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Quantitative structure–activity relationship (QSAR) and molecular docking studies were carried out on
4-Alkoxy-Cinnamic derivatives as potent anti-mycobacterium tuberculosis. Chemical structures of the
molecules were optimized by employing Density Functional Theory and utilizing (B3LYP) with the 6-
31G⁄ basis set. Four models were generated by Genetic Function Approximation (GFA). Model one was
selected as the optimum model based on validation parameters which were found to be significant with
correlation coefficient (R2) of 0.980921, adjusted correlation coefficient (R2 adj) value of 0.97547 and
Cross validation coefficient (Q2

cv ) value of 0.965244. External validations were employed to validate
the chosen model and the model was found to have (R2test) of 0.8756 and Coefficient of determination
for Y-randomization (c R2

pÞ value of 0.867578. The Molecular docking studies showed that the ligand
1,2,3,4,5 and 6 with better activities have higher bind affinities ranging from (�6.4 and �10.4 kcal/mol)
which formed H-bonds and hydrophobic interactions with amino acid residues of mycobacterum tuber-
culosis (M. tuberculosis) DNA gyrase receptor. This research has shown that the binding affinities of these
inhibitors were found to be better than the commercially sold anti-mycobacterium tuberculosis; entham-
butol (�5.8 kcal/mol) and isoniazid (�5.3 kcal/mol). QSAR model generated and molecular docking
results propose the direction for the design of new anti-tubercular agents with better activities against
DNA gyrase.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis is one the major challenge in the world caused by
bacterium tuberculosis. The overall rate is increasing by 0.4% per
year. It is estimated that one-third of world population is infected
by tuberculosis, and 95% death occurs in developing countries
(Brito et al., 2004). Some of the drugs currently used for the treat-
ment of tuberculosis due to their effective anti-tuberculosis activ-
ities include: enthambutol, cycloserine, isoniazid, rifampicin and
pyrazinamide (Tripathi et al., 2005). Multidrug resistant strains
of M. tuberculosis are emergence to available drugs which
demands the need for novel anti-tubercular agents with better
activities.
Recently, a novel series of 4-Alkoxy-Cinnamic derivatives has
been identified and reported as inhibitors of M. tuberculosis (da
Silva Lourenço et al., 2008). Other medicinal benefits of this com-
pound has been reported to be active against Aspergillus flavus,
Candida albicans, Escherichia coli, Fusarium verticilioides, Klebsiella
pneumonia, Listeria monocytogenes, Morganella morganni, Neisseria
gonorrhoeae, Pasteurella multocida, Pediococcus pentosaceus and
Penicillium brevicompactum (Guzman, 2014).

In this regard, DNA gyrase (DNAg) have been reported as a
potential target to anti-tubercular agents particularly for the treat-
ment of Multidrug resistant strains and tuberculosis in HIV
infected patients(Nolan et al., 1999). This enzyme is primarily a
prokaryotic receptor which has properties distinct from other type
II topoisomerases. It catalyzes the catenation and de-catenation of
DNA rings, relaxation of supercoiled DNA, knotting and unknotting
of duplex DNA. (Huang et al., 2006).

The advancement of computational chemistry led to develop-
ment of new drug (Cramer et al., 1988). Computational methods
which reduced the cost for effective evaluation of large virtual data
base of chemical compounds are currently employed in designing
new drugs. Such method include Quantitative Structure–Activity
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Relationships (QSAR) models, Artificial Neural Networks (ANN)
analysis, Complex Networks theory, and Machine Learning (ML)
(Speck-Planche et al., 2010). QSAR has advantages over other com-
putational technique because it can be broadly utilized for the pre-
diction of physicochemical properties in the chemical,
pharmaceutical, and environmental spheres (Wong et al., 2014).
Moreover, the QSAR strategies can save resources and accelerate
the process of developing new molecules for use as drugs, materi-
als, and additives or for whatever purposes (Larif et al., 2013).
QSAR establish a relationship between properties of various mole-
cules and their biological activities. (Ibezim et al., 2009). QSAR
modeling alongside with molecular docking approach were
employed to predict the activities of various inhibitor compounds
and elucidate the regions where interactive fields (steric, electro-
static, hydrophobic, hydrogen bond donor and hydrogen bond
acceptor fields) may decrease or increase the activities.

The aim of this research was to generate QSAR model to predict
the activity of 4-Alkoxy-Cinnamic derivatives as a potent anti-
tubercular agent and to carry out molecular docking studies to elu-
cidate the interaction between the inhibitor compounds and the
target site of M. tuberculosis (DNA gyrase).
2. Materials and method

2.1. Data collection

Twenty-eight molecules of 4-Alkoxy-Cinnamic derivatives as
potent anti-tubercular agents were searched from a reported arti-
cle [8] and used in this study (De et al., 2011).
2.2. Biological activities (pMIC)

The biological activities of 4-Alkoxy-Cinnamic derivatives
against M. tuberculosis measured in minimum inhibitory concen-
tration (MIC) were converted to logarithm sclae (pMIC = �logMIC)
in order to have a linear activities values and approach normal dis-
tribution. The general and observed structures of the molecules
with their biological activities were presented in Fig. 1 and Table 1
respectively.
2.3. Optimization

The structures of the molecules presented in the Table 1 were
drawn using chemdraw software version 12.0.2 (Li et al., 2004).
These compounds were exported to Spartan 14 Version 1.1.4 soft-
ware for optimization by employing Density Functional Theory
(DFT) and utilizing (B3LYP) with the 6-31G⁄ basis set (Becke,
1993; Lee et al., 1988).
2.4. Molecular descriptor calculation

Molecular descriptors for all the twenty-eight (28) molecules of
4-Alkoxy-Cinnamic derivatives were calculated after optimization
process utilizing the PaDEL-Descriptor software V2.20 (Yap,
2011). A total of 1875 molecular descriptors were calculated.
Fig. 1. General structure of 4-Alkoxy-Cinnamic.
2.5. Normalization and data pretreatment

The calculated descriptors for all the molecules were normal-
ized using Eq. (1) in order to give each variable the same opportu-
nity at the onset to influence and develop a good model (Singh,
2013).

X ¼ X1 � Xmin

Xmax � Xmin
ð1Þ

where Xi is the descriptor’s value for each molecule, Xmin and
Xmax are minimum and maximum value for each descriptor. The
normalized data were then subjected to pretreatment using Data
Pretreatment software obtained from Drug Theoretical and Chemin-
formatics Laboratory (DTC Lab) in order to remove redundant data.

2.6. Data Division

The pretreated dataset was divided into training and test sets
using Data Division software obtained from Drug Theoretical and
Cheminformatics Laboratory (DTC Lab) by employing Kennard
and Stone’s algorithm (Kennard and Stone, 1969). This algorithm
has been recently used in many QSAR studies and has been
reported as one of the best way to generate training and test sets
(Afantitis et al., 2006; Chakraborti et al., 2003; Khaled, 2011;
Melagraki et al., 2006; Wu et al., 1996).

2.7. Internal validation of model

Internal Validation of the model was carried out using Material
studio software version 8 by employing the Genetic Function
Approximation (GFA) method. The models generated were
assessed using Friedman formula so that the best fitness score
can be received. LOF is defined as; (Friedman, 1991).

LOF ¼ SEE

ð1� Cþd�p
M Þ2

ð2Þ

where: SEE is the Standard Error of Estimation. It’s a measure of
model quality and a model is said to be a better model if it has
low SEE value. SEE is defined by equation below;

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYexp � YpredÞ2
N � P � 1

s
ð3Þ

c is the number of the terms in themodel, d is a user-defined smooth-
ingparameter,p is the total numberof descriptors in themodel andM
is the number of data in the training set(Khaled, 2011).

The correlation coefficient (R2) is another parameter used to
assess the model. The closer the value of R2 to 1.0, the better the
model generated. R2 is expressed as:

R2 ¼ 1�
X

ðYexp�Ypred
Þ2X

ðYexp��Ytraining
Þ2

2
4

3
5 ð4Þ

where: �Ytraining Yexp, and Ypred are the mean experimental activity,
experimental activity and the predicted activity in the training
set, respectively.

R2 value varies directly with the increase in number of descrip-
tors, thus, R2 is not reliable to measure the stability of the model.
Therefore, R2 is adjusted in order to have a reliable and stable
model. The adjusted R2 is defined as:

R2
adj ¼

R2 � Pðn� 1Þ
n� pþ 1

ð5Þ

where p and n are number of descriptors in the model and number
compounds that made up the training set.



Table 1
Molecular structure of Cinnamic derivatives as a potent anti-mycobacterium tuberculosis and their activities.

Molecule R1 R2 MIC (lM) pMIC

1 methyl N-acetylcysteamine 225 3.647817
2 isopentenyl N-acetylcysteamine 48 4.318759
3 geranyl N-acetylcysteamine 1.5 5.823909
4 methyl N-acetylethylenediamine 1908 2.7194
5 isopentenyl N-acetylethylenediamine 18 4.744727
6 geranyl N-acetylethylenediamine 0.24 6.619789
7 methy 2-aminopyridine 248 3.605548
8 isopentenyl 2-aminopyridine 52 4.283997
9 geranyl 2-aminopyridine 2.7 5.568636
10 methyl D-cycloserine 950 3.022276
11 methyl Isoniazid 0.3 6.522879
12 CF3 Isoniazid 1.1 5.958607
13 ethyl Isoniazid 1.3 5.886057
14 CF3CH2 Isoniazid 2.2 5.657577
15 isopentenyl Isoniazid 2.3 5.638272
16 geranyl isoniazid 1.9 5.721246
17 Methyl Hydralazine 50 4.30103
18 CF3 Hydralazine 21 4.677781
19 ethyl Hydralazine 12 4.920819
20 CF3CH2 Hydralazine 20 4.69897
21 isopentenyl Hydralazine 21 4.677781
22 geranyl hydralazine 72 4.142668
23 Methy Triazolophthalazine 53 4.275724
24 CF3 Triazolophthalazine 702 3.153663
25 ethyl Triazolophthalazine 39 4.408935
26 CF3CH2 Triazolophthalazine 170 3.769551
27 isopentenyl Triazolophthalazine 1.4 5.853872
28 geranyl Triazolophthalazine 19 4.721246
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The strength of the QSAR model to predict the activity of a new
compound was determined using cross validation test. The cross-
validation coefficient (Q2

cv ) is defined as:

Q2
cv ¼ 1�

X
ðYpred�Yexp Þ2X
ðYexp��Ytraining

Þ2

2
4

3
5 ð6Þ

�Ytraining Yexp, and Ypred are the mean experimental activity,
experimental activity and the predicted activity in the training
set, respectively.

2.8. External validation of the model

External validation of the developed model was assessed by the
value R2

test value. The closer the value of R2
test to 1.0, the better the

stability the model generated. The R2
test is defined by as;

R2
test ¼ 1�

X
ðYpredtest � Yexptest Þ2X
ðYpredtest � �YtrainingÞ2

ð7Þ

where Ypredtest and Yexptest are the predicted and experimental activ-
ity test set. While �Ytraining is mean values of experimental activity of
the training set.

2.9. Y-Randomization test

To be assured that the QSAR model developed is strong and not
inferred by chance, the Y-randomization test was performed on the
training set data (Tropsha et al., 2003). For the built QSAR model to
robust and reliable, the model is expected to have a low R2 and Q2

values for several trials. Coefficient of determination ðcR2
pÞ for

Y-randomization is another parameter calculated which should
be greater than 0.5 for passing this test.

cR2
p ¼ R� ½R2 � ðRrÞ2�

2 ð8Þ
cR2
p is Coefficient of determination for Y-randomization, R is coeffi-

cient of determination for Y-randomization and Rr is average ‘R’ of
random models.

2.10. Evaluation of the applicability domain of the model

Evaluation of applicability domain of the QSAR model is an
important step in establishing that the model is good to make pre-
dictions within the chemical space for which it was built (Tropsha
et al., 2003). The leverage approach was utilized in describing the
applicability domain of the QSAR models (Veerasamy et al.,
2011). Leverage of a given chemical compound hi, is defined as
follows:

hi ¼ XiðXTXÞ�1
XT

i ð9Þ
where Xi is training compounds matrix of i. X is the m � k descriptor
matrix of the training set compound and XT is the transpose matrix
of X used to build the model. As a prediction tool, the warning lever-
age (h⁄) is the limit of normal values for X outliers and is defined as
follows:

h� ¼ 3
ðkþ 1Þ

n
ð10Þ

n and k are the descriptors and the training set compounds.

2.11. Docking studies

Molecular docking study was carried between 4-Alkoxy cin-
namic derivatives and M. tuberculosis target site (DNA gyrase).
The crystal structure of DNA gyrase used in the study was obtained
from protein data bank. The optimized structure of the 4-Alkoxy
cinnamic derivatives initially saved as SDF files were converted
to PDB files using Spartan 14 Version 1.1.4. The prepared ligands
were docked with prepared structure of DNA gyrase using Auto-
dock Vina incorporated in Pyrx software. The docked results were
visualized and analyzed using Discovery Studio Visualizer.



Table 2
Univariate statistics of the inhibition data.

Statistical parameters Activity

Training set Test set

Mean 4.865454 4.544215
Median 4.677781 4.275724
Standard deviation 1.059916 1.038805
Sample Variance 1.123421 1.079116
Kurtosis �0.25206 0.792495
Skewness �0.61956 1.301449
Range 3.803457 3.01424
Minimum 2.719422 3.605548
Maximum 6.522879 6.619789
Number of sample points 19 9

Table 3
Experimental, Predicted and Residual values of 4-Alkoxy-Cinnamic derivatives.

Molecule Activity Predicted Residual

1a 3.647817 3.702978 �0.05516
2 4.318759 4.425178 �0.10642
3 5.823909 5.716316 0.107593
4 2.719422 2.799665 �0.08024
5 4.744727 4.624287 0.12044
6a 6.619789 6.595708 0.024081
7a 3.605548 4.343643 �0.73809
8a 4.283997 3.575186 0.70881
9 5.568636 5.731472 �0.16284
10 3.022276 2.822808 0.199468
11 6.522879 6.522959 -8E-05
12 5.958607 5.744235 0.214372
13 5.886057 5.746847 0.13921
14 5.657577 5.738721 �0.08114
15 5.638272 5.734626 �0.09635
16 5.721246 5.758554 �0.03731
17 4.30103 4.373353 �0.07232
18 4.677781 4.669732 0.008049
19 4.920819 4.919382 0.001437
20a 4.69897 4.621826 0.077144
21 4.677781 4.81549 �0.13771
22a 4.142668 4.201282 �0.05861
23a 4.275724 4.116862 0.158862
24 3.153663 3.393284 �0.23962
25 4.408935 4.089341 0.319594
26a 3.769551 3.867853 �0.0983
27a 5.853872 5.858399 �0.00453
28 4.721246 4.817373 �0.09613

Where superscript ‘‘a” represent the test set.

Table 4
Minimum recommended value of Validation Parameters for a generally acceptable
QSAR model.

Symbol Value Name Value

R2 Coefficient of determination �0.6
P(95%) Confidence interval at 95% confidence level <0.05

Q2
cv

Cross validation coefficient <0.5

R2 - Q2
cv Difference between R2 and Q2

cv
�0.3

Next. test set Minimum number of external test set �5

cR2
p

Coefficient of determination for Y-randomization >0.5
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3. Results and discussion

QSAR was performed to investigate the structure activity rela-
tionship of the inhibitory compounds as potent anti-
mycobacterium tuberculosis. The nature of models in a QSAR study
is expressed by its fitting ability, stability, robustness, reliability and
forecast capacity. Univariate analysis of the activity values of the
training and test set compounds reported in Table 2 shows that test
set values range (3.605548 to 6.619789) was within the training set
values range (2.719422 to 6.522879). Also, the mean and standard
deviationof the test set activity value (4.544215and1.038805)were
approximately similar to that of the training set value (4.865454 and
1.059916). This indicates that the test set is interpolative within the
training. Hence Kennard-Stone algorithm employed was able to
generate a test set that is a good reflection of the training set.

Experimental and predicted activities of 4-Alkoxy-Cinnamic
derivatives as a potent anti-mycobacterium tuberculosis and the
residual values were presented in Table 3. The low residual value
between experimental and predicted activity indicates that the
model has a high predictive power.
The Genetic Function Algorithm (GFA) method employed in this
study led to the selection of four descriptors which were used to
build a linear model for predicting the activities of the anti-
tubercular agent. Four QSAR models were built using GFA, but due
to the statistical significance, model 1 was selected as the best
model.

Model 1

pMIC ¼ 0:008509610 � VPC � 6� 11:548039435 �maxHdsCH

þ 0:002840230 � TDB9v þ 0:075030693 � RDF50i
þ 5:575968556
Model 2

pMIC ¼ 0:000393193 � VPC � 6� 11:542501875 �maxHdsCH

þ 0:002857458 � TDB9v þ 0:075097038 � RDF50i
þ 5:558494731
Model 3

pMIC ¼ �7:547842387 � GATS2v � 16:686591808 �maxHdsCH

þ 2:534679879 � TDB9v þ 0:105146864 � RDF50i
þ 13:578209952
Model 4

pMIC ¼ 0:008792493 � VPC � 6� 11:585864537 �maxHdsCH

þ 0:002800321 � TDB9v þ 0:081989919 � RDF50i
þ 5:551559519

The descriptions of the descriptors in above models are as
follows;

VPC-6 is valence path cluster, order 6, maxHdsCH is maximum
atom-type H E-State: = CH–,

TDB9v is topological distance based autocorrelation – lag 9/
weighted by van der Waals volumes, RDF50i is radial distribution
function – 050/weighted by relative first ionization potential,
GATS2v is Geary autocorrelation – lag 2/weighted by van der
Waals volumes.

3.1. Quality assurance of the model

The stability, reliability and predictive ability of the developed
models were evaluated by internal and external validation param-



Table 5
Validation parameters for each model using Genetic Function Approximation (GFA).

S/NO Model 1 Model 2 Model 3 Model 4

1 Friedman LOF 0.126 0.127 0.141 0.142
2 R-squared 0.981 0.981 0.979 0.979
3 Adjusted R-squared 0.975 0.975 0.973 0.973
4 Cross validated (R-squared (Q2

cv Þ 0.965 0.954153 0.959 0.925

5 Significant Regression Yes Yes Yes Yes
6 Significance of regression F-value 179.9 178.7 161.2 160.8
7 Critical SOR F-value (95%) 3.160 3.160 3.160 3.160
8 Replicate points 0 0 0 0
9 Computed experimental error 0 0 0 0
10 Lack-of-fit points 14 14 14 14
11 Min expt. error for non-significant LOF (95%) 0.127 0.128 0.135 0.136
12 R2 test 0.876 0.832 0.784 0.712

Table 6
Pearson’s correlation and statistical analysis for descriptor used in the QSAR model.

Inter-correlation Statistics

VPC-6 maxHdsCH TDB9v RDF50i P-value (Confidence interval) VIF Mean effect (ME)

VPC-6 1 0.000635 2.6534 0.6564
maxHdscH �0.48503 1 1.9E-10 1.4534 �0.7539
TDB9v �0.47846 0.97976 1 7.19E-07 2.7685 �0.6542
RDF50i �0.43535 0.89894 0.86990 1 3.1E-10 1.7645 0.5434

Table 7
Y-randomization parameters test.

Model R R^2 Q^2

Original 0.977158 0.954837 0.93073
Random 1 0.704427 0.496217 0.230077
Random 2 0.31634 0.100071 �0.30244
Random 3 0.450162 0.202646 �0.31618
Random 4 0.644703 0.415642 0.081168
Random 5 0.291935 0.085226 �0.48463
Random 6 0.272277 0.074135 �0.30177
Random 7 0.162146 0.026291 �0.58698
Random 8 0.312504 0.097659 �0.45173
Random 9 0.375268 0.140826 �0.24959
Random 10 0.551218 0.303842 �0.05525

Random models parameters
Average r: 0.408098
Average r^2: 0.194256
Average Q^2: �0.24373
cRp^2: 0.867578

Fig. 2. Plot of predicted activity vs experimental activity of training set.
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eters. The validation parameters for both the internal and external
test were compared with the minimum recommended value for a
generally acceptable QSAR model (Veerasamy et al., 2011) shown
in Table 4.

All the validation parameter to confirm the stability and robust-
ness of the model were reported in Table 5 which were all in agree-
ment with validation parameters presented in Table 4.

Pearson’s correlation matrix and statistical analysis of the four
descriptors in the QSAR Model were reported in Table 6 which
shows clearly that there is no significant inter-correlation among
the descriptors used in building QSAR model. The calculated Vari-
ance Inflation Factor (VIF) values for all the four descriptors in the
model were all less than 4 which imply that the descriptors were
orthogonal and model generated was significant. The null hypoth-
esis says there is no significant relationship between the activities
of the inhibitor molecules and the descriptors used in building the
model at p > 0.05. The P-values of the descriptors in the model at
95% confidence limit shown in Table 6 are all less than 0.05. This
implies that the null hypothesis is rejected. Thus we accepted the
alternative hypothesis. Hence we infer that there is a significant
relationship between the activities of the inhibitor molecules and
descriptors used in building the model at p < 0.05.

Y- Randomization parameter test were reported in table 7. The
low R2 and Q2 values for several trials confirm that the built QSAR
model is stable, robust and reliable. While the cR2

p value greater
than 0.5 assured that the built model is powerful and not inferred
by chance.

Plot of predicted activity against experimental activity of train-
ing and test set where shown in Figs. 2 and 3 respectively. The R2

value of 0.9809 for training set and R2 value of 0.8756 for test set
reported in this study was in agreement with Genetic Function
Approbation (GFA) derived R2 value reported in Table 2. This con-
firms the robustness and reliability of the model. Plot of standard-
ized residual versus experimental activity shown in Fig. 4 indicates
that there was no systematic error in the model built as the spread
of standardized residual values were on both sides of zero (Jalali-
Heravi and Kyani, 2004).

The leverage values for the entire compounds in the dataset
were plotted against their standardized residual values leading to
discovery of outliers and influential compound in the models.
The Williams plot of the standardized residuals versus the leverage
value is shown in Fig. 5. From our result it is evident that all the
compounds were within the square area ±3 of standardized



Fig. 4. Plot of Standardized residual activity vs experimental activity.

Fig. 5. The Williams plot of the standardized residuals vs the leverage value.Fig. 3. Plot of predicted activity vs experimental activity of test set.
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cross-validated residual produced by the model. Therefore no com-
pound is said to be an outlier. However, only one compound is said
to be an influencing compound since its leverage value is greater
than the warning leverage (h⁄ = 0.79). This was attributed to differ-
ence in its molecular structure compared to other compounds in
the dataset.

3.2. Docking studies

Molecular docking studies were carried out between the targets
(DNA gyrase) of M. tuberculosis and 4-Alkoxy-Cinnamic deriva-
Fig. 6. (A) Prepared structure of DNA GYRASE
tives. The prepared receptor and ligand were shown in Fig. 6. Six
(6) ligands inhibitor (compounds 3, 6, 11, 12, 13 and 27) with bet-
ter activity were selected and docked with the target in order to
elucidate the interaction and the binding mode. These ligands were
found to bind strongly with the active sites of the target DNA gyr-
ase. Binding affinity values for these compounds ranges from (�6.4
to �10.4 kcal/mol) as reported in Table 8. All these ligands have
higher binding score greater than the binding affinity of isoniazid
(�5.3 kcal/mol) and enthambutol (�5.8 kcal/mol), the standard
anti-tuberculosis drug. The ligand (compound 6) with best activity
was selected for visualization purpose utilizing Discovery Studio
Fig. 6 Visualizer as shown in Figs. 7 and 8 below. Ligand 6 formed
three hydrogen bonds (2.18648, 2.74251, 1.93669, 2.18638A�)
with GLN27, HIS280, GLN277 and PRO119 of the target. In addi-
tion, it also formed hydrophobic bond with HIS52, LEU105 and
MET99 of the target site.

Hydrogen bond interaction between the ligand 6 and DNA gyr-
ase target of Mycobacterium Tuberculosis is shown in Fig. 9. A total
of four hydrogen bonds were formed. The N–H of the amide group
of the ligand acts as hydrogen donor and formed two hydrogen
bonds with GLN277 and PRO119 of the target. While the C@O of
the ligand acts as hydrogen acceptor and formed a hydrogen bond
with HIS280 of the target. The oxygen atom of the alkoxy group of
the ligand acts as hydrogen acceptor and formed hydrogen with
GLN277 of the target.
(B) 3D structures of the prepared ligands.



Table 8
Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between the ligands and the active site of the M. tuberculosis.

Ligand Binding Affinity (BA) kcal/mol Target Hydrogen bond Hydrophobic

Amino acid Bond length (Ao)

3 �7.0 DNA gyrase ASN27 2.03015 HIS52A, LEU105, LEU48
SER118 2.68232 HIS52

6 �10.4 DNA gyrase GLN277 2.18648 HIS52, LEU105, MET99
HIS280 2.74251
GLN277 1.93669
PRO119 2.18638

11 �9.3 DNA gyrase SER118 2.05449 TRP103, GLN277, VAL278
TRP103 GLN101 2.83906

2.28021
12 �8.2 DNA gyrase TRP10 3.06624 VAL78, ALA167, PRO119

SER104 2.91227
13 �6.4 DNA gyrase LEU274 2.64383 GLN277, VAL278

SER306 1.9718
27 �7.6 DNA gyrase SER104 2.31108 HIS52, HIS52

SER118 2.40131

Fig. 7. 3D interactions between DNA gyrase and Ligand 6.

Fig. 9. H-bond interaction between the ligand 6 and M. tuberculosis target (DNA
gyrase).
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4. Conclusions

QSAR and Molecular docking studies results offered enough
information to understand the structure–activity relationship and
identified the structural features influencing the activity of 4-
Alkoxy-Cinnamic derivatives. QSAR model generated was able to
predict the activity of 4-Alkoxy-Cinnamic derivatives as a potent
anti-tubercular agent and molecular docking studies carry out help
to understand and elucidate the interaction between the inhibitor
compounds and the target site of M. tuberculosis (DNA gyrase).
Fig. 8. 2D interactions between
Results from the model showed that the pMIC of the studied inhi-
bitors against M. tuberculosis was affected by (VPC-6, maxHdscH,
TDB9v and RDF50i) descriptors. The robustness, applicability and
stability of the QSAR model generated have been established by
internal and external validation assessment. Robustness and Sta-
bility of the model obtained by these validation tests implies that
the model can be used to design new 4-Alkoxy-cinnamic deriva-
tives with improved anti-mycobacterium tuberculosis activity.
The studies showed that the ligand 3, 6, 11, 12, 13 and 27 (binding
affinities ranges from �6.4 to �10.4 kcal/mol) with better activities
DNA gyrase and Ligand 6.
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(5.8, 6.62, 6.52, 5.96, 5.87 and 5.85 kcal/mol) were better than the
commercially sold anti-mycobacterium tuberculosis; enthambutol
(�5.8 kcal/mol) and isoniazid (�5.3 kcal/mol) drugs. Moreover,
Ligand 6 with the highest activities (6.62 kcal/mol) and binding
energy (�10.4 kcal/mol) was found to be more potent than its
co-ligands. This study provides a valuable approach for medicinal
and pharmaceutical researchers to design and synthesis new
anti-tubercular agent.
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