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This paper concerns constructing a general family of distributions called exponentiated odd Lindley-X
(EOL-X) family. We demonstrate that the EOL-X density can be represented as an infinite linear combina-
tion of the exponentiated-F densities and, as a result, that many of its mathematical features are derived
directly. The fundamental statistical properties, including moments, mean deviations, generating func-
tion, order statistics, stochastic ordering, and entropies were investigated. EOL-X special models are intro-
duced. The suggested model presents superior performance when compared to the other models studied,
in the reliability and ‘‘medical” data. In addition, its bimodal density shape enhances the possibility of
good tuning in applications in several other areas, such as survival. Thus, it is expected that this proposal
will be of great help to the community studying new families and their adjustments to real data sets.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The most diverse distributions proposed in the literature are
extremely important for understanding and modeling real data.
Unfortunately, it has not yet been proposed a family of distribu-
tions that satisfactorily fits the phenomena studied in all areas of
knowledge. For this reason, more and more researchers are dedi-
cated to proposing new models that have a better fit in certain
cases when compared to other models previously established in
the literature. Over the decades, many families have been pro-
posed. Below, we cite a few: Gleaton and Lynch (Gleaton and
Lynch, 2006) proposed the generator odd-log-logistic-G; Alexander
et al. (Alexander et al., 2012) developed the class Generalized Beta-
Generated, among others.

More recently, some new families are proposed using the gen-
erator of families proposed by Alzaatreh et al. (Alzaatreh et al.,
2013). For example, Ferreira (Ferreira, 2021), using this generator,
proposed and studied the Quasi-Lindley-X family of distributions.
In addition, studies with combinations between transforma-
tions and this generator have also been carried out, such as the
work done by Klakattawi et al. (Klakattawi et al., 2022), where
the authors combine the Marshall-Olkin transformation with the
T-X family of distributions.

Therefore, based on the knowledge that the Lindley distribution
and its extensions have been shown to be quite adequate in mod-
eling ‘‘medical” data sets, we seek to motivate the choice of the
generator of families of T-X distributions, using the exponentiated
odd Lindley, and we will see that this family can, depending on the
baseline, embody at least three of the four important forms for the
risk function, namely: increasing, decreasing and bathtub. This
constitutes an important point of the family, since it allows a better
suitability for different types of data set.

Recently, Alzaatreh et al. (Alzaatreh et al., 2013) have intro-
duced the T-X family as

G xð Þ ¼
Z � log 1�F xð Þ½ �

0
r tð Þ d t ; ð1Þ

Moreover, the exponentiated T-X family proposed by Alzaghal
et al. (Alzghal et al., 2013). In addition, Gomes-Silva et al.
(Gomes-Silva et al., 2017) described the odd Lindley-G family. In
this work, we will develop some mathematical properties of one
member of the exponentiated odd S-X family which is also a gen-
eral family of distributions, namely the exponentiated odd Lindley-
X (EOL-X) family and illustrate the versatility of the EOL-X family to
fit and model real data. Various shapes of the hazard rate function
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(hrf) and density of sub-models for EOL-X family support the fam-
ily to fit several real lifetime data which represent one of the moti-
vations to the family beside others that will be mention through
the paper, such as mixture representation of the density and cdf
of the family in terms of exp-F distributions.

Next, we give some remarks and properties on the EOS-X
family.

Remark 1. Replacing � log 1� F xð Þ½ � by F a xð Þ
1�F a xð Þ in (1), we have the

cdf of the EOS-X.

G xð Þ ¼
Z Fa xð Þ

1�Fa xð Þ

0
r sð Þd s ¼ W

Fa xð Þ
1� Fa xð Þ
� �

; ð2Þ

where a > 0 is an additional parameter and W sð Þ is the cdf of S: As a
result, the pdf of the family defined by (2) is

g xð Þ ¼ a f xð ÞF a�1 xð Þ
1� F a xð Þ� �2 r

F a xð Þ
1� F a xð Þ
� �

: ð3Þ

The hrf of the EOS-X is

h xð Þ ¼ a f xð ÞF a�1 xð Þ
1� F a xð Þ� �2 r

F a xð Þ
1� F a xð Þ
� �

1�W
F a xð Þ

1� F a xð Þ
� �� 	�1

: ð4Þ

Remark 2. Let X follows the EOS-X family (3), the associated quantile
function Q uð Þ is.

X ¼ Q uð Þ ¼ F � 1 W �1 uð Þ
W � 1 uð Þ þ 1

 ! 1=a

; 0 < u < 1; ð5Þ

where W � 1 :ð Þ and F� 1 :ð Þ are inverses of the cdfs of S and X
respectively.

Remark 3. Let X follows the EOS-X family with the pdf (3), then the
Shannon entropy (SE) of X; -x; is.

-x ¼ � loga� E log f F�1 S
Sþ 1

� �1=a
" # !

� a� 1
a

E log
S

Sþ 1

� �� 	
þ 2E log

1
Sþ 1

� �� 	
þ-S; ð6Þ

where -S is the SE of S.
Note that, (2) and (3) do not involve any complicated functions.

Thus, if we choose distributions with simple density for S, we will
have a family of distributions with density and cumulative func-
tions of easy mathematical and computational treatment, when
compared with families such as gamma-G and beta-G, for example.
Besides that, we can note that (3) provide distribution families
generators, depend on the choice of S. In this way, this work ‘opens
the doors’ to proposals of new distributions with density in the
form (3). Here, we choose S � Lindley a; hð Þ by the simplicity of its
pdf.

To demonstrate the effectiveness of the proposed model, we
study its fit to three real data sets. The first one address the failure
time of turbochargers, components play an important role in the
safe operation of merchant vessels, since they play a key role in
the proper functioning of the main engine. This data is presented
in application section. Some papers have been studied the use of
some distributions through the adjustment of this data: Singla et.
al. (Singla et al., 2012) show that the beta generalized Weibull
model is preferable over its sub models using this data set and
Benkhelifa (Benkhelifa, 2020) demonstrate the flexibility to the
Weibull Birnbaum-Saunders distribution by means this data.
2

In order to show the flexibility of the proposal to different situ-
ations, we also include applications to survival data. In addition,
we know that many of the families that are part of the S-X family
are well suited to these types of sets. In this sense, the second data
constitutes a survival data set, since each observation is the time to
death (in months) of patients with breast cancer with different
immuno-biochemical responses (for more details, see Klein and
Moeschberger (Klein and Moeschberger, 2005).

It is important to study breast cancer data since this type of can-
cer is one of the most frequent in women around the world. It is
the most common in women in the United States. In Brazil, it only
loses to non-melanoma skin and accounts for 29 % of new cases
each year, according to the National Cancer Institute.

The third data is a study about Aids clinical trial nested and can
be found in https://www.umass.edu/statdata/statdata/stat-survival.
html. Clinical studies with Aids data are of great relevance in the
scientific and social aspects. Despite being a disease already known
worldwide since the early 1980 s, there is still a lot of prejudice
and, in some countries, lack of access to information and
medicines.

Brazil has stood out, among other aspects, with programs for
the distribution of condoms and antiretroviral drugs at no addi-
tional cost. Although programs like these have not eradicated such
an epidemic, they help increase patient survival and quality of life.
Much still needs to be done to heal healing, and statistical study is
an important tool in this process.

The following is a list of the paper’s supplements. We propose
the exponentiated odd Lindley-X family and some of its sub-
models, in Section 2. In Section 3, we show the mixture represen-
tation of the density and cdfs of the family. We provide various of
the new family’s mathematical features in Section 4. Stochastic
ordering and the two popular entropies are investigated in Sections
5 and 6, respectively. An estimation procedure for EOL-X parame-
ters is obtained in Section 7. Simulation studies are provided in
Section 8. We chose some data sets to evaluate the performance
of sub-model of the family using a set of goodness-of-fit statistics
in Section 9. Finally, some conclusions about the obtained results
are reported in Section 10.

2. EOL-X family with sub-models

The EOL-X family is proposed in this section. Some sub-models
of the family are given and it is observed that their pdfs could be
unimodal, left-skewed, right-skewed, bimodal and their hrfs could
be bathtub, decreasing, constant, increasing, J and reversed-J
shaped. All this gains the family much flexibility for fitting and
modeling real life data.

2.1. The EOL-X family

Let S follows the Lindley distribution with pdf

r sð Þ ¼ h2

hþ1 1þ sð Þe� h s, then the pdf of the EOL-X family using (3) is

g x;a; h; nð Þ ¼ a h2

hþ 1
f x; nð ÞFa�1 x; nð Þ
1� Fa x; nð Þ� �3 exp � h

Fa x; nð Þ
1� Fa x; nð Þ

� �
; ð7Þ

where F x ; nð Þ ¼ F xð Þ is a baseline cdf depending on a parameter
vector f: By using (2) and the cdf of the Lindley distribution,
W sð Þ ¼ 1� hþ1þh s

hþ1 e� h s; The EOL-X family’s cdf can be found here

G x;a; h; nð Þ ¼ 1� 1þ h
hþ 1ð Þ

Fa xð Þ
1� Fa xð Þ

� 	
exp � h

Fa xð Þ
1� Fa xð Þ

� �
:

ð8Þ
Hence, the hrf of X is

https://www.umass.edu/statdata/statdata/stat-survival.html
https://www.umass.edu/statdata/statdata/stat-survival.html
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h x;a; h; nð Þ ¼ a h2
f xð ÞFa�1 xð Þ

hþ 1� Fa xð Þ� �
1� Fa xð Þ� �2 : ð9Þ
2.2. Sub-models

Some sub-models in the EOL-X family (7) are given in function
of three well-known distributions; exponential (E) with cdf
F x ; kð Þ ¼ 1� e�k x; Lomax (Lo) with cdf defined as
F x ; r ; kð Þ ¼ 1� 1þ x=rð Þ� k and Dagum (Da) with cdf

F x ; b ; kð Þ ¼ 1þ x� kð Þ� b
:.

2.2.1. The EOL-E distribution
Using the exponential pdf and cdf as input for (7) and (9), we

get the EOL-E pdf and hrf.

g x;a; h; kð Þ ¼ ak
h2

hþ 1
e�kx 1� e�kxð Þa�1

1� 1� e�kxð Þa
 �3
� exp �h

1� e�kxð Þa
1� 1� e�kxð Þa

( )
; x > 0 ; a; h; k > 0 ð10Þ

and

h x; a; h; kð Þ ¼ a k h2 1� e�kxð Þa�1 e�kx

hþ 1� 1� e�kxð Þa� �
1� 1� e�kxð Þa
 � 2 ; ð11Þ

respectively. The pdf and hrf of EOL-E are plotted in Fig. 1 for
distinct parameters values.

2.2.2. The EOL-Lo distribution
Inserting the Lomax pdf and cdf as input for (7) and (9), implies

the EOL-Lo pdf and hrf as

g x;a; h; k;rð Þ ¼ akh2

r hþ 1ð Þ

�
1þ x=rð Þ� kþ1ð Þ 1� 1þ x=rð Þ�k

h i a�1

1� 1� 1þ x=rð Þ�k
h i ah i3

� exp � h
1� 1þ x=rð Þ�k
h ia

1� 1� 1þ x=rð Þ�k
h ia

8><
>:

9>=
>; ð12Þ
Fig. 1. Plots of the EOL-E pdf and hrf. (a) a ¼ 6; h ¼ 4; k ¼ 2ð Þ(black), a ¼ 0:2; h ¼ 3:9ð
h ¼ 0:8; k ¼ 1:5Þ(purple).(b) a ¼ k ¼ 1; h ¼ 3ð Þ(green), a ¼ 0:01; h ¼ k ¼ 0:1ð Þ(black), a ¼ð
(Purple).

3

h x;a; h; k;rð Þ ¼

ak h 2

r

1þ x=rð Þ� kþ1ð Þ 1� 1þ x=rð Þ�k
h i a�1

hþ 1� 1� 1þ x=rð Þ�k
h i a� 


1� 1� 1þ x=rð Þ�k
� 
 ah i 2 ;

x > 0 ; a ; h; k ; r > 0

ð13Þ
respectively. Fig. 2 shows plots of the pdf and hrf of the EOL-Lo

for the specified parameter values.

2.2.3. The EOL-Da distribution
Taking the Dagum pdf and cdf as input for (7) and (9), the fol-

lowing functions hold

g x;a; h; k;bð Þ ¼ ak b h2

hþ 1ð Þ x
�k�1 1þ x�kð Þ�ab�1

1� 1þ x�kð Þ�ba
h i3

� exp �h
1þ x�kð Þ�ba

1� 1þ x�kð Þ�ba

( )
; ð14Þ

and

h x ;a; h; k;bð Þ ¼ a k b h2 1þ x�kð Þ� b aþ1ð Þx� ðkþ1Þ

hþ 1� 1þ x�kð Þ�b a
� 


1� 1þ x�kð Þ�b a
h i 2 : ð15Þ

The pdf and hrf curves of the EOL-Da model are displayed in
Fig. 3.

3. Expansions for the EOL-X family

This section displays a mixture representation of the EOL-X
family’s pdf and cdf. This family’s quantile function is also
provided.

3.1. Expansion for the dansity function

By making of the power series for the following term, we get

exp � h
F a x ; nð Þ

1� F a x ; nð Þ
� �

¼
X1
k¼0

�1ð Þ kh k

k!
F a k x ; nð Þ

1� F a x ; nð Þ� � k
: ð16Þ

Applying (16) in (7), we have
; k ¼ 0:01Þ(red), a ¼ 10; h ¼ 2; k ¼ 1:6ð Þ(green), a ¼ 1; h ¼ 1:5; k ¼ 2ð Þ(blue), a ¼ 0:5;ð
0:1; h ¼ 0:2; k ¼ 1:5Þ(blue), a ¼ 5; h ¼ 1; k ¼ 1:5ð Þ(red), a ¼ 0:3; h ¼ 0:2;ð k ¼ 2Þ



Fig. 2. Plots of the EOL-Lo pdf and hrf. (c) a ¼ k ¼ 0:5; h ¼ 1;r ¼ 3ð Þ (black), a ¼ 10; h ¼ 3; k ¼ 7;r ¼ 2ð Þ(red), a ¼ 3; h ¼ 4; k ¼ r ¼ 2ð Þ(green), a ¼ 1; h ¼ k ¼ 3;r ¼ 5ð Þ(purple),
a ¼ 0:3; h ¼ 0:2; k ¼ 2;r ¼ 0:8ð Þ(blue)(d) a ¼ h ¼ r ¼ 1; k ¼ 2ð Þ (green), a ¼ 0:3; h ¼ 2; k ¼ 0:5;r ¼ 3ð Þ(black), a ¼ r ¼ 2; h ¼ 10; k ¼ 1:5ð Þ(purple), a ¼ k ¼ 1; h ¼ 2;r ¼ 3ð Þ
(blue), a ¼ 5; h ¼ r ¼ 1; k ¼ 3ð Þ(red),

Fig. 3. Plots of the EOL-D pdf and hrf. (e) a ¼ k ¼ 0:5; h ¼ 1;b ¼ 3ð Þ (black), a ¼ b ¼ h ¼ 1; k ¼ 5:5ð Þ (blue), ða ¼ 2; h ¼ 1; k ¼ 3;b ¼ 0:1Þ(red), ða ¼ 2; h ¼ 1; k ¼ 3; b ¼ 1:6Þ
(green), a ¼ k ¼ 2; h ¼ 1; b ¼ 0:3ð Þ(pruple). (f) a ¼ k ¼ 0:5; h ¼ b ¼ 1ð Þ(black), a ¼ 0:3; h ¼ b ¼ 0:2; k ¼ 2ð Þ(blue), a ¼ 0:1; h ¼ 3; b ¼ 2; k ¼ 0:3ð Þ (green), a ¼ h ¼ b ¼ 1; k ¼ 3ð Þ
(red), ða ¼ 1; h ¼ 3;b ¼ 0:9; k ¼ 1:2Þ (purple).
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g x ; a ; h ; nð Þ ¼ a h 2

hþ 1
f x; nð Þ

X1
k¼0

�1ð Þ kh k

k!

� F a kþ1ð Þ�1 x ; nð Þ
1� F a x ; nð Þ� � kþ3 : ð17Þ

We should use the generalized binomial theorem to find

1� F a x ; nð Þ� � � ðkþ3Þ ¼
X1
m¼0

C kþ 3ð Þ þmð Þ
m! C kþ 3ð Þ F am x ; nð Þ: ð18Þ

Inserting (18) in (17), the pdf (7) can be stated as

g x ; a ; h ; nð Þ ¼
X1
m;k¼0

xm;k rtm;k
xð Þ; ð19Þ

where.

xm;k ¼ �1ð Þ k a h kþ2 C kþ3ð Þþmð Þ
hþ1ð Þ k! m! C kþ3ð Þ a kþ1ð Þþm½ �ð Þ ; tm;k ¼ a kþ 1ð Þ þm½ �; and

rb xð Þ ¼ b f xð ÞF b�1 xð Þ:.
Hence, the pdf of the EOL-X family can be expressed as an infi-

nite linear combination of the exponentiated-F (exp-F) density. As
a result, the exp-F distribution may be used to derive several math-
ematical features of EOL-X. Nadarajah and Kotz (Nadarajah and
Kotz, 2006) investigate several mathematical features of exp-F
distributions.

Then, the mixture representations of the cdf and hrf of EOL-X
family are presented, respectively, as
4

G x ; a ; h ; nð Þ ¼
X1
m;k¼0

xm;k Rtm;k
xð Þ; ð20Þ

and

h x ; a ; h ; nð Þ ¼
P1

m;k¼0xm;k rtm;k
xð Þ

1 � P1
m;k¼0xm;k Rtm;k

xð Þ :
3.2. Quantile function

The quantile function, Q uð Þ; 0 < u < 1; for the EOL-X family is
obtained by using (6) and (8) as

Q uð Þ ¼ F � 1 W �1 uð Þ
W �1 uð Þ þ 1

 ! 1=a

; ð21Þ

where

W � 1 uð Þ ¼ � hþ 1þW u� 1ð Þ hþ 1ð Þ exp � hþ 1ð Þð Þ½ �
h

; ð22Þ

where W �1 uð Þ is the inverse of cdf for Lindley and W :ð Þ is Lambert
function.
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4. Mathematical properties

The mathematical properties of the distributions are important
characteristics and must be obtained, whenever possible, in a
closed form, that is, in function of known mathematical functions.
However, we know that often proposing new distributions brings
with it the problem of obtaining such properties in this format.
Therefore, when we can express the density and distribution func-
tions as a linear mixture of accumulated densities, respectively, of
the exponential distributions-G, we use power series properties to
obtain these results.

In this sence, we intrduced various mathematical features of the
EOL-X family in this section, including moments, mean deviations,
generating function, (reversed) residual lifetime moments and
order statistics.

4.1. Moments

Using (19) and the definition of the nth moment about the ori-
gin of X; we have

E X n½ � ¼
X1
m;k¼0

xm;k E Z n
m;k

h i
; ð23Þ

where Zm;k is a random variable having an exp-F pdf rtm;k
xð Þ.

The baseline quantile function QF xð Þ can be used as another for-
mulation for E Xn½ � as follows:

Using (19), we can write E Xn½ � as

E X n½ � ¼
X1
m;k¼0

tm;k xm;k w n; tm;k
� �

; ð24Þ

where w n; tm;k
� � ¼ R1

� 1 x n F xð Þ½ � tm;k� 1 f xð Þ dx ¼ R 1
0 QF uð Þ½ � nutm;k � 1 du:

Cordeiro and Nadarajah (Cordeiro and Nadarajah, 2011)
obtained t n ; tm;k

� �
for some well-known distributions which can

be used to determine the EOL-X moments.

4.2. Incomplete moments

The nth incomplete moment of X is given by

mn yð Þ ¼ E X n X < yj½ �

¼
X1
m;k¼0

tm;k xm;k

Z F yð Þ

0
QF uð Þ½ � n utm;k� 1 du; ð25Þ

where QF uð Þ is directly obtained from (21).

4.3. Moment generating function

The moment generating function (mgf) of the EOL-X family is
presented two expressions here. The first one can be obtained from
the Exp-F mgf as

MX tð Þ ¼
X1
m;k¼0

xm;k Ntm;k
tð Þ ; ð26Þ

where Ntm;k
tð Þ is the mgf of random variable Zk;m: A second form for

MX tð Þ can be obtained from (19) as

MX tð Þ ¼
X1
m;k¼0

tm;kxm;k u t; tm;k
� �

; ð27Þ

where

u t ; tm;k

� � ¼ R1
�1 et x F xð Þ½ � t m;k�1 f xð Þ dx ¼ R 1

0 exp t QF uð Þ½ � utm;k� 1 du:
5

4.4. Mean deviations

The mean deviations about the mean (c 1) and about the median
(c 2) of the EOL-X family can be obtained as.

c1 ¼ 2l0
1 G l0

1

� �� 2m1 l0
1

� �
; and c2 ¼ l0

1 � 2m1 Mð Þ; ð28Þ
respectively, where l0

1 ¼ E :ð Þ is obtained from (23),

M ¼ QG
W � 1 0:5ð Þ

W � 1 0:5ð Þþ1

� 
 1=a
is the median of X and W�1 0:5ð Þ is obtained

from (21) and (22),G l0
1

� �
is evaluated by the cdf of the EOL-X fam-

ily and m 1 zð Þ is the first incomplete moment can be obtained from
(19) as

m 1 zð Þ ¼
X1
m;k¼0

xm;k Jtm;k
zð Þ ; ð29Þ

where Jtm;k
zð Þ ¼ R z

� 1 x rtm;k
xð Þ dx :

4.5. Moments of residual and reversed residual lifetime

The moments of residual and reversed residual lifetime of the
EOL-X family are given by

j tð Þ ¼ 1
S tð Þ E X n½ � �

Z t

0
x n g xð Þ dx

� �
� t

¼ 1
S tð Þ E X n½ � �mn tð Þ½ � � t; t P 0 ð30Þ

and

/ tð Þ ¼ t � 1
G tð Þ

Z t

0
x n g xð Þ dx ¼ t � 1

G tð Þ mn tð Þ; t P 0 ð31Þ

respectively, where G :ð Þ and S :ð Þ are the cdf and survival func-
tion of the EOL-X family, E X n½ � given by (23), and mn tð Þ is the nth
incomplete moment given by (25).

4.6. Order statistics

The pdf of the ith order statistic, say Xi:n ; for a random sample
X1;X2; :::;Xn from the EOL-X family is given by

gi:n xð Þ ¼ n!
i� 1ð Þ! n� ið Þ! g xð Þ Gi�1 xð Þ 1� G xð Þð Þn�i

: ð32Þ

Inserting (7) and (8) into (32), the gi:n xð Þ becomes

gi:n xð Þ ¼
Xi�1

m¼0

xm g x ; a; h mþ n� iþ 1ð Þð Þ 1þ h
hþ 1ð Þ

F a xð Þ
1� F a xð Þ

� 	 nþm�i

;

ð33Þ
where

xm ¼ n!
nþm� iþ 1ð Þ i� 1ð Þ! n� ið Þ! �1ð Þm i� 1

m

� 	

and g x;a; h nþm� iþ 1ð Þð Þ denotes the EOL-X pdf with param-
eters a andh nþm� iþ 1ð Þ:

5. Stochastic ordering

The EOL-X family is ordered in terms of likelihood ratio order-
ing, as shown by the next theorem.

Theorem 1. Let X � EOL-X a; h1; nð Þ and Y � EOL-X a; h2; nð Þ: If
h2 < h1; then X is stated to be smaller than Y in the likelihood ratio
order (denoted by X6lrY).

Proof. The likelihood ratio is given by
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gX xð Þ
gY xð Þ¼

h1
h1þ1

� 	
h2þ1
h2

� 	
Exp �h1

F a x;nð Þ
1�F a x;nð Þ

� �
Exp h2

F a x;nð Þ
1�F a x;nð Þ

� �
:

Since h2 < h1;

d
dx

log
gX xð Þ
gY xð Þ
� �

¼ h2 � h1ð Þ a f x; nð Þ F a�1 x; nð Þ
1� F a x; nð Þ� � 2 < 0

Hence gX xð Þ
gY xð Þ is decreasing in X: That is X6lrY ;which completes the

proof.

6. Entropies

Here, we discuss two common entropy measures that are the
Shannon entropy and Rényi entropy. In what follows, we derive
two entropies of the EOL-X family.

Theorem 2. The EOL- family’s Shannon entropy (SE) is given by.

-x ¼ � log a½ � � E log f F �1 S
Sþ 1

� � 1=a
" # !

� a� 1
a

E log
S

Sþ 1

� �� 	
þ 2 E log

1
Sþ 1

� �� 	

þlog h½ � � hþ 2� exp hð Þ
hþ 1

@C cþ 1; h cð Þ
@c

����
c¼1

:

Proof. The proof follows from Remark 4 and the SE for the
Lindley distribution:

- S ¼ log h½ � � hþ 2� exp hð Þ
hþ1

@ C cþ1 ; h cð Þ
@c

���
c¼1

; which is given by

Ghitany et al. (Ghitany et al., 2008).�

Theorem 3. The EOL- family’s Rényi entropy is described by

wR cð Þ ¼ 1
1� c

log
X1
j;k¼0

Xj;k

Z 1

�1
f c x ; nð Þ Fa jþkþcð Þ�c x; nð Þdx

" #
;

where the coefficientsXj;k ¼ a cc j h jþ2c

hþ1ð Þ c
�1ð Þ j

j!
3 cþ jþ k� 1

k

� 	
:.

Proof. Using the definition of Rényi entropy and the pdf (7),
hence

Z 1

� 1
g c x;a; h; nð Þ dx ¼ a h 2

hþ 1

 ! c Z 1

� 1

f c x; nð ÞF c a�1ð Þ x; nð Þ
1� F a x; nð Þ� �3 c

� exp � h c
F a x; nð Þ

1� F a x; nð Þ
� �

dx:

Applying (16) in the expression above, we haveZ 1

� 1
g c x;a; h; nð Þ dx ¼

X1
j¼0

a cc j h jþ2c

hþ 1ð Þ c
�1ð Þ j

j!

�
Z 1

� 1

f c x; nð ÞF c a�1ð Þþaj x; nð Þ
1� F a x; nð Þ� � 3cþj

dx:

Therefore, desired proof is obtained by expanding the binomial
term in the integral above.�

7. Inference on the EOL-X family parameters

An estimation procedure for EOL-X parameters are discussed
here.

Let x1; x2; :::; xn be observed values from the EOL-X defined by (7)

with parameter vector H ¼ a ; h ; nð Þ T
: Then, the log-likelihood

function ‘ ¼ ‘ðHÞ for H is
6

‘ ¼ n log
h 2

hþ 1

" #
þ n log a½ � þ

Xn
i¼1

log f � xi ; nð Þ½ � þ a� 1ð Þ
Xn
i¼1

� log F� xi ; nð Þ½ �

�3
Xn
i¼1

log 1� F a xi ; nð Þ
 �� h
Xn
i¼1

F a xi ; nð Þ
1� F a xi ; nð Þ :

The elements of the score vector are

@‘

@a
¼ n
a
þ
Xn
i¼1

log F xi ; nð Þ½ � þ 3
Xn
i¼1

F a xi ; nð Þ log F xi ; nð Þ½ �
1� F a xi ; nð Þ

� h
Xn
i¼1

F 2 a xi; nð Þ log F xi ; nð Þ½ �
1� F a xi ; nð Þ
 � 2 þ F a xi; nð Þ log F xi ; nð Þ½ �

1� F a xi ; nð Þ

( )
;

@‘

@h
¼ �2n

h 3 � n

1þ hð Þ 2 �
Xn
i¼1

F a xi ; nð Þ
1� F a xi ; nð Þ ;

and

@‘

@fk
¼
Xn
i¼1

f 0k xi ; nð Þ
f xi ; nð Þ þ a� 1ð Þ

Xn
i¼1

F 0
k xi ; nð Þ
F xi ; nð Þ þ 3a

Xn
i¼1

� F a�1 xi ; nð ÞF 0
k xi ; nð Þ

1� F a xi ; nð Þ

�a h
Xn
i¼1

F a�1 xi ; nð ÞF 0
k xi ; nð Þ

1� F a xi ; nð Þ
 �2
( )

;

where k ¼ 1 ; 2 ; :::; p: Equating @‘
@a ;

@‘
@h and @‘

@nk
with zero, as well as

numerically solving these equations, then the MLEs

H
^
¼ a

^
; h;

^
n
^� 	 T

of H ¼ a; h; nð ÞT are obtained.

8. Simulation study

Here, we present a simulation analysis to demonstrate the MLEs
parameters vector’s asymptotic behavior. To do this, we choose the
sub-model EOLE, defined in (10). Using the R software, we execute
a Monte Carlo simulation study, with 1000 replications. Setting
a ¼ 1; h ¼ 2 andk ¼ 3, The MLEs’ accuracy is measured. Aside from
that, we use the random censoring system on the right to censor
percentages (0%; 10% and 20%) andn ¼ 50; 100, and150. As a
result, we present the MLEs’ average estimates (AEs) as well as
the mean squared errors (MSEs), for each parameter point. The
results in Table 1 show that the sufficiency condition is valid and
that the estimators are consistent.

9. Applications to modeling reliability and medical data

Here, we compare the performance of the EOLE model at Sub-
section 2.2 to a set of classical and recent lifetime distributions.

The lifetime distributions used in comparison are:

� Gamma (Ga) distribution;
� Lindley– exponential (LE) distribution – Bhati et al. (Bhati et al.,
2015);

� Transmuted exponentiated Exponential (TEE) distribution –
Merovci (Merovci, 2013);

� Beta exponential (BE) – Nadarajah and Kotz (Nadarajah and
Kotz, 2006);

� Gamma-exponentiated exponential (GEE) distribution–Ristic’
and Balakrishnan (Ristic’ and Balakrishnan, 2012);



Table 1
Simulations for the EOL-E.

0% censored 10% censored 20% censored

n Parameter AE MSE AE MSE AE MSE
a 1.002 0.007 1.091 0.017 1.078 0.014

50 h 2.030 0.054 1.828 0.074 1.850 0.066
k 3.048 0.007 2.764 0.122 2.798 0.105
a 1.002 0.003 1.097 0.014 1.079 0.010

100 h 2.008 0.027 1.800 0.059 1.842 0.046
k 3.016 0.039 2.724 0.105 2.789 0.075
a 1.007 0.002 1.086 0.010 1.073 0.007

150 h 2.009 0.017 1.815 0.048 1.848 0.036
k 3.016 0.025 2.746 0.084 2.793 0.062

Table 2
Descriptive statistics of all data sets.

Real data sets

Statistics Data1 Data 2 Data 3
Mean 6.2525 97.02 234.7
Median 6.5 87.5 265
SD 1.95553 51.679 93.854
MD-Mean 1.58723 45.70 78.282
MD-Median 4.73251 46.613 72.278
Kurtosis � 0.42501 �1.4923 �0.28969
Skewness � 0.65422 0.03268 0.898730
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� Transmuted exponentiated Lomax (TELo) distribution – Ashour
and Eltehiwy (Ashour and Eltehiwy, 2013);

� Gamma-Dagum (GDa) distribution – Oluyede et al. (Oluyede
et al., 2014);

� Modified Weibull (MW) distribution – Sarhan and Zaindin
(Sarhan and Zaindin, 2009);

� Genralized Beta Generated Lindley (GBGL) distribution – Lima
et al. (Lima et al., 2017);

� Gamma Lindley (GL) distribution –Lima (Lima, 2015).
Table 3
Parameter estimates for the first data.

Model Parameter estimates

a h

EOLE 3.2056 0.32662
BE 7.87221 6.22419
TEE 7.59178 0.31855
GEE 10.5505 0.10895
Ga 7.72269 0.809627
LE 10.3036 0.448709

a b
GTLo 2749.69 6107.18
GDa 4.16258 0.50276
TELo 10.3998 17.4909

Table 4
Statistics for the first data.

Model W* A*

EOLE 0.108498 0.36417
Ga 0.209882 1.3834
LE 0.286773 1.8008
TEE 0.218098 1.43834
BE 0.214219 1.41121
GEE 0.221483 1.4507
TELo 0.232215 1.59486
GTLo 0.28377 1.78423
GD 0.701105 3.71635

7

For comparison purposes, we consider some real data sets in
many areas. The main aim here is to show that our proposed model
fits well several types of data. The first piece of data reflects the
time it takes for a turbocharger to fail (103h), see Xu et al. (Xu
et al., 2003). The second one lists the time to death (in months)
of patients with breast cancer with different immuno-
bistochemical responses (for more details, see Klein and Moesch-
berger (Klein and Moeschberger, 2005). In this case, we consider
all the observations as uncensored observation. The third data is
a study about aids clinical trial nested. For each distribution, we
get the maximum-likelihood estimate, AIC, BIC, HQIC, W* and A*
goodness-of-fit statistics. To do this, we use the function goodness.-
fit from software R, with the SANN method. Besides that, the initial
kicks were obtained through a heuristic method with the GenSA.
Table 2 gives some descriptive statistics for all data sets. The first
data is left skewed and while the rest of the data sets are right
skewed. The obtained results are presented in Tables 3-8. We
developed different situations depend on each application. As we
can see the EOLE is powerful competitor to the compared distribu-
tions. Moreover, the least values for the considered goodness-of-fit
statistics are achieved for EOLE model. The EOLE model performed
the best, as predicted from the previous findings.
k

0.42819
0.13779
0.98999
8.11926
–
–
a b k
9.52379 0.000025 0.318372

10.0245 10.116 1.64758
0.0332954 �0.63111 –

AIC BIC HQIC

166.663 171.73 168.495
178.821 182.198 180.042
184.47 187.848 185.691
182.226 187.292 184.058
181.387 186.454 183.219
181.352 186.752 183.517
187.744 194.499 190.186
190.3 198.744 193.353
207.196 215.64 210.249



Table 5
MLE’s (their standard error) for the second data.

Model Parameter estimates

a h k

EOLE 1.76770 (0.43848) 1.26683 (0.196734) 0.01077 (0.00166)
TEE 0.02017 (0.00314) 2.91307 (0.89602) � 0.28051 (0.1745)
EL 1.51417 (0.26956) 0.027508 (0.01339) 1.06001 (0.19539)
MW 1.979 (8.878 e-04) 1000 (5.606 e-02) 7.90e-02 (1.19e-02)
GL 1.60462 (0.37948) 0.029136 (0.00590) –
LE 3.80833 (0.84147) 0.018864 (0.00300) –
Ga 2.92634 (0.58952) 0.030165 (0.006621) –

a b a b
GBGL 2.108e-01 (1.22e-04) 3.50 (1.186e-01) 6.81e-02 (1.025e-02) 4.41(3.3e-04)

Table 6
Statistics for the second application.

Model W� A� AIC BIC HQIC

EOLE 0.183436 1.022546 470.5342 475.886 472.5192
TEE 0.269836 1.701178 654.1809 659.533 656.1659
EL 0.255858 1.615608 557.669 563.022 559.6546
GL 0.207078 1.250375 473.8735 477.441 475.1968
LE 0.213885 1.310178 475.1699 478.738 476.4932
Ga 0.206380 1.244549 473.7209 477.289 475.0442
GBGL 0.209680 1.270334 478.3606 485.497 481.0073
MW 0.195096 1.126919 473.0868 478.439 475.0717

Table 7
MLE’s (their standard error) for the third data.

Model Parameter estimates

a h k

EOLE 2.56233 (0.14177) 5.03795 (0.53734) 0.002812 (0.00011)
TEE 0.00859 (0.00031) 2.43428 (0.17779) � 0.69730 (0.04102)
EL 1.11825 (0.04300) 0.00956 (0.00064) 0.94001 (0.02197)
GL 1.50407 (0.09379) 0.011478 (0.00061) –
LE 7.99877 (0.63588) 0.011179 (0.00045) –
Ga 2.95143 (0.16142) 0.012589 (0.00071) –

Table 8
Statistics for the third application.

Model W� A� AIC BIC HQIC

EOLE 5.99974 33.17757 7022.502 7035.57 7027.598
TEE 12.74718 67.79268 11599.84 11612.8 11604.9
EL 7.534813 41.42356 7200.168 7213.23 7205.264
GL 7.980831 43.6366 7161.384 7170.09 7164.782
LE 9.525479 51.5472 7515.95 7524.662 7519.348
Ga 7.93374 43.34001 7158.165 7166.877 7161.562

Fig. 4. TTT plot for: (a) the first data, (b) second data (c) third data.
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Also, Fig. 4 shows the TTT plots for all data sets considered here.
These plots indicate an increasing hrf (first, second and third data
sets) and then reveal the adequacy of the some sub-models of our
family to fit these data.

Finally, we can conclude that the model studied in this section
(using the exponential as a baseline) presents superior perfor-
mance when compared to the competitive models chosen in the
three applications in question. In addition, it is worth mentioning
that in the applications studied, the proposed model also presented
a better fit when compared to the gamma model.

10. Conclusions

We introduced a new distributions family from the T-X termed
exponentiated odd Lindley – X (EOL-X) in this study. A linear rep-
resentation of the new family’s density function makes it simple to
determine some of its properties. We developed a mathematical
treatment of some sub-models of EOL-X. Besides that, several of
their mathematical properties are derived. A simulation study
based on the exponentiated odd Lindley exponential was provided.
Finally, applications of sub-model of the potential family to three
real data evidencing that the EOL-X routinely outperforms other
well-known models in the literature. We hope that this research
will be useful in a number of areas and that further research will
emerge. As future works, the proposed distribution might also be
investigated as a bivariate extension, which would likely be a dis-
crete case. Finally, given our suggested model, we may do regres-
sion analysis.
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