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A B S T R A C T

In this study, one-mass model of vocal cord is solved by using cubic trigonometric B-spline (CTBS) in order to
generate displacements of healthy and pathological vocal cord. By utilizing CTBS, this work aims to investigate
the relationship between five vocal cord conditions and its displacements generation throughout phonation
process. The approximate displacements derived from CTBS are then compared to displacement generated by
ode45 built-in solver through MATLAB software. The errors from both methods are then calculated which
represented the effectiveness of the CTBS method in generating vocal cord displacements. Any discrepancies
between the results generated by using CTBS and ode45 can be analysed to prove the reliability of CTBS method.
Besides, an error analysis is demonstrated in order to quantitatively evaluate the accuracy of the approximate
solutions. The generated approximate displacements of CTBS have shown to be approximately close to ode45
results. Thus, it can be concluded that CTBS is a reliable numerical method. The relationship between vocal cord
conditions and its generated displacements has represented the distinction between healthy and pathological
vocal cord outcomes. Healthy vocal cord has generated a steady decline displacements value while vocal cords
with pathological condition have generated fluctuated displacement values throughout the phases of phonation
process. The fluctuation trend of displacements value has revealed the irregular displacements value generation
which is one of pathological vocal cord feature caused by low stiffness.

1. Introduction

Speech production involves a complex interplay of physiological
processes, with the vocal cords playing a crucial role in sound genera-
tion. The vocal cords, also known as vocal folds, are essential compo-
nents of the larynx responsible for producing voice sounds. The vocal
cords vibrate as the air passes through the larynx from lungs, which then
form the basis of speech created by the sound waves. The larynx, also
known as the voice box, is a structure located at the top of the trachea
that involved in sound production process, breathing, and swallowing.
The larynx contains the vocal cords, which are fold-like soft tissue that
vibrates to produce sound. The distance between the opening of vocal
cords is called glottis, that function to opens and closes, during
breathing, swallowing and sound production process. Lot of researches
have been conducted to study the movements of vocal cord through
experiment and mathematical modelling approach.

The evolution of mechanical models of vocal cords has progressed
from the basic one-mass model (Flanagan and Landgraf, 1968) to more

complex multi-mass models (Drioli and Aichinger, 2021), as discussed in
various research papers. Initially, the one-mass nonlinear oscillator
system was accepted as the fundamental model for describing voice
production. Over time, this model has been extended into three (Story
and Titze, 1993), five (Yang et al., 2010), and more mass systems,
incorporating time variable parameters (Cveticanin, 2015) and three-
dimensional aspects (Lan, 2006), as well as simplified into systems
with coupled deflection (Zheng et al., 2011) and damping functions
(Fulcher et al., 2006). These advancements have allowed for more
detailed description of the vibrations of symmetric (Tao et al., 2007) and
asymmetric vocal cords (Erath et al., 2019), providing insights into
regular and irregular motions like bifurcation (Mehdi and Mohammad,
2019) and deterministic chaos (Jiang and Zhang, 2002) in vocal cords.
The progression from simpler one-mass models to more intricate multi-
mass systems has significantly enhanced our understanding of the me-
chanical behaviour of vocal cords and their role in voice production.

The one-mass model of vocal cords by Flanagan is a significant
advancement in vocal cord modelling, particularly in understanding the
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nonlinear interaction between vocal cord displacement and airflow. This
model describes the system’s behaviour qualitatively similar to higher-
dimensional models like the two-mass Ishizaka-Flanagan model
(Ishizaka and Flanagan, 1972), showcasing its effectiveness in capturing
essential dynamics of vocal cord vibration (Mcgowan and Howe, 2010).
The one-mass model simplifies the complex mechanics of vocal cord
oscillation into a more manageable framework, aiding in the study of
voice production and pathology detection (Perrine et al., 2020). By
incorporating the one-mass model, researchers can simulate vocal cord
vibrations accurately and efficiently, enhancing the understanding of
vocal physiology and potential disorders. Further, this work aims to
generate displacements of vocal cord by solving one-mass model of vocal
cord.

Numerical methods play an important role in solving various prob-
lems (Abd El-Hady& El-shenawy, 2024; Shirokova& El-Shenawy, 2018)
such as mechanical models, (El-shenawy, El-Gamel, & Teba, 2024) and
also to solve mechanical model of vocal cords. A numerical model called

simVoice is introduced, which includes experimentally obtained vocal
cord motion to simplify computational expenses and enhance efficiency
(Maurerlehner et al., 2021). The numerical simulation of vocal cord
vibrations excited by compressible viscous flow for flow and elasticity
problems which involves space–time discontinuous Galerkin method
and the backward difference formula in time and discontinuous Galerkin
method in space (Balázsová et al., 2021). Furthermore, the mathemat-
ical model and numerical simulation of flow-induced vibrations of
human vocal cords model employ the finite element method with SUPG
and PSPG stabilization methods for fluid flow approximation, empha-
sizing the importance of inlet boundary conditions (Sváček and Horáček,
2018). Lastly, a study on vocal cord asymmetric collision presents a
position-based contact model with variational methods for contact
enforcement and highlights the impact of contact on vocal cord dy-
namics and oscillations (Granados et al., 2017).

The B-spline collocation method is a powerful numerical technique
used in solving both initial value problems (IVPs) (Islam, 2015) and
boundary value problems (BVPs) (Goh et al., 2012) efficiently. Various
studies have highlighted the effectiveness of this method in providing
accurate approximations for a wide range of problems. For instance, the
uniform cubic B-spline collocation method has been successfully applied
to linear (Goh, 2013) and nonlinear fractional IVPs (Rabah et al., 2022),
demonstrating its validity and applicability (Tayebi et al., 2022).
Additionally, the quintic B-spline collocation method has shown fourth-
order convergence results when solving non-linear BVPs, showcasing its
proficiency in handling such problems (Tok Onarcan et al., 2023).
Moreover, the orthogonal cubic spline collocation technique has been
utilized for two-point interface BVPs, emphasizing its computational
superiority and stability over other methods (Bhal and Panda, 2022).
There are few types of B-spline basis function such as B-spline, trigo-
nometric B-spline (Chawla et al., 2023; Yaseen et al., 2017) and hybrid
B-spline (Zin, 2016) that has widely used to solve various mathematical
problems.

Since one-mass model of vocal cord is an initial value problem, cubic
trigonometric B-spline (CTBS) (El-El-shenawy et al., 2024b) is chosen to
solve this model and generate approximate displacements of vocal cord.
Besides, CTBS is a simple and straightforward (Abbas et al., 2014)
method to generate displacements of vocal cord. Abbas et al. state that
the benefit of employing the suggested method is that, compared to the
finite difference approach, which only provides the solution at specific
points, it generates a spline function on each new time line that can be

Table 1
Parameters used in solving Eq. (1) (Cataldo et al., 2006;
Flanagan and Landgraf, 1968).

Parameter Value

m 0.240 × 10-3 kg
b 0.667 Ns/m
k 4.925 × 105 Ns/m
t 0.050 s
Ps 783 Pa
ρ 1.300 × 103 kg/m3

l 1.800 × 10-2 m
d 0.300 × 10-3 m
h 1.000 × 10-4

Table 2
Average fundamental frequencies of healthy and pathological conditions of
vocal cords.

Vocal cord conditions Fundamental frequency, f0 (Hz)

Healthy 453.7542
Hyperfunctional dysphonia 426.1522
Laryngitis 383.8566
Functional dysphonia 433.9783
Recurrent laryngeal nerve paralysis 418.1722

Fig. 1. Displacements of (a) healthy vocal cord, vocal cord with (b) HD, (c) laryngitis, (d) FD and (e) RLNP generated by using CTBS and ode45 within 0.05 s.
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utilized to get the solutions of any intermediate point in the space di-
rection. Subsequently, in order to prove the reliability of the proposed
method, the error obtained by the proposed method will be calculated
by comparing the generated displacements to ode45. Ode45 is a built-in
solver through MATLAB software that has been widely used to solve
various problems (Anyigor & Afiukwa, 2013; Postawa et al., 2020).

In conclusion, this study will generate the approximate displace-
ments of one-mass model for healthy and pathological vocal cord using
CTBS and verified by the ode45. Any discrepancies between both results
can be analysed and proved the reliability of CTBS method. Besides, an

error analysis is done in order to quantitatively evaluate the accuracy of
the approximate solutions. This study will also investigate the rela-
tionship between vocal cord conditions and its displacements generation
throughout phonation process.

2. Parameters

In this work, one-mass mechanical model of vocal cord is solved to
generate displacements of vocal cord. The equation of the model is given
by (Flanagan and Landgraf, 1968)

mxʹ́ (t)+ bxʹ(t)+ kx(t) = F(t), (1)

with the following initial conditions

x(t0) = α and xʹ(t0) = β, (2)

where x(t) is displacement of vocal cord, m is mass, b is damping, k is
spring constant while F(t) is forcing function. The value of mass,
damping and spring constant can be calculated by

Table 3
Displacements of each vocal cords condition obtained by using CTBS and ode4 within 0.05 s.

Time (s) Displacements (cm)

Healthy HD Laryngitis FD RLNP

CTBS ode45 CTBS ode45 CTBS ode45 CTBS ode45 CTBS ode45

0.010 1.1878 × 10-
4

1.1847 × 10-
4

9.3446 × 10-
5

9.2517 × 10-
5

9.3431 × 10-
5

9.5274 × 10-
5

1.0876 × 10-
4

1.0790 × 10-
4

1.0876 × 10-
4

1.0790 × 10-
4

0.015 8.0780 × 10-
5

8.1291 × 10-
5

1.1362 × 10-
4

1.1269 × 10-
4

1.2106 × 10-
4

1.2295 × 10-
4

1.1767 × 10-
4

1.1724 × 10-
4

1.1767 × 10-
4

1.1724 × 10-
4

0.020 7.0404 × 10-
5

7.0602 × 10-
5

1.1345 × 10-
4

1.1308 × 10-
4

1.3308 × 10-
4

1.3429 × 10-
4

1.0253 × 10-
4

1.0288 × 10-
4

1.0253 × 10-
4

1.0288 × 10-
4

0.025 8.6857 × 10-
5

8.6491 × 10-
5

1.0455 × 10-
4

1.0479 × 10-
4

1.3420 × 10-
4

1.3449 × 10-
4

8.8370 × 10-
5

8.8979 × 10-
5

8.8370 × 10-
5

8.8979 × 10-
5

0.030 8.9785 × 10-
5

8.9697 × 10-
5

9.6264 × 10-
5

9.6773 × 10-
5

1.2988 × 10-
4

1.2994 × 10-
4

8.5128 × 10-
5

8.5408 × 10-
5

8.5128 × 10-
5

8.5408 × 10-
5

0.035 8.2788 × 10-
5

8.3004 × 10-
5

9.2327 × 10-
5

9.2744 × 10-
5

1.2427 × 10-
4

1.2348 × 10-
4

8.8951 × 10-
5

8.8813 × 10-
5

8.8951 × 10-
5

8.8813 × 10-
5

0.040 8.2152 × 10-
5

8.2182 × 10-
5

9.2217 × 10-
5

9.2373 × 10-
5

1.1972 × 10-
4

1.1894 × 10-
4

9.2952 × 10-
5

9.2685 × 10-
5

9.2952 × 10-
5

9.2685 × 10-
5

0.045 8.5079 × 10-
5

8.4962 × 10-
5

9.3819 × 10-
5

9.3753 × 10-
5

1.1701 × 10-
4

1.1646 × 10-
4

9.4061 × 10-
5

9.3929 × 10-
5

9.4061 × 10-
5

9.3929 × 10-
5

0.050 8.5102 × 10-
5

8.5097 × 10-
5

9.5372 × 10-
5

9.5219 × 10-
5

1.1596 × 10-
4

1.1571 × 10-
4

9.3113 × 10-
5

9.3154 × 10-
5

9.3113 × 10-
5

9.3154 × 10-
5

Table 4
Errors of each vocal cords condition obtained within 0.05 s.

Time
(s)

Errors

Healthy HD Laryngitis FD RLNP

0.010 3.0474 ×

10-7
9.2841 ×

10-7
1.8423 ×

10-6
8.6056 ×

10-7
8.6056 ×

10-7

0.015 5.1106 ×

10-7
9.2687 ×

10-7
1.8877 ×

10-6
4.2781 ×

10-7
4.2781 ×

10-7

0.020 1.9810 ×

10-7
3.6930 ×

10-7
1.2091 ×

10-6
3.4659 ×

10-7
3.4659 ×

10-7

0.025 3.6570 ×

10-7
2.4035 ×

10-7
2.9217 ×

10-7
6.0949 ×

10-7
6.0949 ×

10-7

0.030 8.8213 ×

10-8
5.0958 ×

10-7
4.3992 ×

10-7
2.8026 ×

10-7
2.8026 ×

10-7

0.035 2.1665 ×

10-7
4.1664 ×

10-7
7.8928 ×

10-7
1.3728 ×

10-7
1.3728 ×

10-7

0.040 2.9324 ×

10-8
1.5561 ×

10-7
7.7928 ×

10-7
2.6748 ×

10-7
2.6748 ×

10-7

0.045 1.1605 ×

10-7
6.5709 ×

10-8
5.4700 ×

10-7
1.3223 ×

10-7
1.3223 ×

10-7

0.050 5.1934 ×

10-9
1.5306 ×

10-7
2.5222 ×

10-7
4.0653 ×

10-8
4.0653 ×

10-8

Table 5
Displacements generated by each condition throughout phonation process.

Conditions Displacements throughout phonation process (cm)

Early phase, 0.010 s Middle phase, 0.030 s End phase, 0.050 s

Healthy 1.1878 × 10-4 8.9785 × 10-5 8.5102 × 10-5

HD 9.3446 × 10-5 9.6264 × 10-5 9.5372 × 10-5

Laryngitis 9.3431 × 10-5 1.2988 × 10-4 1.1596 × 10-4

FD 1.0876 × 10-4 8.5128 × 10-5 9.3113 × 10-5

RLNP 7.6495 × 10-5 1.0769 × 10-4 9.8421 × 10-5

Fig. 2. Displacements generated by each vocal cord conditions throughout the
phases of phonation process.
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mass, m =
1
4

σl2d, (3)

damping, b = 2
̅̅̅̅̅̅̅
mk

√
, (4)

and

springconstant, k = 4π2m
(
f0
)2
, (5)

where σ is the density of vocal cord flesh, l is the cord length, d is the
vocal cord thickness, and f0 is fundamental frequency. The forcing
function is calculated by F(t) = 1

2 (P1 + P2)(ld) where P1 and P2 are the
acoustic pressures at the inlet and outlet of the glottal orifice, and can be
obtained by P1 = Ps − 1.37PB and P2 = − 0.50PB. Ps is subglottal pressure
and PB is Bernoulli pressure and can be calculated by PB = 1

2 ρ
⃒
⃒Ug

⃒
⃒2Ag− 2

while the value of displacements and fundamental frequencies will be
calculated in the next section.

3. Methodology

This section explained methodology in finding fundamental fre-
quencies, f0 and approximate displacements of five vocal cord condi-
tions. The conditions are healthy, laryngitis, hyperfunctional dysphonia,
functional dysphonia and recurrent laryngeal nerve paralysis. Subsec-
tion 3.1 discussed the method used to generate fundamental frequency.
Then, subsection 3.2 and 3.3 discussed the generation of displacements
by using CTBS and ode45 respectively.

3.1. Fundamental frequency

Origin is a data analysis and graphing software that also offered
analysis tools and apps for signal processing. The software is used to
obtain fundamental frequencies. The fundamental frequencies are ob-
tained by the following steps:

i. 100 voice recordings of each vocal cord conditions are gathered
from Saarbruecken Voice Database (Barry and Pützer, 2007).

ii. The recordings are then, imported into Origin, in order to
generate the frequencies, providing the magnitude, amplitude,
phase, one/two-sided power density, and other computation
results.

iii. From the frequency values, fundamental frequencies of the
recording can be obtained to find the value of k from Eq. (5) as
follows:

f0 = Index of the largest power× Fs + F0, (6)

where the index of the largest power can be obtained from FFT
result, f0 is frequency resolution and F0 is the starting frequency
value.

iv. Further, the average fundamental frequency of each condition is
calculated and used in proposed method.

3.2. Cubic trigonometric B-spline (CTBS)

This subsection discusses CTBS method in generating approximate
displacements of vocal cord by solving Eq. (1). In CTBS, the knot with
non-decreasing sequence is considered as

{
t0, t1,…tj− 1, tj, tj+1,…tn

}

where tj− 1⩽tj⩽tj+1 for j = 0, 1,…n. The j − th basis of trigonometric B-
spline, Tk

j (t) of order k can be calculated using (Walz, 1997)

Tk
j (t) =

sin
(

t− tj
2

)

sin
(

tj+k− 1 − tj
2

)Tk− 1
j (t)+

sin
(

tj+k − t
2

)

sin
(

tj+k − tj+1
2

)Tk− 1
j+1 (t), (7)

where CTBS basis of order one is defined as

T1
j (t) =

{
1, t ∈

[
tj, tj+1

]
,

0, otherwise. (8)

Then, the CTBS basis of order four is defined as

T4
j (t) =

1
θ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ3
(
tj
)
, t ∈

[
tj, tj+1

]
,

σ
(
tj
)[

σ
(
tj
)
ϛ
(
tj+2

)
+ ϛ

(
tj+3

)
σ2
(
tj+1

) ]

+ϛ
(
tj+4

)
σ2( tj+1

)
,

t ∈
[
tj+1, tj+2

]
,

σ
(
tj
)
ϛ2
(
tj+3

)
+ ϛ

(
tj+4

)

[
σ
(
tj+1

)
ϛ
(
tj+3

)
+ ϛ

(
tj+4

)
σ
(
tj+2

) ]
,

t ∈
[
tj+2, tj+3

]
,

ϛ3
(
tj+4

)
, t ∈

[
tj+3, tj+4

]
,

0, otherwise,

(9)

where σ
(
tj
)
= sin

(
t− tj
2

)

, ϛ
(
tj
)
=

(
tj − t
2

)

and θ = sin2
(

h
2

)

csc(h)csc
(
3h
2

)

.

CTBS function, x∗(t) is an approximate displacement generated from
a linear combination of the CTBS basis, as in

x∗(t) =
∑n− 1

j=− 3
CjT4

j (t), (10)

where Cj are unknowns to be evaluated and T4j is CTBS basis and can be
simplified to

x∗
(
tj
)
= Cj− 3T4

j− 3(t)+Cj− 2T4
j− 2(t)+Cj− 1T4

j− 1(t)+CjT4
j (t), (11)

x∗́
(
tj
)
= Cj− 3T4́

j− 3(t)+Cj− 2T4́
j− 2(t)+Cj− 1T4́

j− 1(t)+CjT4́
j (t), (12)

x∗ʹ́
(
tj
)
= Cj− 3T4ʹ́

j− 3(t)+Cj− 2T4ʹ́
j− 2(t)+Cj− 1T4ʹ́

j− 1(t)+CjT4ʹ́
j (t), (13)

Three nonzero basis functions of T4
j− 3

(
tj
)
,T4

j− 2
(
tj
)
and T4

j− 1
(
tj
)
are

included over
[
tj, tj+1

]
subinterval. By considering the nonzero basis

functions, Eq. (11) and its derivatives can be simplified and returned as

x∗
(
tj
)
= ϛ1Cj− 3 + ϛ2Cj− 2 + ϛ1Cj− 1,

x∗́
(
tj
)
= − ϛ3Cj− 3 + ϛ3Cj− 1,

x∗ʹ́
(
tj
)
= ϛ4Cj− 3 + ϛ5Cj− 2 + ϛ4Cj− 1

(14)

with ϛ1 = sin2
(

h
2

)

csc(h)csc
(
3h
2

)

, ϛ2 = 2
1+2cos(h), ϛ3 = − 3

4 csc
(
3h
2

)

, ϛ4 =

3(1+3cos(h) )csc2
(

h
2

)

16

(

2cos

(

h
2

)

+cos

(

3h
2

)), and ϛ5 = −

3cot2
(

h
2

)

2+4cos(h) .

Eq. (14) is then substituted into the equation to produce a matrix
system of order (n+ 1) equation with (n+ 3) unknown to solve Eq. (1).
Next, two equations are needed in order to generate a unique solution.
Subsequently, initial condition which given in Eq. (2) is approximated
and represented as

x∗(t0) = ϛ1Cj− 3 + ϛ2Cj− 2 + ϛ1Cj− 1 = α,
x∗́ (t0) = − ϛ3Cj− 3 + ϛ3Cj− 1 = β. (15)
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Eq. (15) is added to the system and become

[A](n+3)×(n+3).[C](n+3)×1 = [R]1×(n+3), (16)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϛ1 ϛ2 ϛ1 0 ⋯ ⋯ ⋯ 0
ω1 ω2 ω3 0 ⋯ ⋯ ⋯ 0
0 ω1 ω2 ω3 0 ⋯ ⋯ 0
⋮ 0 ω1 ω2 ω3 0 ⋯ 0
0 ⋯ ⋱ ⋱ ⋱ ⋯ ⋯ 0
0 ⋯ ⋯ ⋯ 0 ω1 ω2 ω3
ϛ3 0 ϛ3 0 ⋯ ⋯ ⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C− 3
C− 2
C− 1

⋮

Cn− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
F
⋮

⋮
F
β

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

ω1 = m(ϛ4) − b(ϛ3) + k(ϛ1),
ω2 = m(ϛ5) + k(ϛ2),

ω3 = m(ϛ4) + b(ϛ3) + k(ϛ1).

By solving the matrix system, C is evaluated and substituted into Eq.
(10) to obtain the approximate solution for Eq. (1).

3.3. Ode45

Ode45 is a build-in solver in MATLAB’s standard solver for ordinary
differential equations (ODEs). By using the same parameter as CTBS, Eq.
(1) is also solved by using the following algorithm.

Algorithm 1

Algorithm 1. Code for solving Eq. (1) by using ode45
f = @(t,x) [x(2); (F-r*x(2)-k*x(1))/m];
tspan = t0:(0.05–0)/(n):tN;
ts = zeros(1,n); xs = zeros(1,n);
[ts,xs] = ode45(f,tspan,[0;0]);

4. Error analysis

The estimation of a truncation error for the proposed method is
presented in this section. From approximate displacement in Eq. (14),
the relationships can be obtained as follows:

h
[
x∗́

(
tj− 1

)
+ 4x∗́

(
tj
)
+ x∗́

(
tj+1

) ]
= 3

[
x∗́

(
tj+1

)
− x∗́

(
tj− 1

) ]
, (17)

h2x∗ʹ́
(
tj
)
= 6

[
x∗
(
tj
)
− x∗

(
tj+1

) ]
− 2h

[
x∗́

(
tj
)
+ x∗́

(
tj+1

) ]
, (18)

h3x∗́ ʹ́ ( tj+
)
= 12

[
x∗
(
tj
)
− x∗

(
tj+1

) ]
+6h

[
x∗́

(
tj
)
+ x∗́

(
tj+1

) ]
, (19)

h3x∗́ ʹ́ ( tj−
)
= 12

[
x∗
(
tj− 1

)
− x∗

(
tj
) ]

+6h
[
x∗́

(
tj− 1

)
+ x∗́

(
tj
) ]

. (20)

Then, x∗́ ʹ́ ( tj+
)
and x∗́ ʹ́ ( tj−

)
are the approximate values of x∗ʹ́ʹ(t) in

[
tj,

tj+1
]

and
[
tj− 1, tj

]
, respectively. By using the operator notation

E
(
x∗
(
tj
) )

= x∗
(
tj
)
, Eq. (17) can be written as

h
(
E− 1 + 4+ E

)
x∗́

(
tj
)
= 3

(
E − E− 1)x∗

(
tj
)
. (21)

Since E = ehD where D = d
dx, operator E can be written in an expression

form in powers of hD:

ehD = 1+ hD+
h2D2

2!
+
h3D3

3!
+
h4D4

4!
+
h5D5

5!
+⋯

e− hD = 1 − hD+
h2D2

2!
−
h3D3

3!
+
h4D4

4!
−
h5D5

5!
+⋯

Next, Eq. (21), can be written as

h
(
e− hD + 4+ ehD

)
x∗́

(
tj
)
= 3

(
ehD − e− hD

)
x∗
(
tj
)
. (22)

Hence, can be given by

x∗́
(
tj
)
= x∗́

(
tj
)
−

1
180

h4x∗(5)
(
tj
)
+O

(
h6
)
. (23)

By using the same approach for Eq. (17)-(20), we can derive the
following relations:

x∗ʹ́
(
tj
)
= x∗ʹ́

(
tj
)
−

1
12

h2x∗(4)
(
tj
)
+

1
360

h4x∗(6)
(
tj
)
+O

(
h6
)
, (24)

x∗ʹ́ʹ
(
tj+

)
= x∗ʹ́ʹ

(
tj
)
+
1
2
hx∗(4)

(
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)
+

1
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(
tj
)
−

1
360
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(
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)

−
1

1440
h5x∗(8)

(
tj
)
+O

(
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)
,

(25)

x∗ʹ́ʹ
(
tj−

)
= x∗ʹ́ʹ

(
tj
)
−
1
2
hx∗(4)

(
tj
)
+

1
12

h2x∗(5)
(
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−

1
360

h4x∗(7)
(
tj
)

−
1
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h5x∗(8)

(
tj
)
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(
h6
)
.

(26)

Then, Eq. (25)-(26) can be written as

1
2
[
x∗ʹ́ʹ

(
tj+

)
+ x∗ʹ́ʹ

(
tj−

) ]
= x∗ʹ́ʹ

(
tj
)
+

1
12

h2x∗(5)
(
tj
)
+O

(
h4
)

(27)

and

x∗ʹ́ʹ
(
tj+

)
+ x∗ʹ́ʹ

(
tj−

)
= hx∗(4)

(
tj
)
−

1
720

h5x∗(8)
(
tj
)
+O

(
h7
)
. (28)

Afterwards, e(t) is defined as e(t) = x∗
(
tj
)
− x∗ and the equations of (23)-

(26) are substituted into e
(
tj + θh

)
to obtain

e
(
tj

+ θh
)

=
θ2(θ − 1)2

24
h4x∗(4)

(
tj
)
+

θ
(
θ2 − 1

)(
3θ2 − 2

)

360
h5x∗(5)

(
tj
)
+O

(
h6
)
.

(29)

Subsequently, the cubic uniform trigonometry B-spline is O
(
h4
)
accu-

rate.

5. Results and discussions

This section represented the approximate displacements generated
by healthy and four pathological conditions of vocal cords, and then
analysed accordingly. 100 recordings of each vocal cord condition
which is healthy, hyperfunctional dysphonia (HD), laryngitis, functional
dysphonia (FD) and recurrent laryngeal nerve paralysis (RLNP) were
synthesized to obtained average of fundamental frequencies. Table 1
and Table 2 tabulated the parameters, and the average of fundamental
frequencies for healthy and the pathological conditions of vocal cords.
Three phases of phonation process will be considered; (i) early phase at
0.01 s, (ii) middle phase at 0.03 s and (iii) end phase at 0.05 s. The errors
between CTBS and ode45 of each vocal cord condition will be evaluated
as Error = |x(t) − x∗(t) |.

Fig. 1 illustrated the generated displacements of (a) healthy, (b) HD,
(c) laryngitis, (d) FD and (e) RLNP. Numerically, the displacements and
the errors of each condition obtained by comparing the approximate
displacements between CTBS and ode45 are tabulated in Table 3 and 4.
It can be seen that CTBS and ode45 has generated slightly equal
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displacement within 0.05 s. The figure and numerical values revealed
that CTBS is a reliable method in generating displacement of vocal cord
when compared to ode45.

The phases of the phonation process of each vocal cord condition can
be observed from Table 3. It is apparent from Table 3 that the value of
displacements generated by healthy vocal cord steadily declined
throughout the process. Nevertheless, the displacement of vocal cord
with HD, laryngitis, FD and RLNP are fluctuated throughout the early,
middle and end phases. The HD, laryngitis and RLNP condition have
developed the fluctuation increase–decrease displacements while FD
condition has formed decrease-increase displacements of phonation
process.

Based on the trend which can be observed from Table 5, it can be
assumed that healthy vocal cord has the widest opening at early phase of
phonation process, which then decreased at the middle and more nar-
rowed at the end phase. However, the fluctuated trend of the vocal cord
with pathological conditions such as HD, laryngitis and RLNP have
shown that they have wider opening at the middle phase than at the
early phase. The opening of these vocal cords are then decreased at the
end phase but still wider than at the early phase. Aside from that, vocal
cord with FD has demonstrated a different fluctuation trend than other
pathological condition. It can be deducted that vocal cord with FD’s
opening has decreased at the middle phase than at the early phase, but
unexpectedly increased at the end phase.

6. Conclusion

In this work, the approximate displacements of five types of vocal
cord conditions have been generated by using CTBS and ode45. Overall,
it is evident that the generated approximate displacements by CTBS are
approximately close to ode45. It can be concluded from the calculated
error that CTBS is reliable method in generating displacements of vocal
cord. The generated displacements also have been utilized to investigate
the phases of phonation process. It can be pointed from the outcomes
illustrated in Fig. 2 and Table 5, that healthy vocal cord presents the
steadily decline phonation process. In contrast, another five patholog-
ical conditions have developed fluctuated displacement. Fluctuation of
displacements value revealed the irregular displacements value gener-
ation that is a characteristic of pathological vocal cord (Bonilha and
Deliyski, 2008) which caused by low stiffness. It may be the case
therefore that vocal cord with pathological condition has lower stiffness
than healthy vocal cord. Therefore, this work offers new insights into the
speech production of healthy and pathological vocal cord through nu-
merical results. Future researches are encouraged to investigate the ef-
fect of various pathological conditions towards the stiffness of vocal
cord. This could aid in determining the relationship between vocal cord
conditions towards its stiffness and the effect towards vocal cord dis-
placements value.
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Postawa, K., Szczygieł, J., Kułażyński, M., 2020. A comprehensive comparison of ODE
solvers for biochemical problems. Renew. Energy 156, 624–633. https://doi.org/
10.1016/j.renene.2020.04.089.

Rabah, A.B., Momani, S., Arqub, O.A., 2022. The B-spline collocation method for solving
conformable initial value problems of non-singular and singular types. Alex. Eng. J.
61, 963–974. https://doi.org/10.1016/j.aej.2021.06.011.

Shirokova, E.A., El-Shenawy, A., 2018. A Cauchy integral method of the solution of the
2D Dirichlet problem for simply or doubly connected domains. Numer. Methods
Partial Differential Equations 34 (6), 2267–2278. https://doi.org/10.1002/
num.22290.

Story, B.H., Titze, I.R., 1993. Voice simulation with a three-mass model of the vocal
folds. The Journal of the Acoustical Society of America. 94 (3), 1762. https://doi.
org/10.1121/1.408053.
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