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A B S T R A C T

Batch production is a modern strategy for manufacturing, especially for products unsuitable for continuous
assembly lines. This study proposes a method for analysing one such production facility. Here, we characterize
a batch production system as a unique sort of quorum feedback retrial queue deployed under Bernoulli working
vacation and outfitted with a secondary, stand-by server. The system’s dynamics are thoroughly examined using
the supplementary variable technique, providing insights into its behaviour and performance. Key metrics are
determined, and the impact of specific parameters is demonstrated through numerical examples. Furthermore,
this research aims to achieve the optimal system cost by employing a variety of optimization approaches. Thus,
optimizing costs and identifying key metrics are crucial for enhancing efficiency and profitability in batch
production systems. This process ensures that resources are used effectively, service quality is maintained, and
overall operational costs are reduced, leading to a more sustainable and profitable production system which
helps to make informed decisions.

1. Introduction

For many years, batch production has been a key element of manufacturing. It is a low-cost manufacturing technology that enables manufacturers
to produce different types of products in discrete batches, making it ideal for industries that require frequent product changes or variations. It is
crucial in modern manufacturing as it offers flexibility and efficiency, allowing for the production of diverse products in discrete batches. Unlike
continuous assembly line production, batch production is ideal for managing varying demand, reducing setup times, and minimizing waste. This
approach is particularly advantageous for producing customized or seasonal products, ensuring optimal resource utilization and cost-effectiveness.
Overall, batch production provides manufacturers with the agility to respond to market changes and customer needs more effectively, while
maintaining high standards of quality and efficiency. Further, a significant part of our lives is spent waiting in line, or ‘‘queuing’’, where we
present ourselves to a server in order to have our requests met. A queueing system (QS) can be thought of as any instance in which a client must
wait in line. There are many queueing models emerged in the last few decades which were helpful in designing many real life systems. In this
regard, we characterize a batch production system (BPS) as a novel bulk feedback quorum retrial queue (RQ). In this approach, the server will
only start manufacturing if the predetermined quorum size, r, is met. However, if there are more products waiting than r, just the first r will be
serviced. Each product is served by a single server in batches of exactly size r. In addition, the server will undergo working vacation (WV) if there
are no products in the system. Further, if there is breakdown due to machine malfunction or any other reason, the server will be immediately sent
for repair. During that period, a secondary server namely the stand-by server will come in rescue to ensure continuous service.

1.1. Literature survey

To comprehend the research gaps present, a thorough review of the prior studies is presented as follows:
Several experts have investigated client arrivals in bulks. Moreover, due to its multidisciplinary nature, most research focuses on batch service

queues operating under various regulations. In their groundbreaking work, Chaudhry and Templeton (1983) devised a QS called quorum queue, in
which a server prioritizes and serves requests in batches of fixed size r ≤ 1. By employing embedded Markov chain methods, Tadj and Ke (2008)
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addressed a hysteretic bulk quorum queue. Tadj et al. (2012) also scrutinized a dual-phase unreliable bulk quorum queue. Taking into account a
variety of arrival scenarios, Kashifalghitaa and Al-Obaidi (2023) recently examined a quorum queue with an 𝑁-policy.

If a client is dissatisfied with the service they received, they can request that the service be redone until they are satisfied. Lately, an asymptotic
nalysis of a RQ with feedback was carried out by Nazarov et al. (2023). In addition, Laxmi et al. (2023) scrutinized a feedback batch arrival QS
ith second discretionary service.

Further, distinct systems face varying kinds of vacations based on the circumstances. Servi and Finn (2002) were among the first to introduce an
∕𝑀∕1 QS subjected under WV. An batch arrival unreliable RQ with negative consumers under Bernoulli working vacation (BWV) was addressed

y Rajadurai et al. (2016). Further, an analysis of a bulk arrival pre-emptive priority RQ subjected to delayed repairs under a modified Bernoulli
acation schedule was done by Yuvarani and Saravanarajan (2017). Lately, a transient analysis of a two classes of bulk arrivals, retrial clients with
on-pre-emptive priority service and WVs was studied by Ayyappan and Thamizhselvi (2018)

While developing any system, preventative steps should be incorporated. Therefore, one of the most crucial topics in this study is server
reakdowns and their repair. Thus, many of the explored systems have thought about this issue, including Bagyam et al. (2013) etc,. Re-
ently, Bharathidass et al. (2018) analysed a batch service queue with server breakdowns and repairs. A finite Markovian QS subjected to breakdown
as also recently analysed by Das et al. (2022).

There is not much of work on RQ that addresses cost optimization and evaluates appropriate control parameters for the queueing model using
any optimization techniques. Lately, Vaishnawi et al. (2022) analysed the accuracy of a 𝐺𝑒𝑜[𝑋]∕𝐺𝑒𝑜∕1 recurrent model in discrete time to induce

the lowest possible cost for the system. Moreover, refer to articles (Kumar and Jain, 2023; Deora et al., 2021; Jain and Kumar, 2022) for a review
of published works on cost optimization.

1.2. Research novelty

Based on the literature review section (Section 1.1), no work on quorum RQ with BWV has been conducted. Thus, with the objective of filling
this research gap, this study addresses a BPS via bulk quorum feedback RQ with BWV, random breakdown, and a stand-by server, which is evaluated
by the supplementary variable technique (SVT). Further, the proposed framework has been analysed using six distinct optimization methods.

1.3. Rationale for choosing a BPS and its benefits

• Flexibility: Allows production of varied products without extensive changeovers.
• Efficiency: Optimizes resource use by grouping similar tasks.
• Cost Efficiency: Leads to economies of scale and efficient resource use.
• Customization: Easily accommodates custom orders and product variations.
• Risk Mitigation: Smaller batches reduce the risk of large-scale production defects.
• Resource Allocation: Improves resource allocation by dedicating specific resources to particular batches.

1.4. Structure of the work

The rest of the work is outlined as follows: Section 2 presents an analysis of the proposed framework. The system’s stability criterion, associated
equations, and steady state (SS) outcomes are determined in Section 3. Several essential system metrics are covered in Section 4. The system’s
behaviour is addressed via a few numerical examples in Section 5. Section 6 delves into the detailed assessment of cost optimization via distinct
approaches. In Section 7, the suggested model is discussed briefly. Overall study is summarized in Section 8.

2. Description of the model

Arrival process: A compound ‘‘Poisson process’’ with rate 𝜖 enables products to congregate in bulk. Presuming a general distribution for
𝑘, 𝑘 = 1, 2, 3,… , then 𝑘 represents the no. of products linked alongside 𝑘th arrival batch. 𝑃𝑟[𝑘 = 𝑛] = 𝑛, 𝑛 = 1, 2, 3,… and (�̆�) indicate the
GF of  .

Retrial process: In the event if there is no waiting area and a bulk of products arrive while the server is still available, one of them starts
anufacturing while the others enrol into orbit. Given probability 1 − 𝑏, incoming products either leave the service sector or, with the probability

, they enter an orbit of obstructed products if the server is busy, under vacation, or under breakdown. We presume the RQ follows 𝐹𝐶𝐹𝑆 restriction,
ith the products retrial times distributed equally with a random distribution (�̃�) in accordance with Laplace Stieltjes Transform (LST) ∗ (̂𝑡).

Regular service process: The server waits inactively until the queue length reaches an integer threshold, 𝑟, before taking any action. However,
f there are at least 𝑟 products waiting, the server will begin manufacturing them in batches of precisely 𝑟. Consider the service time period to be

which follows a general distribution with a probability distribution function (PDF) 𝑏(�̃�) with a corresponding LST ∗
𝑏 (̂𝑡).

Bernoulli Working Vacation process: When an orbit becomes accessible, the server initiates a WV with parameter 𝜂 which follows an
xponential distribution. In the event that any new users sign up while the server is on vacation, the service will continue albeit at a slower
ace. The server will terminate the vacation and return to the normal busy period if any orbiting products with noticeably longer completion times
omplete their service within the vacation time. Consequently, this will cut into your vacation time. In case there are no products within system
hen the vacation finishes, the server will either enter the system and wait passively for a new batch of products with probability 𝑝 (single WV) and

ervice them in ordinary mode as they arrive, or with probability �̄� it will leave for next WV. A arbitrary variable 𝑣 with a distribution function
𝑣(�̃�) of LST ∗

𝑣 (̂𝑡) describes the time spent in service throughout the WV period.
Feedback Rule: Upon the termination of service for every products, unsatisfied products have a probability of 𝑠 (0 ≤ 𝑠 ≤ 1) of reverting to the

rbit to acquire one more ordinary service, or a probability of 1 − 𝑠 of quitting the system.
Random Breakdown process: A momentary server downtime could occur at any time while the server remains functional owing to an

nterruption in the service channel. The server breakdowns occur at a pace of 𝛿 associated with exogenous Poisson processes. The server that
alfunctions is sent out right away for repair. The product, who had just begun receiving service before the server went down, is waiting for the

est of the service to be provided. The server’s repair time distribution is taken to be randomly distributed with PDF (�̂�) and LST ∗ (̂𝑡).
Stand-by server: When the primary server goes down, the stand-by server takes over and begins manufacturing the products immediately. The

tand-by service times obey an exponential distribution with a rate 𝛼 > 0.
It is presumed that there is no connection between any of the system’s stochastic processes.
2
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2.1. Interpretation of the proposed model into BPS

The proposed framework introduces a novel application for batch production systems, enhancing production facility operations.
Products arrive in batches, allowing efficient processing of multiple items simultaneously, reducing setup times, and increasing throughput. If

the processing system is busy, batches wait in an orbit or may balk to avoid delays. Batches in orbit retry processing later if the server remains
busy or the queue limit is reached, managing workload efficiently. To handle random equipment breakdowns, a standby server activates during
failures. The secondary stand-by server acts as a backup, remaining inactive to conserve resources but swiftly activating during server failures or
peak demand. Its role improves system reliability by minimizing downtime and disruptions, while also optimizing resource utilization for consistent
and efficient production. During periods of low demand or when the system is not operating at full capacity, servers may enter a working vacation
mode where they operate at a reduced capacity. Finally, the system undergoes feedback mechanisms where the queue lengths and processing times,
as well as adjusting system parameters such as batch sizes, processing rates, server availability, and system reliability, are continuously monitored.
Thus, the production process significantly influences the modelling, analysis, and outcomes of the study leading to more effective and resilient
production management strategies.

3. Steady state evaluation

We establish the hazard rate functions for system states within this section. To elucidate the framework, we defined distinct server states based
on products availability. Prior to formulating the state space differential equations for various system states, we verified the model’s ergodicity.
Additionally, by incorporating supplementary variables, we derived the SS differential equations and their corresponding boundary conditions using
the SVT. Ultimately, employing the generating function method, we obtained the steady-state solution of the proposed model, thereby determining
the PGF of the number of products in the system and the orbit.

3.1. The steady state equations

In SS, we take into consideration that (0) = 0, (∞) = 1, 𝑏(0) = 0, 𝑏(∞) = 1, and 𝑣(0) = 0, 𝑣(∞) = 1, are continuous at �̃� = 0 and (0) = 0,
(∞) = 1, are continuous at �̂� = 0. Hence, the functions 𝜃(�̃�), 𝜐𝑏(�̃�), 𝜐𝑣(�̃�), and 𝜈(�̂�) are the ‘‘conditional completion rates (hazard rates)’’ for retrial,

egular service, on BWV, and under repair, respectively.

𝜃(�̃�)𝑑�̃� =
𝑑(�̃�)

1 − (�̃�)
; 𝜐𝑏(�̃�)𝑑�̃� =

𝑑𝑏(�̃�)
1 −𝑏(�̃�)

; 𝜐𝑣(�̃�)𝑑�̃� =
𝑑𝑣(�̃�)

1 −𝑣(�̃�)
; 𝜈(�̂�)𝑑�̂� =

𝑑(�̂�)
1 − (�̂�)

0(�̌�), 0
𝑏(�̌�), 

0
𝑣(�̌�) and 0(�̌�) indicate the elapsed retrial period, service times, BWV, and repair period during time �̌�, correspondingly. Furthermore,

create the random variable,

𝛩(�̌�) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, the server being available and in WV period
1, the availability and normal operation of the server
2, the server being occupied and in normal service period at time �̌�
3, the server being occupied and in WV period at time �̌�
4, the server is under repair at time �̌�.

Furthermore, we emphasize how the bivariate Markov process can be utilized to describe the system’s state at a given time �̌� {𝛩(�̌�), 𝛯(�̌�); �̌� ≥
}, where 𝛩(�̌�) indicates the server state (0, 1, 2, 3, 4) based on whether the server is inactive, engaged, on BWV or under repair. For all products

n the orbit at time �̌�, 𝛯(�̌�) is the number that represents them. If 𝛩(�̌�) = 1 and 𝛯(�̌�) > 0, then 0(�̌�) corresponds to the elapsed retrial time. If
(�̌�) = 2 and 𝛯(�̌�) ≥ 0, then 0

𝑏(�̌�) is equivalent to the elapsed time of the product being manufactured regularly. If 𝛩(�̌�) = 3 and 𝛯(�̌�) ≥ 0, then
0
𝑣(�̌�) proportional to the elapsed time of the product spent manufacturing in slow service period. The elapsed time of the server getting fixed
orresponds to 0(�̌�) if 𝛩(�̌�) = 4 and 𝛯(�̌�) ≥ 0.

SVT, a technique for analysing non-Markovian processes {𝛯(�̌�); ≥ 0 }, is crucial for studying complex systems like BPS. By incorporating
upplementary variables, SVT transforms the BPS into a Markovian process, enabling analysis using generating function methods. This approach
nhances precision in calculating performance metrics and offers a deeper understanding of system behaviour. SVT’s flexibility allows for
omprehensive analysis of the BPS under different scenarios, facilitating informed decision-making.

heorem 3.1. The embedded Markov chain (MC) {𝐷𝑛; 𝑛𝜖𝑁} is ergodic iff 𝜔 < 𝑅, where 𝜔 =
[

𝑠 + 1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1))𝛽(1)𝑏
]

roof. It is proved on the lines of the proof given by Kumar and Madheswari (2003) in Theorem 1 □

Let {�̌�𝑛; 𝑛 = 1, 2,… } be the set of epochs during which a regular service period, BWV period, or repair period ends. As a result, an MC is
enerated and added in the retry QS utilizing a series of random vectors 𝐷𝑛 = {𝛩(�̌�𝑛+), 𝛯(�̌�𝑛+)}. Theorem 3.1 asserts that 𝐷𝑛; 𝑛 ∈ 𝑁 is ergodic iff

[

𝑠+1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1))𝛽(1)𝑏
]

< 1, consequently our system must be stable. The probabilities, 𝛬0(�̌�) = 𝑃 {𝛩(�̌�) = 0, 𝛯(�̌�) = 0} and
𝛹0(�̌�) = 𝑃 {𝛩(�̌�) = 1, 𝛯(�̌�) = 0}; and probability densities for the method {𝛯(�̌�), �̌� ≥ 0}, are stated below,

𝛹𝑛(�̃�, �̌�)𝑑�̃� =𝑃 {𝛩(�̌�) = 0, 𝛯(�̌�) = 𝑛, �̃� ≤ 0𝑖 (�̌�) < �̃� + 𝑑�̃�}, for �̌�, �̃� ≥ 0 and 𝑛 ≥ 1

𝛤𝑏,𝑛(�̃�, �̌�)𝑑�̃� =𝑃 {𝛩(�̌�) = 1, 𝛯(�̌�) = 𝑛, �̃� ≤ 0
𝑏(�̌�) < �̃� + 𝑑�̃�}, for �̌�, �̃� ≥ 0, 𝑛 ≥ 0

𝛬𝑣,𝑛(�̃�, �̌�)𝑑�̃� =𝑃 {𝛩(�̌�) = 2, 𝛯(�̌�) = 𝑛, �̃� ≤ 0
𝑣(�̌�) < �̃� + 𝑑�̃�}, for �̌�, �̃� ≥ 0, 𝑛 ≥ 0

𝛺𝑛(�̃�, �̂�, �̌�)𝑑�̃� =𝑃 {𝛩(�̌�) = 3, 𝛯(�̌�) = 𝑛, �̂� ≤ 0(�̌�) < �̂� + 𝑑�̂�∕0
𝑏(�̌�) = �̃�},

for �̌� ≥ 0, (�̃�, �̂�) ≥ 0, 𝑛 ≥ 0
3
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We believe the follow-up meets the stability criteria, and as a result we get 𝛹0 = lim�̌�→∞ 𝛹0(�̌�) and 𝛬0 = lim�̌�→∞ 𝛬0(�̌�). We can therefore designate
limiting probabilities for �̃�, �̂� > 0, 𝑛 ≥ 0

𝛹𝑛(�̃�) = lim
�̌�→∞

𝛹𝑛(�̃�, �̌�);𝛤𝑏,𝑛(�̃�) = lim
�̌�→∞

𝛤𝑏,𝑛(�̃�, �̌�);

𝛬𝑣,𝑛(�̃�) = lim
�̌�→∞

𝛬𝑣,𝑛(�̃�, �̌�);𝛺𝑛(�̃�, �̂�) = lim
�̌�→∞

𝛺𝑛(�̃�, �̂�, �̌�).

SVT yields the subsequent equations, that regulate the behaviour of the system dynamics.

𝜖𝛹0 = 𝜂𝑝𝛬0 (3.1)

(𝜖 + 𝜂)𝛬0 = 𝜂�̄�𝛬0 + ∫

∞

0
𝛤𝑏,0(�̃�)𝜐𝑏(�̃�)𝑑�̃� + ∫

∞

0
𝛬𝑣,0(�̃�)𝜐𝑣(�̃�)𝑑�̃�

+ ∫

∞

0
𝛺0(�̃�, �̂�)𝜈(�̂�)𝑑�̂� (3.2)

𝑑𝛹𝑛(�̃�)
𝑑�̃�

= −(𝜖 + 𝜃(�̃�))𝛹𝑛(�̃�); 𝑛 ≥ 1 (3.3)

𝑑𝛤𝑏,𝑛(�̃�)
𝑑�̃�

+ (𝜖 + 𝛿 + 𝜐𝑏(�̃�))𝛤𝑏,𝑛(�̃�) = 𝜖(1 − 𝑏)𝛤𝑏,𝑛(�̃�) + 𝜖𝑏
𝑛
∑

𝑘=1
𝑏𝑘𝛤𝑏,𝑛−𝑘(�̃�)

+ ∫

∞

0
𝛺𝑛(�̃�, �̂�)𝜈(�̂�)𝑑�̂�; 𝑛 ≥ 0 (3.4)

𝑑𝛬𝑣,𝑛(�̃�)
𝑑�̃�

+ (𝜖 + 𝜂 + 𝜐𝑣(�̃�))𝛤𝑏,𝑛(�̃�) = 𝜖(1 − 𝑏)𝛬𝑣,𝑛(�̃�) + 𝜖𝑏
𝑛
∑

𝑘=1
𝑏𝑘𝛬𝑣,𝑛−𝑘(�̃�); 𝑛 ≥ 0 (3.5)

𝑑𝛺𝑛(�̃�, �̂�)
𝑑�̂�

+ (𝜖 + 𝛼 + 𝜈(�̂�))𝛺𝑛(�̃�, �̂�) = 𝜖(1 − 𝑏)𝛺𝑛(�̃�, �̂�) + 𝜖𝑏
𝑛
∑

𝑘=1
𝑏𝑘𝛺𝑛−𝑘(�̃�, �̂�)

+ 𝛼𝛺𝑛(�̃�, �̂�); 𝑛 ≥ 0 (3.6)

t �̃� = 0, �̂� = 0 the SS boundary conditions are as follows:

𝛹𝑛(0) = 𝑠∫

∞

0
𝛤𝑏,𝑛−1(�̃�)𝜐𝑏(�̃�)𝑑�̃� + �̄�∫

∞

0
𝛤𝑏,𝑛(�̃�)𝜐𝑏(�̃�)𝑑�̃� + 𝑠∫

∞

0
𝛬𝑣,𝑛−1(�̃�)𝜐𝑣(�̃�)𝑑�̃�

+ �̄�∫

∞

0
𝛬𝑣,𝑛(�̃�)𝜐𝑣(�̃�)𝑑�̃�; 𝑛 ≥ 1 (3.7)

𝛤𝑏,𝑛(0) = ∫

∞

0
𝛹𝑛+𝑅(�̃�)𝜃(�̃�)𝑑�̃� + 𝜖

𝑛
∑

𝑘=1
𝑏𝑘 ∫

∞

0
𝛹𝑛−𝑘+𝑅(�̃�)𝑑�̃� + 𝜖𝑏𝑘+𝑅𝛹0

+ 𝜂 ∫

∞

0
𝛬𝑣,𝑛+𝑅𝑑�̃�; 𝑛 ≥ 0 (3.8)

𝛬𝑣,𝑛,(0) =

{

𝜖𝛬0; 𝑛 = 0
0; 𝑛 ≥ 1

(3.9)

𝛺𝑛(�̃�, 0) = 𝛿𝛤𝑏(�̃�); 𝑛 ≥ 0 (3.10)

The normalizing condition is

𝛹0 + 𝛬0 +
∞
∑

𝑛=1
∫

∞

0
𝛹𝑛(�̃�)𝑑�̃� +

∞
∑

𝑛=0

[

∫

∞

0
𝛤𝑏,𝑛(�̃�)𝑑�̃� + ∫

∞

0
𝛬𝑣,𝑛(�̃�)𝑑�̃� + ∫

∞

0 ∫

∞

0
𝛺𝑛(�̃�, �̂�)𝑑�̂�

]

= 1 (3.11)

3.2. The steady state solution

The generating function technique assists to generate the SS solution to fit the RQ system. Furthermore, the generating functions for ∣ �̆� ∣ < 1
are stated beneath in order to solve the equations above:

𝑏(�̆�) =
∞
∑

𝑛=1
𝑛�̆�

𝑛; 𝛹 (�̃�, �̆�) =
∞
∑

𝑛=1
𝛹𝑛(�̃�)�̆�𝑛; 𝛹 (0, �̆�) =

∞
∑

𝑛=1
𝛹𝑛(0)�̆�𝑛;

𝛤𝑏(�̃�, �̆�) =
∞
∑

𝑛=0
𝛤𝑏,𝑛(�̃�)�̆�𝑛; 𝛤𝑏(0, �̆�) =

∞
∑

𝑛=0
𝛤𝑏,0(0)�̆�𝑛;𝛬𝑣(�̃�, �̆�) =

∞
∑

𝑛=0
𝛬𝑣,𝑛(�̃�)�̆�𝑛;

𝛬𝑣(0, �̆�) =
∞
∑

𝑛=0
𝛬𝑣,0(0)�̆�𝑛; 𝛺(�̃�, �̂�, �̆�) =

∞
∑

𝑛=0
𝛺𝑛(�̃�, �̂�)�̆�𝑛; 𝛺(�̃�, 0, �̆�) =

∞
∑

𝑛=0
𝛺0(�̃�, 0)�̆�𝑛

Multiply the SS equations and boundary conditions from (3.3) to (3.10) by �̆�𝑛 and sum on 𝑛 where (𝑛 = 0, 1, 2,…).
𝜕
𝜕�̃�

𝛹 (�̃�, �̆�) + (𝜖 + 𝜃(�̃�))𝛹 (�̃�, �̆�) = 0 (3.12)

𝜕
𝜕�̃�

𝛤𝑏(�̃�, �̆�) + [𝜖𝑏(1 − 𝑏(�̆�)) + 𝛿 + 𝜐𝑏(�̃�)]𝛤𝑏(�̃�, �̆�) = ∫

∞

0
𝛺(�̃�, �̂�, �̆�)𝜈(�̂�)𝑑�̂� (3.13)

𝜕 𝛬 (�̃�, �̆�) + [𝜖𝑏(1 − 𝑏(�̆�)) + 𝜂 + 𝜐 (�̃�)]𝛬 (�̃�, �̆�) = 0 (3.14)
4
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T
e

a

P

w

i

𝜕
𝜕�̂�

𝛺(�̃�, �̂�, �̆�) + [𝜖𝑏(1 − 𝑏(�̆�)) + 𝛼(1 − 1
�̆�
) + 𝜈(�̂�)]𝛺(�̃�, �̂�, �̆�) = 0 (3.15)

𝛹 (0, �̆�) = (𝑠�̆� + �̄�)∫

∞

0
𝛤𝑏(�̃�, �̆�)𝜐𝑏(�̃�)𝑑�̃� + (𝑠�̆� + �̄�)∫

∞

0
𝛬𝑣(�̃�, �̆�)𝜐𝑣(�̃�)𝑑�̃� − (𝜖 + 𝑝𝜂)𝛬0 (3.16)

𝛤𝑏(0, �̆�) =
1
�̆�𝑅 ∫

∞

0
𝛹 (�̃�, �̆�)𝜃(�̃�)𝑑�̃� +

𝑏(�̆�)𝜖𝛹0

�̆�𝑅
+

𝜖𝑏(�̆�)
�̆�𝑅 ∫

∞

0
𝛹 (�̃�, �̆�)𝑑�̃� +

𝜂
�̆�𝑅 ∫

∞

0
𝛬𝑣(�̃�, �̆�)𝑑�̃� (3.17)

𝛬𝑣(0, �̆�) = 𝜖𝛬0 (3.18)

𝛺(�̃�, 0, �̆�) = 𝛿𝛤𝑏(�̃�, �̆�) (3.19)

heorem 3.2. Underneath the stability condition 𝜔 < 𝑅, the stationary distribution of the no. of products in the system when the server is vacant, is
ngaged, on BWV and during repair are provided by,

𝛹 (�̆�) =
𝛬0[1 − ∗(𝜖)]

{

[𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

𝑏(�̆�)𝜂𝑝 + 𝜖(�̆�)
]

+ �̆�𝑅
[

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

}

𝜖
[

�̆�𝑅 − [𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

] (3.20)

𝛤𝑏(�̆�) =
𝛬0[1 −∗

𝑏 (𝑏(�̆�))]
{

𝜂𝑝𝑏(�̆�) + 𝜖(�̆�) +
[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
][

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

}

𝑏(�̆�)
[

�̆�𝑅 − [𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

] (3.21)

𝛬𝑣(�̆�) =
𝜖𝛬0(�̆�)

𝜂
(3.22)

𝛺(�̆�) =

𝛿𝛬0[1 −∗
𝑏 (𝑏(�̆�))][1 − ∗((�̆�))]

{

𝜂𝑝𝑏(�̆�) + 𝜖(�̆�) +
[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

[

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

}

(�̆�)𝑏(�̆�)
[

�̆�𝑅 − [𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

] (3.23)

where,

𝛬0 =
𝑅 −

[

𝑠 + 1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1)
)

𝛽(1)𝑏

]

{

[

1 + 𝜖
𝜂 (1 −∗(𝜂))

]

𝜌 + 𝛽(1)𝑏

[

𝜖(1 − 𝑠∗(𝜂)) + 1(1 − ∗(𝜖)) + 𝜖
[ 𝜖𝑏(1−∗(𝜂))

𝜂 + 𝑠
]

+ 𝜂𝑝[1 + 1]
]

[1 + 𝛿𝜇(1)] + (1 − ∗(𝜖))
[

𝑠 + 𝑅[1 − 𝑠∗(𝜂)] − [1 −∗(𝜂)]
[

𝜖𝑏1(1 + 𝛿𝜇(1))𝛽(1)𝑏 + 𝑠 + 𝜖𝑏1
𝜂

]

]

− 𝜖𝑝
𝜂 

∗(𝜖)
[

𝑅 + 𝑠 + 𝜖𝑏1(1 + 𝛿𝜇(1))𝛽(1)𝑏
]

}

(3.24)

𝛹0 =
𝜂𝑝
𝜖

× 𝛬0 (3.25)

nd

(�̆�) = 𝜖𝑏(1 − 𝑏(�̆�)); 𝑏(�̆�) = (�̆�) + 𝛿[1 − ∗((�̆�))];

𝑣(�̆�) = 𝜂 + (�̆�); (�̆�) = (�̆�) + 𝛼(1 − 1
�̆�
);

𝜌 = 𝑅 −
[

𝑠 + 1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1)
)

𝛽(1)𝑏

]

;

(�̆�) =
𝜂[1 −∗

𝑣(𝑣(�̆�))]
𝜂 + (�̆�)

roof. By formulating the below PGF and further by integrating them with respect to �̃� and �̂�

𝛹 (�̆�) = ∫

∞

0
𝛹 (�̃�, �̆�)𝑑�̃�, 𝛤𝑏(�̆�) = ∫

∞

0
𝛤𝑏(�̃�, �̆�)𝑑�̃�, 𝛬𝑣(�̆�) = ∫

∞

0
𝛬𝑣(�̃�, �̆�)𝑑�̃�,

𝛺(�̃�, �̆�) = ∫

∞

0
𝛺(�̃�, �̂�, �̆�)𝑑�̂�, 𝛺(�̆�) = ∫

∞

0
𝛺(�̃�, �̆�)𝑑�̃�

e get the above mentioned equations.
The two unknowns, 𝛹0 and 𝛬0, which represent the likelihood that the server will be idle both in the ordinary busy phase and in the BWV phase

f there are no products in the orbit, may be determined by employing the normalizing condition. Thus, via the use of �̆� = 1 in the Eqs. (3.20)–(3.23)
and the rule of L-Hospitals when desired, we obtain,

𝛹 + 𝛬 + 𝛹 (1) + 𝛤 (1) + 𝛬 (1) +𝛺(1) = 1. □
5
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Theorem 3.3. Pursuant to the stability criteria 𝜔 < 1. the PGF of the no. of products in the system as well the orbit at a stationary point of period are
estimated as follows,

𝐾𝑒(�̆�) =
𝑁𝑟(�̆�)
𝐷𝑟(�̆�)

(3.26)

𝑁𝑟(�̆�) =𝛬0

{{

[

𝜂𝑝 + 𝜖
𝜂
[𝜂�̆�(�̆�)]

]

[

�̆�𝑅 − [𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

]

+
[1 − ∗(𝜖)]

𝜖
[

(𝑠�̆� + �̄�)∗
𝑏 (𝑏(�̆�))

[

𝑏(�̆�𝜂𝑝 + 𝜖(�̆�))
]

+ �̆�𝑅
[

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

]}

(�̆�)𝑏(�̆�) + �̆�
[

𝜂𝑝𝑏(�̆�) + 𝜖(�̆�) +
[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
][

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

]

[

1 −∗
𝑏 (𝑏(�̆�))

]

[

(�̆�) + 𝛿(1 − ∗((�̆�)))
]

}

𝐷𝑟(�̆�) =(�̆�)∗
𝑏 (𝑏(�̆�))

[

�̆�𝑅 − [𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

]

𝑅𝑒(�̆�) =
𝑁𝑟𝑒(�̆�)
𝐷𝑟(�̆�)

(3.27)

𝑁𝑟𝑒(�̆�) = 𝛬0

{{

[

𝜂𝑝 + 𝜖
𝜂
[𝜂(�̆�)]

]

[

�̆�𝑅 − [𝑠�̆� + �̄�]∗
𝑏 (𝑏(�̆�))

[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
]

]

+
[1 − ∗(𝜖)]

𝜖
[

(𝑠�̆� + �̄�)∗
𝑏 (𝑏(�̆�))

[

𝑏(�̆�𝜂𝑝 + 𝜖(�̆�))
]

+ �̆�𝑅
[

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

]}

(�̆�)𝑏(�̆�)

+
[

𝜂𝑝𝑏(�̆�) + 𝜖(�̆�) +
[

∗(𝜖) + 𝑏(�̆�(1 − ∗(𝜖)))
][

𝜖[(𝑠�̆� + �̄�)∗
𝑣(𝑣(�̆�)) − 1] − 𝜂𝑝

]

]

[

1 −∗
𝑏 (𝑏(�̆�))

]

[

(�̆�) + 𝛿(1 − ∗((�̆�)))
]

}

where 𝛬0 is represented by Eq. (3.24)

Proof. To determine the PGF for the no. of products in the system (𝐾𝑒(�̆�)) and in the orbit (𝑅𝑒(�̆�)), the subsequent equations are incorporated.

𝐾𝑒(�̆�) = 𝛹0 + 𝛬0 + 𝛹 (�̆�) + �̆�{𝛤𝑏(�̆�) + 𝛬𝑣(�̆�) +𝛺(�̆�)}

and

𝑅𝑒(�̆�) = 𝛹0 + 𝛬0 + 𝛹 (�̆�) + 𝛤𝑏(�̆�) + 𝛬𝑣(�̆�) +𝛺(�̆�)

Once the Eqs. (3.20) to (3.23) are substituted in the previous findings, the Eqs. (3.26) and (3.27) can potentially be estimated right away. □

4. System performance measures

4.1. System state probabilities

Note that the SS probability when the server is accessible but unoccupied within system is given in Eqs. (3.24) and (3.25). Thus, the probabilities
of different server states are estimated from (3.20) to (3.23) which is provided beneath.

1. The SS probability that the server will be idle during the retry period can be represented as 𝛹 .

𝛹 = lim
�̆�→1

𝛹 (�̆�) =

𝛬0[1 − ∗(𝜖)]
{

𝑅[𝑠∗
𝑣(𝜂) − 1]𝜖𝑏1(1 + 𝜇(1))𝛽(1)𝑏

[

(1 −∗
𝑣(𝜂)) +

𝜂𝑝
𝜖

]

+
[

(1 −∗
𝑣(𝜂))[𝑠 +

𝜖𝑏1
𝜂 ] + 𝑠

]

+ 𝜂𝑝
𝜖 [𝑠 + 1] − 𝑅

}

𝑅 −
[

𝑠 + 1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1)
)

𝛽(1)𝑏

]

2. Let 𝛤𝑏 represent the SS probability that the server is busy manufacturing

𝛤𝑏 = lim
�̆�→1

𝛤𝑏(�̆�) =
𝛬0𝛽

(1)
𝑏

{

[

𝜖[1 − 𝑠∗
𝑣(𝜂)]

]

1(1 − ∗(𝜖)) + 𝜖
[ 𝜖𝑏1(1−∗

𝑣(𝜂))
𝜂 + 𝑠

]

+ 𝜂𝑝1∗(𝜖)
}

𝑅 −
[

𝑠 + 1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1)
)

𝛽(1)𝑏

]

3. Let 𝛬𝑣 represent the SS probability when the server is experiencing BWV

𝛬𝑣 = lim 𝛬𝑣(�̆�) =
𝛬0𝜖[1 −∗

𝑣(𝜂)]
6

�̆�→1 𝜂
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Table 1
The effect of BWV (𝑒𝑡𝑎) on 𝐿𝑞 , 𝑊𝑞 , 𝛺, 𝛤𝑏 , 𝛹 .

BWV rate (𝜂) 𝐿𝑞 𝑊𝑞 𝛺 𝛤𝑏 𝛹

3.3 0.6365 3.1827 0.0633 0.0032 0.0134
3.5 0.5495 2.7475 0.0977 0.0049 0.0132
3.7 0.4917 2.4587 0.1359 0.0068 0.0128
3.9 0.4520 2.2599 0.1779 0.0089 0.0124
4.1 0.4243 2.1215 0.2237 0.0112 0.0119

4. Let 𝛺 represent the SS probability that the server is under repair

𝛺 = lim
�̆�→1

𝛺(�̆�) =

𝛬0𝛿𝛽
(1)
𝑏 𝜇(1)

{

[

𝜖[1 − 𝑠∗
𝑣(𝜂)]

]

1(1 − ∗(𝜖)) + 𝜖
[ 𝜖𝑏1(1−∗

𝑣(𝜂))
𝜂 + 𝑠

]

+ 𝜂𝑝1∗(𝜖)
}

𝑅 −
[

𝑠 + 1(1 − ∗(𝜖)) −
(

𝜖𝑏1(1 + 𝛿𝜇(1)) + 𝛿𝛼𝜇(1)
)

𝛽(1)𝑏

]

.2. Average size of the proposed system and its orbit

Upon entering an SS, the system
(i) The average amount of products in the system (𝐿𝑠) is computed by differentiating (3.26) with reference to �̆� and yielding �̆� = 1 considering

stability conditions.

𝐿𝑠 = 𝐾 ′
𝑒(1) = lim

�̆�→1

𝑑
𝑑�̆�

𝐾𝑒(�̆�) = 𝛬0

[

𝑁𝑟′′′′𝑠 (1)𝐷𝑟′′′𝑞 (1) −𝐷𝑟′′′′𝑞 (1)𝑁𝑟′′′𝑞 (1)

4(𝐷𝑟′′′𝑞 (1))2

]

(4.28)

(ii) The average amount of products in orbit (𝐿𝑞) can be estimated by differentiating (3.27) with respect to �̆� and yielding �̆� = 1 considering
stability conditions.

𝐿𝑞 = 𝑅′
𝑒(1) = lim

�̆�→1

𝑑
𝑑�̆�

𝑅𝑒(�̆�) = 𝛬0

[

𝑁𝑟′′′′𝑞 (1)𝐷𝑟′′′𝑞 (1) −𝐷𝑟′′′′𝑞 (1)𝑁𝑟′′′𝑞 (1)

4(𝐷𝑟′′′𝑞 (1))2

]

(4.29)

(iii) The length of time a user can anticipate spending in the system (𝑊𝑠) and in the queue (𝑊𝑞) can both be predicted with the assist of Little’s
aw. Therefore, we have 𝑊𝑠 =

𝐿𝑠
𝜖1

and 𝑊𝑞 =
𝐿𝑞
𝜖1

.

5. Numerical examples

We will leverage MATLAB in this part to illustrate various possibilities for the dynamic adaptability of the system. To ascertain whether numerical
measurements satisfy the stability requirements, a random selection process is employed. Tables 1 through 3 exhibit the implications of a few system
parameters.

Table 1 displays that as the BWV rate (𝜂) rises, 𝛺 and 𝛤𝑏 also mounts, whereas 𝐿𝑞 , 𝑊𝑞 and 𝛹 declines for the value of 𝜖 = 1, 𝑏 = 0.1, 𝑠1 = 0.1,
= 6, 𝑝 = 0.2, 𝑠 = 0.1, 𝛿 = 7, 𝜈 = 0.1, 𝜐𝑣 = 5 and 𝜃 = 7. The increase in the service (𝛤𝑏) and repair rate (𝛺) suggests that the BPS can process batches
ore quickly and efficiently. This leads to smoother production flow and reduced waiting times for jobs in the queue which leads to optimized
roduction schedules and higher throughput. Further, the decrease in 𝐿𝑞 and 𝑊𝑞 indicates that jobs spend less time waiting for processing. Though
he facility runs at a slower rate, it experiences reduced downtime as batches move through the production process more quickly and efficiently.
n addition, the decrease in retrial rate 𝛹 suggests improved system stability.

Table 2 displays that as the stand-by (𝛼) mounts, 𝛤𝑏 and 𝛺 also mount; on the other hand, 𝛹0, 𝑊𝑠 and 𝑊𝑞 reduce for the value of 𝜖 = 1, 𝜂 = 4.1,
= 0.1, 𝑠1 = 0.1, 𝑝 = 0.2, 𝑠 = 0.1, 𝛿 = 7, 𝜈 = 0.1, 𝜐𝑏 = 2 and 𝜃 = 7. The decrease in 𝑊𝑠 and 𝑊𝑞 suggests that jobs spend less time in the queue

nd waiting for service since the stand-by server plays a vital role during main server breakdown. This leads to faster batch processing, reducing
verall lead times, and improving production efficiency. Then, 𝛹0 decrease indicates that the server is more consistently utilized. With fewer idle
eriods, resources are used more efficiently, resulting in reduced production bottlenecks. Further, the service (𝛤𝑏) and repair rate (𝛺) always rise,
hich suggests improved reliability and availability of production resources leading to more consistent production output.

Table 3 displays that as repair rate (𝜈) on mounts, 𝐿𝑠, 𝐿𝑞 , 𝛹0, 𝛬0 and 𝛹 declines for the value of 𝜖 = 1, 𝜂 = 4.1, 𝛼 = 6, 𝑏 = 0.1, 𝑠1 = 0.1,
= 0.2, 𝑠 = 0.1, 𝛿 = 7, 𝜐𝑏 = 2 and 𝜃 = 7. Here, the decrease in 𝐿𝑠 and 𝐿𝑞 , suggests that jobs spend less time waiting for processing since the server
ets repaired in a short period of time, and moreover, there is also the availability of a standby server. This leads to smoother production flow.
ince, the server is being utilized continuously, the probability that the server is inactive during normal service (𝛹0) and working vacation periods
𝛬0) reduces. Thus, with fewer idle periods, production resources are utilized well. The decrease in the retrial rate (𝛹 ) suggests improved system
tability, as fewer jobs are re-entering the system for processing. This indicates that the facility can handle variations in workload more effectively.

Fig. 1(a) address the impact of a few system parameters via 3𝐷 graphs. Fig. 1(𝑎) depicts that as BWV rate (𝜂) mounts, 𝐿𝑞 and 𝑊𝑞 diminish.
ere, the reduction in queue length and waiting time indicates that jobs are processed more swiftly and spend less time waiting in the system.
his enhances production efficiency by minimizing delays and reducing the overall time of production process. Fig. 1(𝑏) addresses that as stand-by
erver rate (𝛼) rises, 𝛤𝑏 elevates; however, 𝛹0 declines. The increase in the service rate and the decrease in server inactivity suggest better utilization
f the production servers. This ensures that the servers are more frequently in use, reducing idle times and maximizing productivity. With a higher
tand-by server rate, the production system can handle higher loads, thereby improving the overall reliability and robustness of the process. In
ig. 1(𝑐) as the repair rate (𝜈) mounts, 𝐿𝑠 and 𝐿𝑞 decline. A higher repair rate means that equipment and machinery are repaired and brought back
nto operation more quickly which reduces downtime, leading to a smoother production with fewer interruptions. The reduction in queue length
nd system size indicates that jobs move through the production system more efficiently, thus improving the overall flow within the production
acility.
7
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Table 2
The effect of stand-by server rate (𝛼) on 𝑊𝑠 , 𝑊𝑞 , 𝛹0 , 𝛤𝑏.

Stand-by server rate (𝛼) 𝑊𝑠 𝑊𝑞 𝛹0 𝛤𝑏 𝛺

4.0 0.4697 0.9579 0.3319 0.1591 0.1114
4.5 0.3382 0.5560 0.3265 0.1597 0.1118
5.0 0.2758 0.4157 0.3211 0.1602 0.1122
5.5 0.2393 0.3442 0.3158 0.1608 0.1126
6.0 0.2152 0.3006 0.3105 0.1614 0.1130

Table 3
The impact of repair rate (𝜈) on 𝐿𝑠 , 𝐿𝑞 , 𝛹0 , 𝛬0 , 𝛹 .

Repair rate (𝜈) 𝐿𝑠 𝐿𝑞 𝛹0 𝛬0 𝛹

0.5 0.1618 0.1883 0.7842 0.9564 1.3652
1.0 0.1446 0.1729 0.1839 0.2243 0.4228
1.5 0.1188 0.1469 0.0992 0.1209 0.2553
2.0 0.0793 0.1018 0.0670 0.0817 0.1835
2.5 0.0235 0.0309 0.0504 0.0614 0.1434

Fig. 1. The effect of various system parameters depicted via 3D graphs.

6. Cost analysis

Cost analysis generally involves evaluating the expenses associated with a project or operation to ensure optimal resource allocation and cost
efficiency. This approach is employed here to estimate the optimal parameters for the service rates, of the system’s normal (𝜏𝑏) and slow service
mode (𝜏𝑣). The expected cost function is presumed to exhibit a linear cost structure in accordance with cost elements associated to various system
functions.

The subsequent cost components have been entailed in the expected total cost function 𝑇𝐶 (𝜏𝑏, 𝜏𝑣,) for per unit of time (PUT):

ℎ - Each consumer’s holding cost PUT spent within the system
𝑏 - Cost PUT when the server is normally active
𝑣 - Cost PUT when the server is in BWV
𝑓 - Cost PUT when the server is under repair
1 - Cost per consumer served during server’s normal service mode
2 - Cost per consumer served during server’s lower service mode

𝑇𝐶 = ℎ𝐿𝑞 +𝑏𝛤𝑏 +𝑣𝛬𝑣 +𝑓𝛺 +1𝜏𝑏 +2𝜏𝑣 (6.30)

The significant non-linearity of the cost function outlined by (6.30) makes analytical optimization of it challenging. Therefore, we employ a
heuristic approach to optimize overall cost.

6.1. Cost optimization

Cost optimization focuses on strategically minimizing expenses while maintaining or enhancing value delivery, aiming for the most efficient
allocation of resources to achieve desired outcomes. It involves continuous refinement of processes, technologies, and strategies to achieve maximum
cost-effectiveness. The main objective of this chapter is to find the ideal service rates 𝜏∗𝑏 and 𝜏∗𝑣 for the busy state of the server and WV mode,
accordingly, by minimizing the 𝑇𝐶 function. Mathematically, the cost-minimization problem is stated as

𝑇𝐶(𝜏∗𝑏 , 𝜏
∗
𝑣 ) = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝜏∗𝑏 ,𝜏
∗
𝑣

𝑇𝐶(𝜏𝑏, 𝜏𝑣)

The ranges of the cost elements are listed in Table 4.

6.2. Artificial Bee Colony Optimization (ABC)

The swarm-based ABC strategy, which was introduced by Karaboga and Basturk (2007), is a method for solving optimization problems that
mimics the astute behaviour of honey bees when they are foraging. It optimizes solutions by employing three types of bees: employed, onlooker,
and scout bees. It iteratively updates candidate solutions to converge towards the optimal cost. Algorithm 1 describes the steps of the ABC technique.
8
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Table 4
Different cost sets for cost analysis.

Cost sets ℎ 𝑏 𝑣 𝑓 1 2

Set 1 15 95 20 45 15 30
Set 2 13 100 15 55 10 20
Set 3 17 90 25 65 12 35

Algorithm 1 Pseudo Code for ABC Algorithm
INPUT: Input function =𝑇𝐶(𝜏𝑏, 𝜏𝑣),
OUTPUT: 𝑇𝐶(𝜏∗𝑏 , 𝜏

∗
𝑣 ) denotes the value of the proposed cost function

Initialize the population of solutions (food sources)
Evaluate the fitness of each solution
Repeat until stopping criterion is met:
for each employed bee do

Select a solution to modify
Generate a new solution by modifying the selected solution
Evaluate the fitness of the new solution
If the new solution is better, replace the old solution with the new one

end for
for each onlooker bee do

Select a solution based on the fitness probability
Generate a new solution by modifying the selected solution
Evaluate the fitness of the new solution
If the new solution is better, replace the old solution with the new one

end for
for each solution do

If a solution has not improved for a certain number of iterations, replace it with a new random solution
end for
Memorize the best solution found so far
Return the best solution

6.3. Differential Evolution (DE)

DE is an optimization algorithm for tackling non-linear optimization problems using a stochastic population-based approach. It optimizes a
given issue by searching for better solutions until one is identified that meets certain specified criteria. It iteratively improves candidate solutions
by generating trial vectors from the mutation and crossover of existing solutions. Through this process, DE explores the solution space efficiently.
Storn and Price (1996) introduced the algorithm to the world. Algorithm 2 describes each stage of the DE method.

Algorithm 2 Pseudo Code for DE Algorithm
INPUT: Input function = 𝑇𝐶(𝜏𝑏, 𝜏𝑣), no. of iterations, crossover, mutation
OUTPUT: 𝑇𝐶(𝜏∗𝑏 , 𝜏

∗
𝑣 ) denotes the value of the proposed cost function

Initiate population 
for each member i in the population  do

Select three candidates 𝑏1, 𝑏2 and 𝑏3 such that, 1 ≥ 𝑏1, 𝑏2, 𝑏3 ≤ N
Generate a arbitrary integer i ∈ (1,N)
while iteration < MaxIteration do

for each factor i do
Estimate the fitness of every member
Generate mutant vectors utilizing mutation approach
Generate trial vectors using recombining noisy vectors with parent vectors
Estimate trial vectors with their fitness values

end for
Choose winning vectors as members in the new generation
iteration ++

end while
end for
Return the best values

6.4. Genetic Algorithm (GA)

Bremermann, Holland (Bremermann, 1958; Holland, 1975), and associates invented the GA in the 1960s and 1970s. It evolves a population of
candidate solutions through selection, crossover, and mutation operations. By mimicking natural selection, GA efficiently explores the solution
space, gradually improving solutions over multiple generations to find the optimal cost. Recently, the usage of a GA is outlined entirely in
Arqub’s (Arqub and Al-Smadi, 2020) study. The pseudocode for the GA algorithm’s steps is presented by Algorithm 3.
9
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During the 1960s and 1970s, Bremermann, Holland (Bremermann, 1958; Holland, 1975) and their colleagues developed the GA.

Algorithm 3 Pseudo Code for GA Algorithm
INPUT: Input function =𝑇𝐶(𝜏𝑏, 𝜏𝑣),
OUTPUT: 𝑇𝐶(𝜏∗𝑏 , 𝜏

∗
𝑣 ) denotes the value of the cost function

Initialize population with random individuals
Evaluate fitness of each individual in the population
while termination condition not met do

Select parents from the population based on fitness
Perform crossover on parents to create offspring
Perform mutation on offspring
Evaluate fitness of offspring
Select individuals to form the new population

end while
Return the best individual from the population

6.5. Grey Wolf Optimizer (GWO)

One of the more prominent recent swarm intelligence approach is called GWO inspired by the social hierarchy and hunting behaviour of grey
wolves introduced by Mirjalili et al. (2014). It optimizes solutions by simulating the hunting process of alpha, beta, and delta wolves. Through
collaboration and competition, GWO efficiently explores and exploits the solution space to find the optimal cost. Algorithm 4 describes the steps
of the GWO approach.

Algorithm 4 Pseudo Code for GWO Algorithm
INPUT: Input function =𝑇𝐶(𝜏𝑏, 𝜏𝑣), 𝑎, 𝐵,𝐷
OUTPUT: 𝑇𝐶(𝜏∗𝑏 , 𝜏

∗
𝑣 ) denotes the value of the proposed cost function

Initiate the grey wolf population 𝑖, i= 1,n
Initiate a, B, D
Estimate the fitness of every search factor
𝛼 = the best search factor
𝛽 = the second best search factor
𝛿 = the third best search factor
while t < maximum no. of iteration do

for every search factor do
Arbitrarily initiate 𝑐1 and 𝑐2
Update the place of the present search factor
Update a, B and D

end for
Estimate the fitness of every search factors
Update 𝛼 , 𝛽 and 𝛿
t=t+1

end while
return 𝛼

6.6. Particle Swarm Optimization (PSO)

In 1995, Kennedy and Eberhart (1995) introduced the world to PSO, modelled after the social behaviour of bird flocks or fish schools. It
iteratively updates candidate solutions based on the movement of particles towards the best solution found so far. PSO leverages swarm intelligence
to find the optimal cost through collective movement. Upadhyaya (2020) and Malik et al. (2021) elaborated on this method. The PSO method’s
stages are explained in Algorithm 5.

6.7. Whale Optimization Algorithm (WOA)

An optimization algorithm that takes its cues the bubble-net hunting tactic employed by humpback whales. In the context of continuous
optimization problems, Mirjalili and Lewis (2016) presented this swarm intelligence approach. It optimizes solutions through a combination of
exploration and exploitation phases. By leveraging the movement of prey and the leader-following behaviour of whales, WOA efficiently explores
the solution space to find the optimal cost. Moreover, recently Gharehchopogh and Gholizadeh (2019) gave a comprehensive survey on WOA and
its applications. Algorithm 6 provides the pseudocode for the WOA algorithm’s order of procedures.
10
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Algorithm 5 Pseudo Code for PSO Algorithm
INPUT: Input function =𝑇𝐶(𝜏𝑏, 𝜏𝑣),
OUTPUT: 𝑇𝐶(𝜏∗𝑏 , 𝜏

∗
𝑣 ) represents the value of the proposed cost function

Initialize population of particles with random positions and velocities
Initialize global best position and fitness to infinity
while termination criteria not met do

for each particle do
Update velocity based on current position, personal best, and global best
Update position based on velocity
Evaluate fitness of current position
if current position is better than personal best then

Update personal best position and fitness
else if current position is better than global best then

Update global best position and fitness
end if

end for
end while
Return global best position and fitness

Fig. 2. Optimality of the cost function.

6.8. Convergence in ABC, DE, GA, GWO, PSO and WOA

While implementing optimization techniques such as ABC, DE, GA, GWO, PSO, or WOA, it is essential to understand whether a particle strays
and how it navigates to achieve better results. In light of this, examining the convergence of costs is essential in addressing these issues. The cost
function’s convergence is depicted in Fig. 1. In ABC, DE, GA, GWO, PSO, and WOA, it is apparent that particles converge towards the best solution
after a series of iterations. In all six ways, particles converge to the lowest possible cost after a few iterations. Nonetheless, the cost analysis reveals
that GWO reaches convergence more quickly. Furthermore, Fig. 2 illustrates the cost function’s optimality. This allows experts to look at the system
as a whole, which will lessen their financial constraints (see Fig. 3).

There are many methods beyond ABC, GA, DE, PSO, WOA, and GWO that can be utilized for cost optimization. Recent algorithms such as
the Genghis Khan Shark optimizer, geyser-inspired algorithm, prairie dog optimization, dwarf mongoose optimization, Gazelle optimization, lungs
performance-based optimization, multi-objective snow ablation optimization and Sinh cosh optimizer provide unique strategies for tackling complex
optimization problems, highlighting the diverse range of tools available for optimizing costs in various systems. These sources could enrich the
analysis and provide valuable comparisons with existing approaches, enhancing the comprehensiveness and relevance of the research.

7. Discussion

• Research gaps addressed:

– Notably, no prior research has specifically investigated quorum retrial queues in the context of BPS.
– The unique combination of batch arrivals and batch service under BWV conditions along with a standby server has not been explored.
– This study pioneers the use of SVT to analyse such systems, filling a critical gap in the literature.
– This research also breaks new ground by undertaking cost optimization using six different approaches. Prior studies have not explored

cost optimization to this extent.
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Algorithm 6 Pseudo Code for WOA Algorithm
INPUT: Input function =𝑇𝐶(𝜏𝑏, 𝜏𝑣),
OUTPUT: 𝑇𝐶(𝜏∗𝑏 , 𝜏

∗
𝑣 ) denotes the value of the proposed cost function

Initialize a new population of n whales 𝑖(1 = 1, 2,… 𝑛)
Estimate the fitness function value
Arbitrarily choose the search agent  ∗

while b=1 and b< maximum iterations do
for every search agent do

Update c, C, D, m and q
if q <0.5 then

if |C|<1 then
Enhance the existing search agent’s position

else if |C|≥1 then
Again enhance the existing search agent’s position

end if
else if q≥0.5 then

Again enhance the existing search position
end if

end for
Ensure that no search agent goes outside the search area or else fix it.
Estimate the fitness function value
Update  ∗ if it is better
b=b+1

end while
return  ∗

Fig. 3. Convergence of the cost function.

• Authors Contribution:

– The authors have made a significant contribution by modelling the batch production system as a novel quorum RQ. This innovative
approach provides a new perspective on handling batch production processes.

– By incorporating SVT to conduct a thorough analysis of the system, they were able to delve deeply into the system’s behaviour and
performance, offering precise insights into its dynamics.

– The authors performed cost optimization using six different techniques. This extensive approach to cost analysis ensures that the
proposed model is not only theoretically robust but also practically viable, providing substantial economic benefits to BPS.

• Applicability to different types of manufacturing environments

– Ideal for environments where customization or seasonal production is critical, enabling efficient handling of varying product demands.
– Applicable to any manufacturing environment looking to reduce costs through optimized scheduling, resource allocation, and advanced

optimization techniques.
– The findings can be scaled and customized to suit both small-scale and large-scale production facilities, ensuring broad applicability

across different manufacturing contexts.

Therefore, this study significantly advances the understanding of BPS by addressing previously unexplored aspects
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8. Conclusion

This research investigates a batch production system by utilizing a unique bulk quorum RQ. We have employed the SVT and generating function
method to derive analytical formulas for several important performance indices. A wide of optimization approaches is also incorporated in the
cost estimation process. By implementing the proposed strategies, firms can enhance production efficiency and reduce costs through optimized
scheduling and resource allocation thereby having a significant impact on manufacturing firms. The use of advanced optimization techniques
ensures robust and reliable production processes, minimizing downtime and improving overall productivity. Additionally, the insights gained
from analysing system behaviour with the SVT enable better decision-making and strategic planning, leading to more efficient operations and
cost-effective production. Overall, this research equips manufacturing firms with the tools and insights needed to optimize their batch production
processes, ultimately leading to increased productivity, reduced costs, and improved competitiveness in the marketplace.

Future research could expand on this study by examining it in the context of other types of vacations, such as hybrid vacations, coxian vacations,
and also with heterogeneous services. Moreover, these systems were not studied using the matrix geometric technique, which is an interesting
direction for further research. A further intriguing direction for future research is the machine learning techniques, such as reinforcement learning
and deep learning, to improve analysis and optimization accuracy. Additionally, exploring hybrid optimization algorithms could provide more
robust and adaptable solutions for complex manufacturing environments.
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