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Abstract In this article, we study numerical solutions of time-fractional fourth-order partial differ-
ential equations with variable coefficients by introducing the fractional derivative in the sense of
Caputo. We implement reliable series solution techniques namely Adomian decomposition method
(ADM) and He’s variational iteration method (HVIM). Some applications are presented to high-
light the significant features of these techniques. The comparison shows that the solutions obtained
are in good agreement with each other and with their respective exact solutions. Some of these types
of differential equations arise practically in the theory of transverse vibrations.
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1. Introduction

Fractional calculus is three centuries old as the conventional
calculus, but not very popular among science and/or engineer-
ing community. The beauty of this subject is that fractional
derivatives (and integral) are not a local (or point) property.
Thereby this considers the history and non-local distributed
effects. In other words, perhaps this subject translates the
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reality of nature better. Many physical problems (Khan
et al.,, 2009; Mahmood et al., 2009; Yildirim and Kogak,
2009; Konuralp et al., 2009; Yildirim and Giilkanat, 2010;
Momani and Yildirim, 2010) are governed by fractional differ-
ential equations (FDEs), and finding the solution of these
equations has been the subject of many investigators in recent
years. The main reason consists in the fact that the theory of
derivatives of fractional (non-integers) stimulates considerable
interest in the areas of mathematics, physics, engineering and
other sciences. Most of the FDE cannot be solved exactly,
approximate and numerical methods must be used. Numerical
methods that are commonly used such as finite difference and
characteristics approaches need large amount of computa-
tional work and usually the affect of rounding off error causes
loss of accuracy in the results. The Adomian decomposition
method (ADM) (Wazwaz, 2001, 2002; Adomian and Rach,
1996) and He’s variational iteration method (HVIM) (He,
1997, 1998, 1999, 2006, 2007, He and Wu, 2007; Ates and
Yildirim, 2009) are relatively new approaches to provide the
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analytical approximation to linear and nonlinear problems. In
1998, the variational iteration method was first proposed by
He to give approximate solutions of the seepage flow prob-
lem in the porous media with fractional derivatives. These tech-
niques are particularly valuable as tool for scientists and applied
mathematicians, because they provide immediate and visible
symbolic terms of analytic solutions (Biazar and Ghazvini,
2007; Momani and Odibat, 2007; Khan et al., 2010), as well as
numerical approximate solutions to both linear and nonlinear
differential equations without linearization and discretization
(Khaliq and Twizell, 1963). The governing equation of motion
of the beam can be written as

Ou(x, 1) *u(x, 1)
ar 1) 5a

=0, h<x<l, nx)>0 >0,

where n(x) is the ratio of flexural rigidity of the beam to its
mass per unit length (Gorman, 1975). The initial and boundary
conditions associated with above equation are of the form
(Khaliq and Twizell, 1963)

u(x,0) = hy(x), %(x, 0)="hi(x), lh<x<l,

ot
2
llo,) = (1), wlh,) = Fi0), 55l 0) = Go),
%(ll,t) =Gy(1), >0,

where the functions Ay(x), hi(x), fo(?), f1(¢), Go(¢), and G,(¢)
are continuous functions.

In this work, the n-dimensional time-fractional fourth-or-
der partial differential equation with variable coefficients will
be approached analytically by Adomian decomposition meth-
od (ADM) and He’s variational iteration method (HVIM).
Three applications are given to assess the efficiency and conve-
nience of the two methods.

2. Fractional calculus

We give some basic definitions, notations and properties of the
fractional calculus theory used in this work.

Definition 2.1. The Riemann-Liouville fractional integral
operator of order o > 0, for a function fe€ C, (u > —1) is
defined as

PAx) = ﬁ /Ox(x — " fde, 2> 0, x>0, (1)
Sf(x) = f(x). )

We will need the following basic properties:

Forfe Cy(p > —1), o,f > 0and y > I:

T Ifx) = (), A3)

PIf(x) = P rfx), 4)
y M oty

Ix Tty ®)

Definition 2.2. The fractional derivative of f'€ C”, in the Cap-
uto sense, is defined as Caputo (Caputo, 1967)

‘
D10 = s | =0 e
(m—1< Re(e) <m,me N,t>0). (6)
We mention some of its properties as follows:
D*K =0,
where K is a constant.
p<o—1,

Dt = 0}( 1)
= . 5
r(“_wl)t" *ou>o—1.

Also, we need here two of its basic properties:

Lemma 2.1. If m—1<oa<m, meN and f€ CZ’, u> -1,
then

D*Jf(x) = f(x)
and

—1 -
m .Xk

PDx) = fix) = >_fM07) 77

k=0

x> 0.

The Caputo fractional derivative is considered here because
it allows traditional initial and boundary conditions to be in-
cluded in the formulation of the problem.

Definition 2.3. For m to be the smallest integer that exceeds o,
the Caputo time-fractional derivative of order o > 0, is defined
as

Diu(x,1)=

!

m—s—1 9" u(cx,
O“u(x,t){r(mlx)for(lr) #! (,‘;T(,,‘,I)d'f, m—1<a<m,

or Pulxd)
st

ao=meN.
(8)
3. Methodologies

3.1. The Adomian decomposition method (ADM )

Consider the n-dimensional time-fractional differential equa-
tion of fourth-order with variable coefficients

8961,{()(1,)62,...7)(,,7[) 84M(XI7X27...,X,”1)
or +A1(X1,X2,...,x,,) ax?
34u(x1 X2y vy Xpy )
+A2(X1 XZA..X) ! ! ’ ’ + -
y A2y s An 8)(73
64u(x| X2y uny Xy 1)
+ An(x1, X2,y Xn) R
y A2y ) axj
:H(xla-xb"'7-Xml)7x17x27"'7xn€R7
>0, 1 <a<2. 9)

The time-fractional differential equation (9) can be ex-
pressed in terms of operator form as

D;MH(XI,Xz, sy Xy t) + (A1L4,\'| + A2L4.\‘3 + -+ AnL4x,,)
Xu(xl,xz,...,xn,t):H. (10)

where D7 :g—; and Ly, :%, q=1,2,3,...,n, while H, 4,,
Ay, As, ..., A, are continuous function and « is the parameter
describing the order of the time-fractional derivative.

On applying the operator J*, on both sides of Eq. (10), we

obtain



Numerical study of time-fractional fourth-order differential equations with variable coefficients 93

m—1 c lk

Z o xl,xz,..‘,x,,,0+)ﬁ

— J*[(A1 L4y, + A2 L4y, +
+AnL4xn)u(x1,xz,...,xn,t)—H]. (]1)

u(x17x2>'“ 7xn7

The Adomian decomposition method assumes a series solu-
tion for u(xj,xy,...,x,,¢) given by an infinite series of
components

o0
u(X1, X2y oy Xy 1) Zu, X1y X2y ey Xy 1), (12)
J=0

where the components u;(xy, X2, ..., x,,t) will be determined
recursively. Using Eq. (12) in Eq. (11), we get

0
Zuf(x17x27' "7xna[)

J=0
—1
A N
;8— X1,X2,. .. xn,O)k'

J*[(A1Lay, + AsLyy, +

0
X E uj(x17x27'~'7
=0

Following the decomposition method, we introduce the
recursive relation as

-+ AnL4.\',,)

Xpyt) — H (13)

| k
uo(X1, X2,y Xy 1) Zg— x.,xz,...7xn70+)%+ﬁ(H).
£ !
(14.1)
Uyl (Xl,X2, ey X [)
= —P[(A1Law, + AoLas, + -+ + AyLay Uy (X1, X2, ..., X, 1)),
r=0. (14.2)

where in above relation (14.1), m = 2, since for our problem
l<a<2.

3.2. He’s variational iteration method (HVIM )

Consider again the time-fractional differential equation (9) of
fourth order. The correction functional for it can be approxi-
mately expressed as follows:

uk+|(xlvx2a"'7xnat)
! OMu(x1, %2, ..., X,
:uk(x17x27-"7xmt)+/ )”(C)( /( l 82111 C)
0 4
a4ﬁk(xlax27"'7xmc)
+4 Oxt +
a4ﬁk(xl7x27"'7xm£) o
+ A, o —H)d, (15)

where /1 is a general Lagrange multiplier, which can be identi-

0411;\ au,(
047'”5)4

sidered as restricted variations. Making the above functional

fied optimally via variational theory, here are con-

stationary, noticing that dii;, = 0,

8’”14,(

yields the following Lagrange multipliers

t
(5uk+1 = 5le + 5/ ;,(C)
0

A=—1,
A={—1,

for m = 1. (17)
for m=2. (18)

Therefore, for m =1, we obtain the following iteration
formula:

U1 (X1, X2, ey Xy )
:uk(X],)Cz,... xnvt)
"0 U 'y "y
- A A,——— H |d 19
/0(5C+184 +a4 )4 (19)

and for m = 2, we obtain the following iteration formula:
! o"u *u 0*uy ;
Upei 1 :uk+/0 (C—t)(aCkJrA. =t ~-+A,,Tx;— )dg.
(20)

4. Numerical applications

In this section, we apply the ADM and HVIM developed in
Section 3 to solve one and two dimensional initial boundary
value problems with variable coefficients. The methods may
also be applicable for higher dimensional spaces. Numerical re-
sults reveal that the ADM and HVIM are easy to implement
and reduce the computational work to a tangible level while
still maintaining a higher level of accuracy. All the results for
the following three applications are calculated by using the
symbolic calculus software MATHEMATICA.

4.1. Application 1

Consider the following case of one-dimensional time-fractional
fourth-order PDE

1 *u(x, 1) 1
Drul; A i G L0y S 1
“u(x, ) + ( +120) B 0, F<x<l,

l<a<2. (21)

subject to the initial and boundary conditions:
Ou x> 1

et -1+ -
a0 =155 ”(2”)

(1—0—0—55) sin(z, o) @(l t)
120 T ax2\2]
11
6

7 s sin(r,a),  w(l,1)

t>0,

u(x,0) =0,

Ou 1.
F] (L,r) = 13 sin(z, o). (22)
. 00 (71)1‘ i1
= o Ty

On applying ADM, the first component of the decomposi-
tion series solution is:

21
=10 sin(¢, o),

where the function is defined as sin(z, «)

uy(x,1) = (1 +%) (23)
and the next few successive components are as follows:
2o+1 5
uzzm(wlxﬁ), (25)
3041 5
o=t (i) @9
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and so on, in this manner the rest of the components of the
decomposition series can be obtained. The ADM solution in
series form is

Z3a+l

taHrl t2%+1 x5
(/- - (1 .
u < T@t2) T(a+2) TGat2) >< +120)
(27)

Now we solve the problem by HVIM. According to the iter-
ation formula (20), the iteration formula for Eq. (21) is given by

t 4 4
et = g +/O (C—1) (Dguk(x, 0+ (i + 1x20) %) &
(28)

Using the above iteration formula, we begin with
up(x, 1) = 1—0—%)[, and get the next approximations as
follows:

£ X’
(=5) (1)

w545 (e maraa) ) ()

e <f(7_—1 22) " (7- 2&); (6 - 2“)) o WH)

X5
14+—]. 1

X ( 5 0) (31)

and so on, in the same manner the rest of the components of the

iteration formula equation (28) can be obtained, where A4, ()
are given in Appendix. The fourth term approximate solution is

e <Z*§+%’%+’H(r(s3— 7)) (5 —a)i(“—“))
. (r(7_—1 22) (71— 20()11" (6 - 206)) o (a)ﬂia)

X ]+x_5
120 )

31

(32)

When o = 2, the solution obtained by Wazwaz (2001, 2002)
and Biazar and Ghazvini (2007) is recovered as a special case.

Table 1 shows the approximate solutions for Egs. (21) and
(22) obtained for different values of o using the ADM and
HVIM. It is clear from the table that our approximate solu-
tions using these methods are in good agreement with the exact
values. It is note that only the fourth-order term of HVIM
solution and only four terms of the ADM series used in eval-
uating the approximate solutions for Table 1. It is evident that
the efficiency of these approaches can be dramatically en-
hanced by computing further terms or further components of
u(x,t).

4.2. Application 2

'u(x,1)

ox*

. X
D{M(X, t) + <E— 1)
1<a<?2,

=0,

subject to the initial and boundary conditions:

u(x,0) = x —sinx, %(x, 0) = —x +ssinx,

u .
u(0,1) =0, ﬁ(o, 1)=0, u(l,t)=Exp(t,a)(1 —sinl),
ou

(1,1) = Exp(t,a)sin 1. (34)

ox2
where the function Exp(z,a) is defined as Exp(t,0) =
%) i g2
>iso(=1) F(Y%H)
On solving Egs. (33) and (34) by ADM, the first few com-
ponents are

uo(x, 1) = (1 — 1)(x — sinx), (35)
= (F(oc[:— D~ r(;il 2)) (x = sin), (36)
= (r(zfl - r(;:: 2)) (v = sinx), (37)
h= (r(ai N~ r(;:i 2)) (v = sin x). (38)

and so on, in this manner the rest of the components of the
decomposition series can be obtained.

Table 1 Comparison of the approximate solutions of equations (21) and (22) obtained by ADM and HVIM.
t X o= 1.50 o=1.75 o=2
UaDM URVIM UADM URVIM UADM URVIM UExact

0.2 0.50 0.194734 0.196914 0.19736 0.197687 0.198721 0.198721 0.198721
0.60 0.194309 0.196991 0.197437 0.1977 63 0.198798 0.198798 0.198798
0.75 0.195068 0.197527 0.197699 0.198026 0.199062 0.199062 0.199062
1.0 0.196306 0.198504 0.198953 0.199282 0.200325 0.200325 0.200325

0.4 0.50 0.370692 0.377682 0.382211 0.383217 0.38952 0.38952 0.38952
0.60 0.370835 0.377828 0.382359 0.383366 0.389671 0.389671 0.389671
0.75 0.3713 2 8 0.37833 0.382867 0.383875 0.390188 0.390188 0.390188
1.0 0.373633 0.38073 0.38529 6 0.3363 1 0.392663 0.392663 0.392663

0.6 0.50 0.521419 0.531411 0.546537 0.547792 0.564789 0.564789 0.564789
0.60 0.521621 0.531617 0.546748 0.548005 0.565008 0.565008 0.565008
0.75 0.522314 0.532323 0.547475 0.548733 0.565759 0.565759 0.565759
1.0 0.525627 0.5357 0.550947 0.552214 0.569348 0.569348 0.569348
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The fourth term approximate solution is given by

[ [1+1 tlx lZoHrl
=(1-¢ - -
u ( Ter ) Te+r2) ' T@arD) Tat2)
Z31 [31+1
— — sin x). 39
YT F(3a+2)>(x sinx) (39)

According to the iteration formula (20), the iteration for-
mula for Eq. (33) is given by

B t " X 64141( (xa é’) I
U1 = Ui +/0 (€= (Diuk(x’ &+ <Sinx - 1> T) .
(40)

By the above iteration formula, starting with wuy(x,?) =
(1 — #)(x — sin x), we can obtain the following approximations:

27 .
u = <1 ft+jf§) (x —sinx), (41)

3 4 tS

U = 1—z+z2—z—+———+z4*°‘ o
T 3741 5 (4—a)I(3— )

i) et i)
x (x —sinx), )

KT S AN N A 1
= (1 —-f+= 4 4 __ 14 t(v—x
" < MR R S R R TR G

T—o 4—a 3 :
+A3(0) 1 ((4 —)I(3—a) T(4- “))

+e (r(si P a);(4 - oc))

6—20 1 1
+ (F(6 "% (6= 2)I(5— 20())

o (m_—1 %) (7= 205)11"(6 _ 20())) (v = sinx)

(43)

and so on. When o = 2, we recovered the solution obtained by
Wazwaz (2001, 2002) and Biazar and Ghazvini (2007). The ex-
act solution of Eq. (33) for a =2 is u = (x — sinx)e™".

u —1—l+3—t2—i+ﬁ—i+ﬁ—i
T 2 28 406 7

o ((4 e T a))

S5—o 3 _ 3
+i (r(s — G—al@d- oc))
+ Ap (o) + As (o)1

1 1
g (F(6 —2a) (6 —2a)I(5— m))
7-2a -1 1 '
+1 (F(772°‘)+(77205)F(672a)))(x_smx)'
(44)

Table 2 shows the approximate solutions for Egs. (33) and
(34) obtained for different values of o using the ADM and
HVIM. Itis clear from Table 2 that our approximate solutions
using the methods are in good agreement with the exact values.
As in the previous example, only the fourth-order term of
HVIM solution and only four terms of the ADM series were
used in evaluating the approximate solutions for Table 2.

4.3. Application 3
We consider a two dimensional time-fractional fourth-order
PDE

1 4 LI
Diut )+ 235+ ) TR

x2 6! Ox4
1y dulx, p, 1)
o 4 L)
" <y2+6!) o
1
§<x,y<1,t>0.,1<oc<27 (45)

subject to the initial and boundary conditions:

Ou X6 F
u(x7y70):07 E(xayao):2+a+5,

1 0.5° 3%\ .
H(E,y, I) = (2—"_?_'_6) Sln([7OC),

AN
M(l,y,l‘): 2+5+a Sln(tvo()7

Table 2 Comparison of the approximate solutions of equations (33) and (34) obtained by ADM and HVIM.

t X o= 1.50 o=1.75 a=2
UapM UHVIM UapM UHVIM UADM UHVIM UExact

0.2 0.25 0.0022379 0.00218727 0.00216712 0.00215504 0.00212546 0.00212545 0.00212546
0.30 0.0177361 0.0173348 0.0171751 0.0171111 0.0168449 0.0168449 0.0168449
0.75 0.058934 0.0575971 0.0570666 0.05568538 0.0559694 0.0559693 0.0559694
0.9 0.100577 0.0983018 0.0973963 0.0970331 0.0955238 0.0955238 0.0955238

0.4 0.25 0.00195106 0.00192801 0.00184347 0.00183161 0.00174018 0.00173996 0.00174018
0.50 0.0154628 0.0152801 0.0146101 0.0145161 0.0137915 0.0137897 0.0137915
0.75 0.0513771 0.0507702 0.0485438 0.0482315 0.0458239 0.0458181 0.0458239
0.9 0.0876861 0.0865502 0.0828503 0.0823173 0.0782083 0.0782083 0.0782083

0.6 0.25 0.001573 0.00170687 0.00158783 0.00157339 0.00142474 0.00142307 0.00142474
0.50 0.0124666 0.0135275 0.012584 0.0124697 0.0112915 0.0112783 0.0112915
0.75 0.0414217 0.0449467 0.041812 0.041432 0.0375174 0.0374735 0.0375174
0.9 0.0706951 0.0767111 0.713612 0.0701726 0.0640315 0.0640315 0.0640315
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t1+l t2x+1 t3a+l y
=— = (- + - 2+
( ) sin(t, ), ( Fa+2) T(2e+2) TI'Ga+ 2)) ( Gl 6')
1 (51
—( X, =, ) =——sin(t,a), )
According to the iteration formula (20), the iteration for-
Ou o 1 mula for Eq. (45) is given b
Ut = A sin(ha), (61,0 = sin(r,q). (46) q- (45) s given by
o0x? 24 8 2 24 ot 4 4
u = + (V_t) Du (‘C C)+2 1 +x a“k(X,y,Q')
By applying ADM, we have et = e (U s 6! x4
P 1 'u(x,3,0\ .
= 2 — 2 )dL. 52
Uy z(2+6 +6,) (47) + +6, e ¢ (52)
(et 6 g0 . . . . . _
" = — 24 + (48) Using the above iteration formula, starting with uy(x, ) =
Fla+2) "6l ol (24842 btain the followi imations:
it . & + %), we can obtain the following approximations:
> ( X
=——-|2+-+ ) (49) 3
( | | t 0
I'2e+2) 6! 6! P 24 +} (53)
Pl X0 g8 0 3! 6! 6!
=——|2+—+ 5
" F(3“+2)( ol 61) 0 u2:<7ﬁ+[5+f5 £< S : ))
. . 3 5! res- S—a)r(4—
and so on, in this manner the rest of the components of the o (5-o) G-al(#=9)
decomposition series can be obtained. The fourth term approx- (2 +2 4 ) (54)
imate solution is given by 6! ol
Table 3 Comparison of the approximate solutions of equations (45) and (46) obtained by ADM and HVIM (y = 0.4).
t X o= 1.50 o=1.75 a=2
UaDM UHVIM UaDM UHVIM UgDM UHVIM UExact
0.2 0.60 0.389381 0.39374 0.394632 0.395285 0.397353 0.397353 0.397353
0.70 0.3894 0.393759 0.34651 0.395304 0.397372 0.397372 0.397372
0.80 0.389439 0.393799 0.394691 0.395344 0.397412 0.397412 0.397412
1.00 0.389638 0.394001 0.394893 0.395546 0.397616 0.397616 0.397616
0.4 0.60 0.741216 0.755194 0 764250 0.766262 0.778864 0.778364 0.778864
0.70 0.741253 0.755231 0.764288 0.7663 0.778903 0.778903 0.778903
0.80 0.741327 0.755307 0.764365 0.766377 0.778981 0.778981 0.778981
1.00 0.741707 0.755694 0.764756 0.766769 0.77938 0.77938 0.77938
0.6 0.60 1.0426 1.06258 1.09283 1.09534 1.12932 1.12932 1.12932
0.70 1.04265 1.06263 1.09288 1.09539 1.12938 1.12938 1.12938
0.80 1.04276 1.06274 1.09299 1.0955 1.12949 1.12949 1.12949
1.00 1.04329 1.06229 1.09355 1.09606 1.13007 1.13007 1.13007
Table 4 Comparison of the approximate solutions of equations (45) and (46) obtained by ADM and HVIM (y = 0.8).
t X o =1.50 o=1.75 =2
UaDM UHVIM UaDM UHVIM UaDM UHVIM UExact
0.2 0.6 0.389945 0.395355 0.394703 0.39536 0.397424 0.397424 0.397424
0.7 0.389947 0.395375 0.394722 0.395379 0.397443 0.397443 0.397443
0.8 0.389509 0.395414 0.394762 0.395429 0.397483 0.397483 0.397483
1.0 0.389708 0.395617 0.394064 0.395622 0.397687 0.397687 0 397687
0.4 0.6 0.741349 0.766399 0.764387 0 766575 0.779004 0.779004 0.779004
0.7 0.741386 0.766437 0.764325 0.766613 0.779042 0.779042 0.779042
0.8 0.74146 0.766514 0.764501 0.76669 0.77912 0.77912 0.77912
1.0 0.74184 0.766906 0.764893 0.767683 0.779519 0.779519 0.779519
0.6 0.6 1.04279 1.09553 1.09302 1.09702 1.12953 1.12953 1.12953
0.7 1.04284 1.09559 1.09308 1.09707 1.12958 1.12958 1.12958
0.8 1.04295 1.0957 1.09319 1.09718 1.1297 1.1297 1.1297
1.0 1.04348 1.09626 1.09375 1.09774 1.13027 1.13027 1.13027
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Uy = z—i+£—£+ﬁ*“ SR 3
T 2740 7! Ir(5—a) (5—a)l(4—o)

7 ((7 - 20()1{(6 22 T(7 - 2a)) A (“)’77‘%)
X(z+§+g), (55)

and so on, in the same manner the rest of the components of
the iteration formula (52) can be obtained. The fourth term
approximate solution is given by:

WA I
2 40 7 I'S—oa) (B—a)l'(4-0a)
T 1 1 T—o
+1t ((7 —20)I(6 — 2a) a r7- 20()) + A ()t )

PO
><<2+a+a). (56)

It is obvious that for « = 2, ADM solution (51) and HVIM
solution (56) are identical. The exact solution of Eq. (43) for
a=21isu= <2+%+%) sin z.

Table 3 for y = 0.4 and Table 4 for y = 0.8 show the
approximate solutions for Eq. (45) obtained for different val-
ues of o using the ADM and HVIM. The values of o = 2 is
the only case for which we know the exact solution. It is clear
from the table that our approximate solutions using the meth-
ods are in good agreement with the exact values. As in the pre-
vious applications only the fourth-order term of HVIM
solution and only four terms of the ADM series were used in
evaluating the approximate solutions for Tables 3 and 4.

5. Conclusions

In this paper, the ADM and HVIM were use to obtain the ana-
Iytical/numerical solution of time-fractional fourth-order par-
tial differential equations with variable coefficients. To
illustrate the analytical and numerical results, we used MATH-
EMATICA. There are few important points to make here.
Firstly, ADM and HVIM provide the solution in terms of easily
computable components. These methods are powerful and effi-
cient techniques in finding exact and approximate solutions for
linear and nonlinear models. They provide more realistic solu-
tions that converges very rapidly in real physical problems.
The analytic solutions of three applications, found by these
two methods, are compared with each other as well as with exact
solutions. The numerical results show that the solutions are in
good agreement with each other and with their respective exact
solutions. Secondly, the methods were used in a direct way with-
out using linearization, perturbation or restrictive assumption.
Finally, the recent appearance of fractional partial differential
equations as in applications 1 and 2 modeled in some fields as
transverse vibrations (Gorman, 1975) make it necessary to
investigate the method of solutions for such equations analytical
and numerical. The selection of the initial approximation is both
one of the simplest and one of the most important choices we can
make when employing the ADM and HVIM. The initial approx-
imation should satisfy the initial and/or the boundary data for
the problem. We remark that the concept of a best initial guess
is a bit superfluous. Indeed, the best initial approximation would
simply be the exact solution.
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