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1. Introduction

The Volterra integral equations (VIEs) and Volterra integro-
differential equations (VIDEs) appeared after their establishment
by Vito Volterra, in 1926. Thereafter they have wide applications
in sciences and engineering. Namely, these equations appeared in
many physical applications such as glass forming process, nano-
hydrodynamics, heat transfer, diffusion process in general, neutron
diffusion and biological species coexisting together with increasing
and decreasing rates of generating and wind ripple in the desert
(see Wazwaz (2011)). More details about the sources where these
equations arise can be found in physics, biology and engineering
applications books. In addition, for more details of some of such
applications, we referee the readers to the books of Burton
(2005) and Wazwaz (2011). By this way we mean that it is worth
and deserve to investigate properties of solutions of (VIDEs).

On the other hand, the important techniques used in the litera-
ture to search the qualitative behaviors (QBs) of paths of linear and
non-linear (VIEs), (IDEs), (VIDEs), and etc., without finding the
explicit solutions, are known as the second Lyapunov function(al)
method, perturbation theory, fixed point method, the variation of
constants formula and so on. In reality, we cannot find the analyt-
ical solutions of the equations mentioned, except very particular
cases, and some time it become impossible to find the solutions,
except numerically. Therefore it is an important need to use the
former methods during the investigations.

Particularly, in the last four decades, researchers have produced
a vast body of important results on the qualitative properties (QPs)
of (VIDEs) by using the methods mentioned. In fact, several quali-
tative properties (QPs) of solutions; stability (S), boundedness (B),
convergence (C), globally existence (GE) of solutions, etc., of differ-
ent and the same models of linear and nonlinear (VIDEs) have been
examined in the literature by many authors. For a comprehensive
review and some recent results of (VIEs) and (VIDEs), we refer the
reader to see (Atkinson, 1997; Becker, 2009; Brunner, 2004;
Burton, 1979; Burton, 1982; Burton, 2005; Costarelli and Spigler,
2014; Furumochi and Matsuoka, 1999; Graef and Tunç, 2015;
Graef et al., 2016; Hara et al.,1990; Hritonenko and Yatsenko,
2013; Maleknejad and Najafi, 2011; Miller,1971; Morchalo, 1991;
Napoles Valdes, 2001; Raffoul, 2004; Raffoul, 2007; Raffoul,
2013; Staffans, 1988; Tunç, 2016a,b,c; Tunç, 2017a,b,c; Tunc and
Ahyan, 2017; Tunç and Mohammed, 2017a,b; Tunç and
Mohammed, 2017c; Vanualailai and Nakagiri, 2003; Zhang, 2005;
Da Zhang, 1990 and the references therein). In that scientific
sources, the authors obtained many interesting and valuable
results on the (QPs) of specific (VIDEs). The mentioned authors
benefited from the Lyapunov functions (LFs) or (LKFs) and obtained
sufficient conditions which imply (S), (B), (C), etc. of solutions.

As renowned from this way, the following scientific works are
notable.
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Morchalo (1991) considered the following scalar Volterra
integro-differential equation

d
dt

xðtÞ �
Z t

0
Dðt; sÞxðsÞds

� �
¼ AðtÞxðtÞ þ

Z t

0
Cðt; sÞxðsÞds ð1Þ

with xðt0Þ ¼ x0, where t0 P 0, x 2 R, AðtÞ is a continuous function
for t 2 J, J ¼ ½0;1Þ, and Cðt; sÞ and Dðt; sÞ are continuous functions
for 0 6 s 6 t < 1.

The author discussed the (B) of solutions of the (VIDE) (1) by
means of a Lyapunov function. The assumptions are constructed
in (Morchalo, 1991) are given below.

Assumptions A Morchalo, 1991. Let

Zðt; xðtÞÞ ¼ xðtÞ �
Z t

0
Dðt; sÞxðsÞds

and

aðt; kÞ ¼ AðtÞ þ k
Z 1

t
jCðu; tÞjduþ 1

2

Z t

0
jAðtÞDðt; sÞ þ Cðt; sÞjds:

It is assumed that the following assumption are true.

ðM1Þ There are positive constants m and M such that
x2 6 mZ2ðt; xÞifjxj 6 M; t 2 J; J ¼ ½0;1Þ:
ðM2Þ There is a positive constant m1 such that

jAðtÞDðt; sÞj 6 m1jCðt; sÞjforall0 6 s 6 t < 1:

ðM3Þ There is a positive constant b such that the following integral
is convergent;Z t

0
jCðt; sÞjZ2ðs; xðsÞÞds 6 b < 1forallt 2 J; jxj 6 M:

ðM4Þ There is a positive constant c such that the following integral
is convergent;Z 1

0
ð
Z t

0
jCðt; sÞjZ2ðs; xðsÞÞdsÞdt 6 c < 1:

ðM5Þ There are positive constants a and k such that

aðt; kÞ 6 �a < 0forallt 2 J;

and

1
2
mm1 � k P 0:
Theorem A Morchalo, 1991. Let assumptions (M1)–(M5) be hold
Then the solution xðtÞ ¼ xðt; t0; x0Þ of (VIDE) (1) is f -bounded.

Besides, recently, Tunç (2017) considered the (VIDE) without
delay of the form

d
dt

xðtÞ �
Z t

0
Dðt; sÞxðsÞds

� �
¼ �AðtÞxðtÞ þ

Z t

0
Cðt; sÞxðsÞds

þ eðt; xÞ ð2Þ
with xðt0Þ ¼ x0, where t0 P 0, x 2 R, AðtÞ and eðt; xÞ are continuous
functions for t 2 J, J ¼ ½0;1Þ, and J �R, respectively, and Cðt; sÞ
and Dðt; sÞ are continuous functions for 0 6 s 6 t < 1. The author
investigated the (AS) and (B) of solutions of (VIDE) (2) by defining
new suitable Lyapunov functions.

In this paper, instead of (VIDEs) (1) and (2), we are concerned
with the (QPs) of solutions of nonlinear first order retarded (VIDEs)
equations of the form of
d
dt

xðtÞ �
Z t

t�r
bðt; sÞgðxðsÞÞds

� �
¼ �aðtÞxðtÞ

þ
Z t

t�r
cðt; sÞgðxðsÞÞds

þ pðt; xðtÞ; xðt � rÞÞ ð3Þ
with xðt0Þ ¼ x0, where t � rP 0, r is a positive constant, x 2 R, aðtÞ,
gðxÞ and pðt; x; xðt � rÞÞ are continuous functions for t 2 Rþ,
Rþ ¼ ½0;1Þ, on R, and Rþ �R�R, respectively, and bðt; sÞ and
cðt; sÞ are continuous functions for 0 6 s 6 t < 1.

We assume throughout the paper that when we need x denotes
xðtÞ, that is, x ¼ xðtÞ.

For any t0 P 0 and initial function / 2 Cð½t0 � r; t0�Þ; let
xðtÞ ¼ xðt; t0;/Þ denote the solution of (VIDE) (1) on ½t0 � r;1Þ
such that xðtÞ ¼ /ðtÞ on / 2 Cð½t0 � r; t0�Þ.

Let C½t0; t1� and C½t0;1Þ denote the set of all continuous real-
valued functions on ½t0; t1� and ½t0;1Þ, respectively.

2. Stability and boundedness

Definition 2.1. Let f : Rþ ! R be a continuous and non-negative
function. The zero solution of

jyðtÞ �
Z t

t�r
bðt; sÞyðsÞdsj 6 f ðtÞ; yðt0Þ ¼ x0 ð4Þ

for t 2 Rþ is said to be
ðA1Þ f� (S) if for given each e > 0 and each t0 P 0; there exists a
d ¼ dðe; t0Þ > 0 such that / 2 C½0; t0�,for all
t 2 Rþ;½j/j 6 dand f ðtÞ 6 d� ) jyðt; t0;/Þj 6 e;
ðA2Þ asymptotic f� (S) if it is f� (S) and

lim
t!1

jyðt; t0;/Þj ¼ 0

for every j/j 6 d and every f ðtÞ ! 0 as t ! 1;

ðA3Þ f� bounded if for every bounded function f : Rþ ! R;

there exists a bounded solution yðt; t0;/Þ of (4).
Assumptions A.

Let

x1ðt;l1Þ ¼ aðtÞ � 1
2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds

� l1

Z 1

t�r
jcðuþ r; tÞjdu:

ðH1Þ There exist positive constants m1 and m2 such that
jaðtÞbðt; sÞj 6 m1jcðt; sÞjfor0 6 s 6 t < 1

and
jgðxÞj 6 m2jxjforx 2 R:

ðH2Þ There exist positive constants l1 and k1 such that

x1ðt;l1Þ P k1 > 0forallt 2 Rþ:

Let pðt; x; xðt � rÞÞ � 0:
Theorem 2.2. If assumptions (H1)–(H2) are true, then all solutions
of (VIDE) (3) are f -bounded.
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Proof. We define a (LKF) V1ðtÞ ¼ V1ðt; xÞ by

V1 ¼ 1
2
½x�

Z t

t�r
bðt; sÞgðxðsÞÞds�

2

þ l1

Z t

0

Z 1

t�r
jcðu

þ r; sÞjdux2ðsÞds; ð5Þ
where the constant l1 2 R, l1 > 0, and it is determined later in the
proof. h

We see from (5) that V1ðt;0Þ ¼ 0 and V1ðt; xÞ > 0 when x–0:
From this reason, it can be followed that (LKF) V1 is positive
definite.

By means of the (LKF) given in (5) and (VIDE) (3), a straightfor-
ward calculation implies that

V 0
1 ¼ ½x�

Z t

t�r
bðt; sÞgðxðsÞÞds�

� d
dt

½x�
Z t

t�r
bðt; sÞgðxðsÞÞds�

þ l1x
2
Z 1

t�r
jcðuþ r; tÞjdu� l1

Z t

0
jcðt; sÞjx2ðsÞds

¼ � ½x�
Z t

t�r
bðt; sÞgðxðsÞÞds�

� ½aðtÞx�
Z t

t�r
cðt; sÞgðxðsÞÞds�

þ l1x
2
Z 1

t�r
jcðuþ r; tÞjdu� l1

Z t

0
jcðt; sÞjx2ðsÞds

¼ � aðtÞx2 þ x
Z t

t�r
cðt; sÞgðxðsÞÞds

þ aðtÞx
Z t

t�r
bðt; sÞgðxðsÞÞds

�
Z t

t�r
bðt; sÞgðxðsÞÞds�

Z t

t�r
cðt; sÞgðxðsÞÞds

þ l1x
2
Z 1

t�r
jcðuþ r; tÞjdu

� l1

Z t

0
jcðt; sÞjx2ðsÞds: ð6Þ

We now consider the second and third terms in (6). Indeed, by the

hypotheses of Theorem 2.2 and the fact 2jabj 6 a2 þ b2, we have

x
Z t

t�r
cðt; sÞgðxðsÞÞdsþ aðtÞx

Z t

t�r
bðt; sÞgðxðsÞÞds

¼ x
Z t

t�r
½aðtÞbðt; sÞ þ cðt; sÞ�gðxðsÞÞds

6 1
2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjx2ðtÞds

þ 1
2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjg2ðxðsÞÞÞds

¼ 1
2
x2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds

þ 1
2
m2

2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjx2ðsÞds

6 1
2
x2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds

þ 1
2
m2

2

Z t

t�r
ðjaðtÞbðt; sÞj þ jcðt; sÞjÞx2ðsÞds

6 1
2
x2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds

þ 1
2
m2

2ðm1 þ 1Þ
Z t

t�r
jcðt; sÞjx2ðsÞds: ð7Þ
Then, by (6) and (7), a simple computation shows that

V 0
1 6 �aðtÞx2 þ 1

2
x2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds

þ 1
2
m2

2ðm1 þ 1Þ
Z t

t�r
jcðt; sÞjx2ðsÞds

þ l1x
2
Z 1

t�r
jCðuþ r; tÞjdu� l1

Z t

0
jcðt; sÞjx2ðsÞds

�
Z t

t�r

Z t

t�r
bðt; sÞcðt;uÞxðsÞxðuÞdsdu

¼ �½aðtÞ � 1
2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds�x2

þ ½l1

Z 1

t�r
jcðuþ r; tÞjdu�x2

� ½ðl1 �
1
2
m2

2ðm1 þ 1ÞÞ
Z t

t�r
jcðt; sÞj�x2ðsÞds

� l1

Z t�r

0
jcðt; sÞjx2ðsÞds

�
Z t

t�r

Z t

t�r
bðt; sÞcðt;uÞgðxðsÞÞgðxðuÞÞdsdu: ð8Þ

Let

l1 ¼ 1
2
m2

2ðm1 þ 1Þ

andZ t

t�r

Z t

t�r
bðt; sÞcðt;uÞgðxðsÞÞgðxðuÞÞdsdu P 0:

Then, by the assumption ðH2Þ, that is, x1ðt;l1Þ P k1 > 0; we obtain

V 0
1 6 �½aðtÞ � 1

2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds�x2

þ ½l1

Z 1

t�r
jcðuþ r; tÞjdu�x2 6 �k1x2

so that V 0
1ðt; xðtÞÞ 6 0:

Integrating the inequality V 0
1ðt; xðtÞÞ 6 0 from t0ðP 0Þ to t; we

obtain

V1ðt; xðtÞÞ 6 Vðt0; xðt0ÞÞ:
Hence, the proof is complete by observing that

1
2
½x�

Z t

t�r
bðt; sÞxðsÞds�

2

þ l1

Z t

0

Z 1

t�r
jCðuþ r; sÞjdux2ðsÞds

¼ V1ðt; xðtÞÞ 6 Vðt0; xðt0ÞÞ ¼ K1 > 0;K1 2 R:

Corollary 2.3. If the assumptions of Theorem 2.2 hold, then the trivial
solution of (VIDE) (3) is (AS). In fact, V1 ¼ V1ðt; xðtÞÞ is positive
definite and we find V 0

1 ¼ V 0
1ðt; xðtÞÞ 6 �k1x2ðtÞ: This result guaran-

tees that all solutions of (VIDE) (3) are (f-AS) (since V1 is positive
definite and V 0

1 is negative definite).

Let pðt; x; xðt � rÞÞ–0

and
xðt;l2Þ ¼ aðtÞ � 1
2
m2

2ðm1 þ 1Þ
Z t

t�r
jcðt; sÞjds

� l2

Z 1

t�r
jcðuþ r; tÞjdu� qðtÞ � 1

2
qðtÞ

Z t

t�r
jbðt; sÞjds:

.
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Assumption B. ðH3Þ There exist positive constants l2 and k2 such
that

x2ðt;l2Þ P k2 > 0forallt 2 Rþ;

and

jpðt; x; xðt � rÞÞj 6 qðtÞjxj;
where qðtÞ is a non-negative and continuous function for all t 2 Rþ.
Theorem 2.4. If suppose that assumptions ðH1Þ � ðH3Þ are true, then
all solutions of (VIDE) (3) are f -bounded.
Proof. In the proof, we benefit from (LKF) V2ðtÞ ¼ V2ðt; xðtÞÞ
defined by

V2 ¼ 1
2
½x�

Z t

t�r
bðt; sÞgðxðsÞÞds�

2

þ l2

Z t

0

Z 1

t�r
jcðuþ r; sÞjdux2ðsÞds;

ð9Þ
where l2 2 R, l2 > 0, we specific it later in the proof. h

By the assumptions of Theorem 2.4, (8) and (VIDE) (3), it can be
easily obtained that

V 0
2 6 �½aðtÞ � 1

2

Z t

t�r
jaðtÞbðt; sÞ þ cðt; sÞjds�x2

þ ½l2

Z 1

t�r
jcðuþ r; tÞjdu�x2

� ½ðl2 �
1
2
m2

2ðm1 þ 1ÞÞ
Z t

t�r
jcðt; sÞj�x2ðsÞds

� l2

Z t�r

0
jcðt; sÞjx2ðsÞds

þ pðt; x; xðt � rÞÞx

� pðt; x; xðt � rÞÞ
Z t

t�r
bðt; sÞxðsÞds:

We consider the terms

pðt; x; xðt � rÞÞx� pðt; x; xðt � rÞÞ
Z t

t�r
bðt; sÞxðsÞds:

In view of the assumption ðH3Þ and the inequality

2jef j 6 jej2 þ jf j2 we have

pðt; x; xðt � rÞÞx� pðt; x; xðt � rÞÞ
Z t

t�r
bðt; sÞxðsÞds:

6 jpðt; x; xðt � rÞÞjjxj

þ jpðt; x; xðt � rÞÞj
Z t

t�r
jbðt; sÞjjxðsÞjds

6 qðtÞx2 þ qðtÞjxj
Z t

t�r
jbðt; sÞjjxðsÞjds

6 qðtÞx2 þ 1
2
qðtÞ

Z t

t�r
jbðt; sÞjðx2 þ x2ðsÞÞds

¼ ½qðtÞ þ 1
2
qðtÞ

Z t

t�r
jbðt; sÞjds�x2

þ 1
2
qðtÞ

Z t

t�r
jbðt; sÞjx2ðsÞds:
Then

V 0
26� aðtÞ�1

2

Z t

t�r
jaðtÞbðt;sÞþcðt;sÞjds

� �
x2

þ l2

Z 1

t�r
jcðuþr;tÞjduþqðtÞþ1

2
qðtÞ

Z t

t�r
jbðt;sÞjds

� �
x2

� ðl2�
1
2
m2

2ðm1þ1ÞÞ
Z t

t�r
jcðt;sÞj

� �
x2ðsÞds

þ 1
2
qðtÞ

Z t

t�r
jbðt;sÞj

� �
x2ðsÞds�l2

Z t�r

0
jcðt;sÞjx2ðsÞds

6� aðtÞ�1
2
m2

2ðm1þ1Þ
Z t

t�r
jcðt;sÞjds

� �
x2

þ l2

Z 1

t�r
jcðuþr;tÞjdu

� �
x2

þ qðtÞþ1
2
qðtÞ

Z t

t�r
jbðt;sÞjds

� �
x2

� ðl2�
1
2
m2

2ðm1þ1ÞÞ
Z t

t�r
jcðt;sÞj

� �
x2ðsÞds

þ 1
2
qðtÞ

Z t

t�r
jbðt;sÞj

� �
x2ðsÞds

6�½x2ðt;l2Þ�x2

� ðl2�
1
2
m2

2ðm1þ1ÞÞ
Z t

t�r
jcðt;sÞjþqðtÞ

Z t

t�r
jbðt;sÞjg

� �� �
x2ðsÞds:

Let

l2 > m2
2ðm1 þ 1Þ > 0

such that

ðl2 �
1
2
m2

2ðm1 þ 1ÞÞ
Z t

t�r
jcðt; sÞjx2ðsÞds P qðtÞ

Z t

t�r
jbðt; sÞjx2ðsÞds

Hence, we get

V 0
2 6 �½x2ðt;l2Þ�x2 6 0:

By the integration of the estimate V 0
2ðtÞ 6 0 from zero t0 to t, it

follows that

V2 ¼ 1
2
½x�

Z t

t�r
bðt; sÞgðxðsÞÞds�

2

þ l2

Z t

0

Z 1

t�r
jCðuþ r; sÞjdux2ðsÞds

¼ V2ðt; xðtÞÞ 6 V2ðt0; xðt0ÞÞ ¼ K2 > 0;K2 2 R:

This result guarantees the f -boundedness of solutions of (VIDE) (3)
considered.
3. Conclusion

We consider a specific kind of non-linear functional (VIDEs) of
first order with constant retardation. We investigate the (AS) and
(B) of solutions that (VIDEs) by the (LKFs) approach. The results
of this paper are new and they have a novelty and improve some
results can be found in the literature (Morchalo, 1991; Tunç,
2017b).
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In addition, the results obtained here complement that results
can be found in the literature on (QPs) of solutions of (VIDEs) with-
out or with retardation (see the references of this paper and that in
the literature).

Finally, the improvement obtained in the present paper can
explained by the following details:

10Þ It is notable that when we compare (VIDE) (3) investigated
here with (VIDE) (1), which studied by Morchalo (1991), it fol-
lows that (VIDE) (1) is linear, however, (VIDE) (3) is non-linear,
and it has also a constant retardation. In addition, if we choose
pðt; x; xðt � rÞÞ ¼ 0; gðxÞ ¼ x; bðt; sÞ ¼ Dðt; sÞ, cðt; sÞ ¼ Cðt; sÞ,
�aðtÞ ¼ AðtÞ, and take zero 00000 instead of t � r, then (VIDE)(3)
reduces to (VIDE) (1). That is, (VIDE) (3) includes and improves
(VIDE) (1) from the linear case to the non-linear case and
retarded (VIDEs). The statements just mentioned show the
improvement obtained and one of the contribution of this work
to the relevant literature.
20Þ When we compare (VIDE) (3) considered in this paper with
(VIDE) (2), which studied by Tunç (2017b), it can be seen that
(VIDE) (2) is linear provided that eðt; xÞ ¼ 0; and it is without
retardation. However, (VIDE) (3) is non-linear, and it has also
a constant retardation. In addition, if we choose
pðt; x; xðt � rÞÞ ¼ eðt; xÞ, gðxÞ ¼ x;aðtÞ ¼ AðtÞ; and take zero 00000

instead of t � r, then (VIDE) (3) reduces to (VIDE) (2). This
information shows clearly the other improvement done by the
present paper and display clearly another contribution of the
present paper to the literature.
30Þ On the other hand, it is notable that the (LKF) makes neces-
sary to construct a suitable auxiliary functional which gives
meaningful result(s) for the problem under investigation.
Indeed, there is no general method for constructing such (LKFs)
in the literature. Moreover, the problem of Lyapunov- Krasovs-
kii characterization of (S), (AS) and (B) of nonlinear retarded
(VIDEs) with non-smooth (LKFs) has remained as an unsolved
problem in the related literature by present time, and hence
the need continued and is still maintaining for researchers ben-
efiting from that auxiliary functionals.
To arrive the aim of this paper, we construct a new suitable
(LKF), and by that auxiliary functional we discuss the (AS) and
(B) of solutions of (VIDE) (3).To the best of our information,
(AS) and (B) of retarded (VIDEs) of the form of (VIDE) (3) were
not discussed by this time in the literature. This paper may be
the first attempt in the literature on the topic for that kind of
retarded (VIDEs). The results established are also different from
that found in the literature (see, Atkinson, 1997; Becker, 2009;
Brunner, 2004; Burton, 1979, 1982, 2005; Costarelli and Spigler,
2014; Furumochi and Matsuoka, 1999; Graef and Tunç, 2015;
Hara et al.,1990; Hritonenko and Yatsenko, 2013; Maleknejad
and Najafi, 2011; Miller,1971; Morchalo, 1991; Napoles
Valdes, 2001; Raffoul, 2004, 2007, 2013; Staffans, 1988; Tunç,
2016a,b; Tunç, 2017a,b,c; Vanualailai and Nakagiri, 2003;
Zhang, 2005; Da Zhang, 1990 and the references therein). By
this way, we would like to mean that the retarded functional
(VIDEs) considered and the assumptions established here are
different from those currently can be found in the literature
and the references of this paper. The information just men-
tioned indicates the novelty and originality of the present
paper.
40Þ Finally, to the best of our knowledge the results of Morchalo
(1991) are not true in the general case. We would not like to
give here the details of that problems in Morchalo (1991). By
present work, we revise, correct and improve the results of
Morchalo (1991) for the scalar case, and we obtain the result
of Morchalo (1991) under more weaker conditions for the cases
of with and without retardation in (VIDE) (3). This case can be
seen when we compare assumptions ðM1Þ � ðM5Þ of Morchalo
(1991) with that assumptions ðH1Þ � ðH2Þ given above. In addi-
tion, we improve of the results of Tunç (2017b) from the situa-
tion without retardation to the more general situations with
retardation.

In view of all the information mentioned, it can be checked and
seen the new and novel properties of the present paper and the
improvement obtained in this paper.
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