the initial model, and the 
noise of the pseudo-labels can easily degrade the model performance. 

In the above semi-supervised methods, the model predictions are 
prone to fluctuation when there is less labeled data. The less labeled 
data, the less stable the prediction. As shown in Fig. 1, the predictions of 
single-model-based methods are prone to fluctuations and have large 
variance. This can lead to a reduction in accuracy. In extreme cases, the 
semi-supervised framework breaks down, as the model fails to provide 
valid predictions. The model collapse mentioned in (Xie et al., 2021) 
occurs, that is, the prediction accuracy of semi-supervised learning is 
lower than that of supervised one.Fig. 2. 

In this work, we propose a “no-cost” stream-based ensemble method 
to solve the problem of unstable prediction, in the case of few labeled 
data. The Channel Deconstruction and Ensembling (CDE) can sample the 
output features on the channel dimension, form multiple different fea-
tures, and predict them through the corresponding FC layer. The output 
features are split into two parts, common-channels and private- 
channels. In feature sampling, on the one hand, the common channel 
can provide commonality between streams. On the other hand, the 
private channels can provide diversity for each stream and avoid the 
homogenization of the predictions of each stream. Both diversity and 
commonality can not only make the network gain in stream ensembling, 
but also improves the prediction accuracy of each stream itself. 

In addition, we propose two consistency constraints to further 
improve the accuracy of the ensemble prediction of multiple stream. The 
Mean-Stream (MS) consistency constraint uses multi-stream ensemble 
prediction to additionally supervise each stream. Based on the charac-
teristics of the Stacked Hourglass model, the Cross-Stage consistency 
constraint (CS) uses the forecasting results of later stages to supervise the 
forecasting of previous stages from the perspective of stages. The project 
code and Sniffing dataset are publicly available on https://github. 
com/Qi2019KB/DCMSE/tree/master. 

2. Summary of our main contributions  

• We propose a simple structure, named Decomposed Channels based 
Multi-Stream Ensemble (DCMSE), to extend a model to an ensemble 
form easily. In DCMSE, the private channel groups of each stream 
can improve the diversity, which can accelerate the performance of 
multi-stream ensemble. Moreover, the co-channel group allows the 
model to learn common features from all streams, which can improve 
the performance of each stream itself.  

• We propose the Mean-Stream Consistency Loss based on the multi- 
stream ensemble and the Cross-Stage Consistency Loss based on 
the cascade structure of the pose estimation model. Both of them 
allow the model to efficiently gain additional supervision from un-
labeled data.  

• With a few labeled data, our method achieves better results than the 
state-of-art pose estimation method. We implemented this result on 
the public data-set FLIC (Sapp and Taskar, 2013), Openfield-Pranav 
(Mathis et al., 2018), and our own Sniffing data-set. 

3. Related work 

Semi-supervised learning. Semi-supervised learning (SSL) (Higu-
chi et al., 2022; Li et al., 2022; Njima et al., 2022; Xu et al., 2022) focus 
on reducing the need for labeled data. The main idea is to use a small 
amount of labeled data and a large amount of unlabeled data simulta-
neously, so that the model can achieve better predictive performance. In 
general, there are two categories of semi-supervised learning. 

One popular approach is based on the pseudo-labeling (Arazo et al., 
2020; Lee et al., 2013; Radosavovic et al., 2018). Labeled data is used to 
train initial model as per-trained model, and the model generates 
pseudo-labels from unlabeled data, then the model is trained with arti-
ficial labels and pseudo-labels. Another one is the consistency regula-
rization. It encourages the model have consistent predictions for 
different augmented samples of the same sample. 

Deep Ensemble. Training multiple deep neural networks (DNNs) is 
to improve the predictive performance. Wang et al., 2021 is to average 
the parameters stored at multiple checkpoints to obtain a new model. 
The advantage of this ensemble approach is that the training cost is low, 
but the prediction accuracy barely increases due to the lack of diversity. 

Another approach is to ensemble multiple deep models and take the 
average prediction as the final output. This approach can improve per-
formance, but is costly to train. 

Fig. 1. The variance of single-model and our model.  
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4. Method 

4.1. 2D pose estimation with Multi-Stage model 

In 2D Pose estimation, the main task is to predict the accurate po-
sition of K key points which are predefined manually in the input Image 
I. Most recent approaches transform this problem into predicting K 
Gaussian heat-maps H that encode the probability of each key point at 
each spatial location in I. Therefore, a Gaussian kernel function is used 
to transform the coordinate values into Gaussian heat maps, where one 
key point corresponds to one heat-map, and the heat maps are used as 
ground-truth for model training. During prediction, the location with 
the highest response value is selected from the heat-map generated by 
the model as the predicted location of the key point. Denote the labeled 

training data-set as L =
{(

Il,Hl)
}NL

l=1. To train the 2D pose estimation 
model f(⋅,θ), we write simply f(⋅). we minimize the MSE loss between the 
prediction and ground-truth heat map. Therefore, the Pose loss, as Lpose, 
can be expressed as: 

Lpose = EI∈L ‖f(I) − H‖
2
, (1) 

The M stage pose estimation model g(⋅,θ), we write simply g(⋅), such 
as Stacked Hourglass (Newell et al., 2016), stacks multiple modules with 
the same structure end to end, and feeds the previous model’s pre-
dictions and features to the next. There is supervised learning at each 
stage, called intermediate supervision, to ensure performance at each 
stage. So, for image I, the input XI

m of the m-th stage can be expressed as: 

XI
m =

{
I m = 1
I + PI

m− 1 + φI
m− 1 otherwise,

(2)  

where PI
m− 1 = gm− 1(XI

m− 1) is the prediction in the (m − 1)-th stage of the 
model g(⋅), φI

m− 1 is the feature extracted by the feature extraction 
module in the (m − 1)-th stage of the model g(⋅). 

4.2. Channel Deconstruction and ensembling 

In each stage of the multi-stage network, the Channel Deconstruction 
and Ensembling (CDE) module is located behind the feature extraction 
(FE) module. The CDE deconstructs the features extracted by FE in the 
channel dimension and forms n new features corresponding to n streams. 
We assume that the feature extracted from a sample by the FE is of C ×

H × W dimension, where H, W, C denote the height, width and number 
of channels, respectively. Specifically, the CDE extracts n features with 
channel C′ from the C-channels in the input feature according to the 
splitting factor α as the private features of streams. The feature corre-
sponding to the remaining channels is treated as common feature and 
shared by all streams. Each private feature is concatenated with the 
common feature and passed to the regressor of each stream for predic-

tion. In the m-th stage, consider the ensemble output P̃
I
m of the image I 

by averaging each stream’s prediction PI
m,n, i.e., 

P̃
I
m =

1
n
∑N

n=1
PI

m,n, (3) 

At the same time, we pass the full features extracted by feature 
extraction module with the ensemble output to the next stage. So, for 
image I, the input XI

m of the m-th stage can be rewritten as: 

XI
m =

⎧
⎨

⎩

I m = 1
I + P̃

I
m− 1 + φI

m− 1 otherwise,
(4)  

4.3. Mean-Stream consistency constraint 

The M stage pose estimation model g(⋅) also learns about unlabeled 
data. Denote the unlabeled training data-set as U = {Iu}

NU

u=1. 
Several studies (Ren et al., 2016; Zhang and Suganthan, 2017) have 

demonstrated that the performance of a single model is inferior than that 

Fig. 2. Overview of the proposed Decomposed Channel based Multi-Stream Ensemble (DCMSE) network.  

J. Wu et al.                                                                                                                                                                                                                                      



Journal of King Saud University - Science 36 (2024) 103078

4

of an ensemble of models. Therefore, in each stage, we minimize the 
MSE loss between the ensemble output and each stream’s prediction. 
Denote the prediction of the n-th stream to sample I, I ∈ U in the m-th 
stage as PI

m,n, the ensemble output to sample I, I ∈ U in the m-th stage as 

P̃
I
m. Therefore, the mean-stream consistency loss, as Lms, can be 

expressed as: 

Lms =
1
m

1
n
∑M

m=1

∑N

n=1
EI∈U ‖PI

m,n − P̃
I
m‖

2
, (5) 

Note that the consistency constraint affects both parties. To avoid a 
negative effect on the model performance, we compute this loss using a 
replica of the ensemble output with the gradient information removed, 
so that the model is not updated from the ensemble output. 

4.4. Cross-Stage consistency constraint 

As stated in Newell et al., 2016, in multi-stage pose estimation 
model, subsequent stages allow the high-level features, extracted by 
previous stage, to be processed again to make the network to best refine 
predictions. Moreover, the more accurate the prediction at the front 
stage, the more accurate the prediction at the back stage, which is in line 
with the goal of intermediate supervision. Therefore, we minimize the 
MSE loss between the ensemble output of the first stage and the 
ensemble output of the last stage. Therefore, the cross-stage consistency 
loss, as Lcs, can be expressed as: 

Lcs = EI∈(L ∪U )‖P̃
I
1 − P̃

I
m‖

2
, (6) 

Note that the cross-stage consistency constraint can work on both 
labeled and unlabeled data. For the same reason as in Lms, we compute 
this loss using a replica of the final-stage ensemble output with the 
gradient information removed. 

4.5. Total loss 

We summarize the objective function as follows: 

L = λposeLpose + λmsLms + λcsLcs, (7)  

where λpose, λms, λcs are the weights to balance all losses. 

5. Experiment 

We evaluate our model on three datasets. FLIC (Sapp and Taskar, 
2013) data-set, an public human pose data-set; Openfield-Pranav 

(Mathis et al., 2018) data-set, an public mouse data-set; Sniffing data- 
set, a mouse data-set collected by ourselves. 

5.1. Implementation details 

We use Stacked Hourglass (Newell et al., 2016) with a stack number 
of 3 as the pose estimation model. When the CDE is created, the number 
of streams, N, is 3 and the splitting factor, α, is 0.2. 

All input images are resized to 256 × 256 pixels. And we use the data 
augmentation that includes random rotation (+/ − 30 degrees), and 
random scaling (0.75 − 1.25) and random horizontal flip. 

The initial value of λpose is the constant 10. The initial value of λms is 
0 and after 50 epochs rises to a maximum of 50. The initial value of λcs is 
0 and after 50 epochs rises to a maximum of 5. 

5.2. FLIC dataset 

The FLIC (Sapp and Taskar, 2013) dataset is a publicly available 
human pose dataset consisting of 5003 images taken from movies, 
including 3987 training data and 1016 test data. 

The MSE and PCK@0.2 are reported (see results in Fig. 3 and 
Table 1). 

5.3. Openfield-Pranav data-set 

The Openfield-Pranav data-set is a publicly available mouse data-set 
consisting of 1000 images with one instance per image. 

The MSE and PCK@0.2 are reported (see results in Fig. 4 and 
Table 2). Our method achieves the best results on the Openfield-Pranav 

Fig. 3. Comparison to the baselines with 500 training samples with 30% labeled data on the FLIC dataset. Supervised learning is training with Newell et al., 2016. 
And, DNCL (Shi et al., 2018), Mean Teacher (Tarvainen and Valpola, 2017), ESCP (Xie et al., 2021) and ours are semi-supervised learning. 

Table 1 
Comparison to the baselines on the FLIC dataset. The 500*0.3 means that there 
are 500 samples in the training set, of which 30% are labeled samples and 70% 
are unlabeled samples.  

Method 500*0.3 500*0.5 

MSE PCK@0.2 MSE PCK@0.2 

HG 
(Newell et al., 2016)  

37.27  0.436  33.36  0.516 

DNCL 
(Shi et al., 2018)  

35.56  0.456  30.22  0.535 

MT 
(Tarvainen and Valpola, 2017)  

35.58  0.448  28.68  0.551 

ESCP 
(Xie et al., 2021)  

39.57  0.390  35.06  0.486 

Ours  32.26  0.490  27.80  0.574  
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dataset in both cases 100*0.3 and 100*0.5, and the increase amount is 
1.8 % and 0.7 % respectively. 

5.4. Sniffing dataset 

The Sniffing dataset was captured by ourselves from real experi-
mental environments. The MSE and PCK@0.2 are reported (see results 
in Fig. 5 and Table 3). Our method achieves the best results on the 
Sniffing dataset in both cases 100*0.3 and 100*0.5, and the increase 
amount is 0.9 % and 0.3 % respectively. 

6. Ablation study 

We perform ablation studies on the FLIC and Openfield-Pranav 

datasets. 
In the CDE ablation experiments, we evaluate the role of CDE in 

terms of ensembling. We construct two simple models. HG-Ensemble is a 
simple parallel ensembling of the Stacked Hourglass (HG), taking the 
average predicted values of three HG as the output of the entire model. 
In addition, we remove the CDE module from our network (stream count 
is 3), which means that the regressors of all three streams share the same 
features as the input. Finally, we use Stacked Hourglass for supervised 
learning and evaluate their predictive performance. 

As shown in Table 4, our network achieved significant performance 
gains despite the removal of CDE. This is because the prediction accu-
racy of the regressors for each stream in our network is significantly 
improved compared to HG-Ensemble. Multiple streams share the same 
feature, so that the feature extraction module in the network can learn to 

Fig. 4. Error and accuracy curves for each baseline with 100 training samples with 30% labeled data on the Openfield-Pranav dataset.  

Table 2 
Comparison to the baselines on the Openfield-Pranav dataset. 100*0.3 means 
that there are 100 training samples and 30% of them are labeled.  

Method 100*0.3 100*0.5 

MSE PCK@0.2 MSE PCK@0.2 

HG  8.54  0.565  4.34  0.725 
DNCL  5.56  0.647  4.13  0.756 
MT  5.89  0.635  4.36  0.739 
ESCP  5.87  0.617  4.25  0.717 
Ours  5.50  0.665  4.00  0.763  

Fig. 5. Error and accuracy curves for each baseline with 100 training samples with 30% labeled data on the Sniffing dataset.  

Table 3 
Comparison to the baselines on our Sniffing Data-set. 100*0.3 means that there 
are 100 training samples and 30% of them are labeled.  

Method 100*0.3 100*0.5 

MSE PCK@0.2 MSE PCK@0.2 

HG  5.18  0.602  4.26  0.663 
DNCL  4.47  0.634  3.89  0.698 
MT  4.73  0.613  4.14  0.676 
ESCP  5.03  0.596  3.93  0.675 
Ours  4.26  0.643  3.81  0.701  
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extract the common feature of higher dimensions, which can improve 
the accuracy of each stream’s regress. 

We also performed ablation experiments on the Mean-Stream(MS) 
and Cross-Stage (CS) consistency constraint, shown in Table 5. 

7. Discussions 

After completing the above experiments and proving the effective-
ness of our method, we discuss two important parameters of the CDE 
module: the stream count N and the splitting factor α. We put different 
values on each of these variables and see what they do. The experimental 
results are shown in Table 6. 

First, we fix the stream count N to 3 and set the splitting factor α to 
0.1, 0.15 and 0.2, respectively. It can be seen that the prediction per-
formance of the model gradually improves as the splitting factor in-
creases.This indicates that more private features contribute to the 
increase of the ensembling performance. 

Then, we fix the splitting factor α to 0.2 and set the stream count N to 
2, 3 and 4, respectively. The results show that more streams are not 
always better. This is because when the number of streams increases, the 
size of the common features decreases, which adversely affects the 
model. Therefore, we need to balance these two parameters. In all ex-
periments, we used this optimal set of parameters. 

8. Conclusion 

The DCMSE offers a practical and efficient solution to enhance the 
accuracy and stability of semi-supervised learning when labeled data is 
scarce. Its adaptability and superior performance make it a promising 
tool for a wide range of real world applications. Semi-supervised 
learning is a crucial approach to address the absence of labeled data, 
the insufficient number of labeled samples also severely affects its 
functionality. Model ensembles are a useful way to improve model ac-
curacy and stability. However, model ensembles suffer from lengthy 
training times and extreme resource consumption, so they cannot be 
applied in many real-world scenarios. The main aim of our study is to 
build an ensemble prediction framework at a lower cost and use 
ensemble prediction to address inaccuracies and instabilities in semi- 
supervised learning when labeled data is insufficient. 

The DCMSE network transforms the traditional model ensemble idea 
into a flow ensemble inside the model. On the one hand, it creates the 
multi-branch structure needed for ensemble prediction. On the other 
hand, it does not increase the number of model parameters due to the 
feature sample-based ensemble of streams. Therefore, it is easy to 
generalize to different tasks and to different models. With few labeled 
data, our method achieves better results than state-of-the-art pose esti-
mation methods. We implement this result on the public datasets FLIC, 
Openfield-Pranav, and our own Sniffing dataset. In terms of MSE, our 
method achieves at least 0.88, 0.13 and 0.08 improvement over the 
SOTA method on FLIC, Openfield-Pranav and our Sniffing dataset, 
respectively. 
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