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A B S T R A C T   

Introduction: Recently, imidazooxazines have attracted more attention due to their therapeutic potential against 
tuberculosis (TB). The present study aimed to identify and develop potential inhibitors against Pks13-TE to 
combat the antimicrobial drug resistance of TB. 
Methods: Computer-aided drug design is a more highly valued technology than the traditional drug discovery 
approach. Herein, we computationally investigated a chemical dataset using QSAR models and virtually screened 
novel leads of imidazooxazines against the thioesterase domain, further subjecting them to molecular docking 
and dynamics simulation. 
Results: The present study identified two molecules, 1 and 3, promising leads with minimum energy confor-
mations of − 7.63 and − 7.62 kcal, respectively, providing structural insight into Pks13 inhibition. The average 
values of MolSA, SASA, and PSA for molecules 1 and 3 were 382.41 Å, 77.65 Å, and 195.54 Å and 386.24 Å, 
71.105 Å, and 184.46 Å, respectively. In conclusion, our research has demonstrated that imidazoxazines are 
promising leads to combat the resistance problem of TB. Among the two potent molecules 1 and 3, molecule 1 
displayed favourable interactions in the active site with good stability, as confirmed by the RMSD, RMSF, RoG, 
H-bond, and SASA analyses. The Molecule 1 protein complex showed two strong hydrogen bonds, effectively 
maintained for 80–85 % of the simulation time, indicating its stability and potency. 
Conclusion: The identified two molecules and their conformations were highly stable; hence, these findings 
provide valuable insight into the evolution of new therapeutic agents to address the growing problem of TB and 
its resistance.   

1. Introduction 

Antimicrobial resistance is one of the twenty-first century’s most 
significant concerns to human health. The rise of antimicrobial 

resistance (AMR) poses a substantial risk to worldwide health, poten-
tially increasing illness, death, and healthcare expenditures. As stated by 
the World Health Organization (WHO), AMR causes approximately 
700,000 deaths annually, and the number of deaths may increase by 

Abbreviations: AMR, antimicrobial resistance; Pks, polyketide synthase; RoG, radius of gyration; WHO, World Health Organization; TB, Tuberculosis; HIV, Human 
immunodeficiency virus; CADD, computer-aided drug design; SASA, solvent accessible surface area. 
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approximately 10 million every year by 2050 if adequate measures are 
not taken to address this issue. One of the main drivers of AMR is the 
overuse and misuse of drugs in human health care (He et al., 2022). 

Tuberculosis (TB) has a significant health impact on society, infect-
ing more than 10 million people every year and becoming an important 
global challenge. The two main health concerns of TB, drug resistance 
and co-infection with HIV, are making it more complicated. An esti-
mated 1.2 million deaths and an additional 0.2 million deaths were 
reported for HIV-positive patients in 2021. Nearly one lakh people, in 
which HIV-suspected individuals are more vulnerable, died from drug- 
resistant strains (Bon et al., 2022). The introduction of streptomycin, 
the initial medication for treating tuberculosis, also develops resistance 
to M. tuberculosis (Mtb). AMR in tuberculosis is a significant public 
health concern, as it makes the treatment of the disease more difficult 
and increases the risk of transmission. Most Mtb resistance is associated 
with independent, spontaneous mutations that prevent the drug from 
binding to the target protein, decreasing the levels of prodrug-activating 
enzymes or overexpressing a crucial target (Altharawi et al., 2023). AMR 
resistance in TB is classified into two categories: primary and acquired. 
Primary resistance arises when an individual contracts a strain of M.tb 

inherently resistant to one or more of the initial drugs used in treatment. 
Acquired resistance occurs when a person with TB is initially infected 
with a drug-susceptible strain of M.tb but then develops resistance 
during therapy due to poor adherence, inadequate dosing, or other 
factors. Specific resistance mutations are common even for currently 
available antitubercular drugs (Deb and Al-Shar’i, 2021). 

Pks13, a multifunctional enzyme involved in the biosynthesis of 
mycolic acids, which is an essential requirement of the cell wall and 
converts two fatty acids to form a mycolic β-ketoester by a condensation 
reaction, a direct precursor for Mycolic acids. It is composed of long 
chain fatty acid that plays a critical role in the pathogenesis of TB by 
contributing to the virulence and protecting the bacterium from host 
defence and antibiotics (Lun et al., 2023; Maitra et al., 2019; Wellington 
and Hung, 2018). Pks 13 is responsible for the elongation and branching 
of the fatty acid chains that comprise mycolic acids and plays a crucial 
role in regulating cell wall permeability and antibiotic resistance in Mtb 
(Shanthakumar and Kathiravan, 2020). It has been determined that the 
Pks13 thioesterase domain is a druggable target for the creation of 
antitubercular medications and that combating antimicrobial resistance 
by inhibition results in the loss of mycolic acids and bacterial death. 

Fig. 1. Lead molecules identified through the QSAR study.  
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Hence, this target is identified for developing novel pks13 inhibitors to 
treat TB (Altharawi et al., 2023). 

Computer-aided drug design accelerates drug development by effi-
ciently bridging lead identification and marketing. Utilising insilico 
methods, such as QSAR, aids in identifying novel leads crucial for drug 
discovery (Cınaroglu and Timuçin, 2019). Molecular docking reveals 
protein–ligand binding affinity, and molecular dynamics simulations 
provide deeper insights into binding pocket dynamics (Pandey et al., 
2018; Obakiro et al., 2023; Irfan et al., 2023). The basic understanding 
of ligand-macromolecule interactions aids in identifying conformational 
changes and hidden binding pockets (Pinto et al., 2019; Thobeka et al., 
2022). In our ongoing computational work on tuberculosis, we explored 
imidazooxazine bicyclic moieties as promising candidates for inhibiting 
the Pks13 thioesterase domain, utilising molecular docking and dy-
namics simulations (Chitre et al., 2011; Gopinath and Kathiravan, 2019; 
Nilewar and Kathiravan, 2014).. 

2. Materials and methods 

2.1. QSAR method development and validation 

QSAR analysis was performed for the dataset of fifty-eight molecules 

on H37Rv by the software QSARINS, developed at the University of 
Insubria (Gramatica et al.; Thompson et al., 2017). The complete 
methodology pertaining to run the QSAR was cited in the literature. 
There is diversity in chemical structure and biological data that exists in 
the dataset, QSAR models were developed using MLR via the ordinary 
least squares approach (O’Boyle et al., 2011). It directly calculates the 
relationship between the dependent variable Y and the independent 
variable X. Therefore, in MLR analysis, the mean value of the dependent 
variable (single response) relies on introducing more than one descriptor 
(independent variable) (Gramatica et al., 2014; Kennard and Stone, 
1969; Moulishankar and Pharmacophore, 2024; Moulishankar and 
Sundarrajan, 2023; Yap, 2011; Yuanita et al., 2020). Moreover, the 
outliers and the influential molecules were determined by employing 
applicability by testing the model to make better predictions of the 
allowable space limit. Y-randomization was applied as an external 
validating parameter to analyse the QSAR model obtained by trials and 
not by chance. In addition, the model must possess significant R2 and Q2 

values to justify its robustness. The quality of the model was validated 
with the recommended statistical parameters, such as fitting criteria, 
stability, reliability, and predictive strength, and internal and external 
validation parameters evaluated its robustness. The models generated 
with the most tremendous statistical significance were selected to design 
molecules and assessed for their predictively. 

2.2. Molecular docking 

The best molecules that satisfied the QSAR model equation were 
subjected to molecular docking using Schrodinger (Veerasamy et al., 
2011). Ligands were subjected to force field MMFF94 and the steepest 
descent algorithm using Avogadro V 1.2.0. The protein’s three- 
dimensional structure with the PDB ID 5 V41 was retrieved from the 
Protein Data Bank in the prescribed PDB format. It represents a high 
protein structure with no mutations and ensures that the protein’s nat-
ural behaviour and interactions are preserved in the study. The Ram-
achandran plot indicates that the protein’s backbone torsion angles are 
well within the allowed regions, reflecting a structurally sound and 
reliable protein conformation. Moreover, the protein structure analysis 
was determined using X-ray diffraction. This method ensures the accu-
racy and reliability of the structural data. Active site analysis for the 

Fig. 2. SAR and descriptor contribution in nitro imidazooxazines.  

Table 1 
Molecular docking scores for the top five molecules with amino acid 
interactions.  

Molecule 
Code 

Docking Affinity in 
Kcal/mol 

Amino acid interactions 

1  − 7.63 H-bond with ASP1644, ASN1640, HIS 
1699, PHE 1670 

2  − 7.12 Hydrophobic SER 1636, TYR 1637 with 
pi-pi interaction 

3  − 7.62 H-Bond SER 1636, GLN 1633, Pi-Pi 
stacking PHE 1670 

4  − 7.24 HIS 1664, TYR 1663 with pi-pi 
interaction 

5  − 7.33 PHE 1670, TYR 1674 showing 
Hydrophobic interaction 

Reference  − 7.42 SER 1636, TYR 1637 with pi-pi 
interaction  
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target was performed by MOER version 2023. A Discovery Studio visu-
aliser was used for the analysis of the molecular docked complex results. 

2.3. Molecular dynamics simulation studies 

Molecular dynamics simulations were conducted using the Desmond 
V 5.9 package from the Schrödinger LLC suite to investigate alterations 
in the solvent environment surrounding a macromolecular complex. The 
complex, initially docked for dynamics, was subjected to the OPLS force 
field (Kaminski et al., 2001; Ghosh et al., 2021; Adeniji et al., 2019; 
Rajasekhar et al., 2021). To facilitate simulation, the complex was 
positioned at the centre of an orthorhombic cubic box. This box was 
filled with TIP3P water molecules, along with buffers, ensuring a dis-
tance of approximately 10 Å between the protein atoms and the box 
edges. Additionally, the box volume was adjusted to accommodate the 
complex and counter ions such as Na + and Cl- ions, ensuring system 
neutrality. According to the Desmond protocol, minimization proced-
ures utilized the OPLS-2005 force field parameters. A Berendsen NVT 
ensemble was employed to maintain a temperature of 10 K, effectively 
constraining heavy atoms within the solute. The simulation itself oper-
ated at approximately 300 K, maintained at 1 atmospheric pressure, 
with a relaxation time of 20 ps (Kim et al., 2023 Mar; Khade, 2020; Umar 
et al., 2021). Throughout the simulation process, the Martyne-Tobias- 
Klein barostat and Nose-Hoover thermostat methodologies were 
employed to maintain a stable pressure of 1 atm and a temperature of 
300 K (Gupta et al., 2021). The system was initialized under the NPT 
ensemble, which was executed for approximately 100 ns. Subsequently, 
frames were compiled and examined to analyse trajectories using 
simulation interaction diagrams, which offered valuable insights into 
fluctuations (Dixit et al., 2006; Nyambo et al., 2024). 

2.4. HOMO-LUMO studies 

The HOMO-LUMO energy gap is a critical parameter for evaluating 
molecules’ electronic properties and potential reactivity. This study 
shows that energy transfer occurring within the molecules will support 
the bioactive properties of the molecules. A smaller energy gap indicates 
that the molecule is more susceptible to electron transfer or participa-
tion in chemical reactions. 

3. Results and discussion 

3.1. QSAR 

Models were developed, but the best model had four descriptor 
equations obtained by GA-MLR with good R2 and Q2loo values, internal 
predictions, and external validation. The models were scrutinized and 
evaluated based on a chemometric approach and statistical parameters. 

Model 1: pKi = 5.6018 + AlogP (0.4381) + ATSc4 (4.0635). 
Model 2: pKi = 4.6654 + ALogP (0.4135) + ATSc4 (3.7187) +

MDEC-23. 
Model 5: pKi = 4.8446 + ALogP (0.3600) + ATSc4 (3.4398) +

mindssC (0.3463) + MDEC23 (0.0547), with an R2 value of 0.7406 and a 
Q2loo value of 0.6569. According to the statistical evaluation of the four 
descriptors, model (5) is excellent for the expected activity. To further 
improve the model status, the process continued, resulting in a model 
containing five descriptors. 

Model 8: pKi = 4.6103 + ALogP (4.6103) + ATSc4 (3.5034) +
mindssC (0.2284) + ETA_Beta_ns_d (0.2943) + MDEC-23 (0.0628). 

The best model equation 5 shows contributing descriptors that hel-
ped in the designing of molecules with better predicted Pki, shown in 
Fig. 1 and then subjected to molecular docking and simulation studies. 

Fig. 3. 2D and 3D interaction of molecules 1 and 3 with Pks 13.  
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3.1.1. Interpretation of the descriptor in model 
The four descriptors contribute to 7 – Nitro derivatives substituted 

with imidazole-fused oxazines. Among those, (i) Alog P – a 2D descriptor 
accounts for a molecule’s total number of 45 atoms and specifies the 
nonpolar interactions. A phenyl ring with fluorine atoms is hydrophobic. 
(ii) The ATSC4-centered Broto–Moreau autocorrelation descriptor tag 4, 
weighted by changes, quantifies how the polarisation induced by a more 
electronegative atom at a certain distance from the atom of interest af-
fects the molecular structure. It provides valuable information about the 
electronic environment and interactions within a molecule, and the 
more electronegative elements there are in the molecule, the greater the 
activity. (iii) MDEC23 refers to the molecular edge distance between 
secondary (sec) and tertiary (ter) carbons in a molecule. This descriptor 
measures the distance between these specific types of carbon atoms 
within a molecular structure. iv) MindssC is an electrotopological state 
atom-type descriptor that represents path distances within a molecule. 
This descriptor characterises atoms’ electronic and topological proper-
ties in a molecular structure. Specifically, it denotes the distances along 
paths between atoms, providing information about atoms’ connectivity 
and spatial arrangement within the molecule. The maximum activity 
relies on the greater distances between the atoms in a molecule. The SAR 
studies and descriptor contribution of nitro imidazooxazines are shown 
in Fig. 2. 

3.2. Docking analysis 

The docking score of Molecules 1 and 3 along with the reference 
molecule were shown in Table 1 and its 2D and 3D interactions were 
depicted in Fig. 3. Active sites are typically regions on a protein’s surface 
that are involved in specific interactions with other ligands. The active 
site analysis of the protein revealed that the protein has 25 different 
regions or pockets where ligands can bind. The first active site pocket 
size (198) refers to the size or volume of the first active site pocket on 
the protein, measured in Angstroms cubed (Å^3). The size of the active 
site pocket can influence the types of ligands that can bind. The Pocket 
Volume of Ligand Binding (PLB) scorewas found to be 2.46 where a 
ligand fits into the active site pocket. A higher PLB indicates a better fit 
between the ligand and the active site, suggesting stronger binding in-
teractions. The essential amino acid interactions were well noted in the 
docking and simulation studies. 

3.3. Molecular dynamics simulation 

3.3.1. RMSD of protein 5 V41 complexes 
The RMSD of the protein and molecule 1 complex shown in Fig. 4 

displayed both positive and negative fluctuations until 20 ns (0.5 – 1.5 
Å) and continued to show incremental fluctuations until 75 ns (1.5 – 3.5 
Å), attaining stability at approximately 80 ns at 2.5 Å. The average 
RMSD of the protein backbone was approximately 2.557 Å, and the 
average and maximum values for the reference molecule complex were 

Fig. 4. Protein-Ligand RMSD of molecule 1, 3 and reference.  
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found to be 4.438 and 8.076 Å, respectively, at 75 ns. The RMSD of the 
protein and molecule 1 complex backbone first increased to 1.957 Å at 
0.1 ns, then reached maximum and minimum values at 3.183 Å and 
2.647 Å, respectively, at a similar trajectory and stabilised at the end of 
the simulation. Molecule 1 complex heavy atoms were found to have 
average and maximum values of 2.851 Å and 3.37 Å, respectively. 
However, compared to the reference molecule complex, these values 
showed more terrific structural refinement throughout the investigation. 
The RMSD of the protein and molecule 3 complex in Fig. 4 indicates that 
the backbone initially started at 1.569 Å. The average length of the 
protein backbone was 2.628 Å and reached a maximum of 3.111 Å for 
specific trajectories but reached a stable value of approximately 2.628 Å. 
The average length of the complex was approximately 5.800 Å greater 
than that of complex 1. Cα, the protein backbone, is well correlated. Still, 
the ligand fit protein fluctuates approximately ns at 0.9 Å − 1.5 Å, 
reaches approximately 2.6 Å at 60 ns and then continuously fluctuates 
until100 ns from 2.6 Å – 3.111 Å. The RMSD values of the C α atoms of 
the protein stabilized within 2.0 to 3.0 deviations from its initial struc-
ture according to the analysis of the produced trajectories of the com-
plexes. This indicates that the protein retains its interaction profile upon 
binding molecules 1 and 3 and does not undergo further significant 
conformational changes. Based on the RMSD values of molecules 1 and 
3, molecule 1 was the most stable. 

3.3.2. Dynamic properties of a protein 
Ligand binding to a protein can induce structural changes, poten-

tially increasing fluctuations in the RMSF plot, suggesting 

destabilization. This effect may arise from alterations in hydrogen 
bonds, van der Waals, or electrostatic interactions between the protein 
and ligand. The RMSF plot of the molecule 1 complex (Fig. 5) shows 
minimal localized alterations along the protein chain during thermal 
motion. Helices experience mild fluctuations, while loops exhibit mod-
erate ones. Vibrations exceeding 4.5 Å suggest strong hydrogen bond 
contacts. The ’N’ and ’C’ terminal display higher fluctuations compared 
to other regions. Secondary structure elements like α-helices and 
β-strands exhibit less fluctuation than loop residues, active for 70 % of 
the simulation time. The protein backbone’s average RMSF is 1.037 Å. In 
the RMSF analysis of the molecule 1 complex, the key backbone residue 
positions include PHE 1474 – GLY 1478, ASP 1560 – ALA 1561, ARG 
1662 – TYR 1663, and HIS 1699 – ILE 1700. The maximum and average 
protein backbone values are 5.232 Å and 1.003 Å, respectively, lower 
than the reference molecule. Conversely, in the molecule 3 complex, ’N’ 
and ’C’ termini exhibit more fluctuations, with loop regions showing 
higher fluctuations and hydrogen bonding interactions. Fluctuations in 
the unstructured portion of the molecule 1 complex exceed 5.6 Å 
compared to the reference molecule, with maximum and average 
backbone lengths of 7.14 Å and 1.454 Å, respectively, indicating 
enhanced stability during the simulation and diverse amino acid 
interactions. 

3.3.3. H bond analysis 
The H-bond analysis (Fig. 6) reveals consistent hydrogen bond in-

teractions involving residues HIS 1632, ASN 1640, and TYR 1663, 
collectively occurring for up to 40 % of the simulation time. Specifically, 

Fig. 5. Protein-Ligand RMSF of molecule 1, 3 and reference.  
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ASN 1640 engages in a hydrogen bond with the imidazole nitrogen at 
the fifth position for approximately 10 % of the time before transitioning 
to a water bridge. In complex 1, strong hydrogen bonding occurs at ALA 
1477, transitioning to water bridges, with moderate hydrogen bonding 
at SER 1636. Hydrophobic contacts, such as TYR 1582, PHE 1670, and 
TYR 1674, contribute to approximately 70 % of the simulations through 
pi-cation or pi-pi interactions. Complex 3 exhibits hydrogen bonds at 
TYR 1582, shifting to hydrophobic contacts and water bridges. Strong H- 
bonding interactions occur at GLN 1633 and SER 1636, with ASN 1640 
showing mild bonding initially and moderate bonding at ASP 1666 after 
15 % of the simulation time. The H-bond analysis of molecule 1 by 
docking and dynamics showed amino acid residues such as ALA 1477 
and SER 1636, which showed H-bond interactions and pi-pi stacking 
interactions with TYR 1674 and PHE 1670, and with TYR1582, ASP 
1644, and ASN1640, which also showed H-bond interactions. Moreover, 
all the interactions during docking were correlated with similar amino 
acid residues exhibiting specific molecular interactions. 

3.3.4. Protein structural analysis 
Interactions between proteins and ligands involve changes in 

secondary structure elements. During the simulation, a check of the 
secondary structure elements revealed a stable complex comprising 
41.87 % of the 31.71 % of the α-helices and 10.16 % of the β-sheets of 
the reference molecule, which participated constantly during the entire 
simulation. The α-helices and β-strands were secondary structure ele-
ments monitored throughout the simulation. For molecule 1, 33.75 % of 
the α-helices and 11.09 % of the β-strands participated constantly. There 
was not even much deviation in the protein structure during the pro-
tein–ligand interaction of the entire trajectory. Analysing the secondary 
structure elements is mandatory when investigating protein-ligand in-
teractions. It includes 30.25 % α-helices and 10.95 % β-strands, and the 
total percentage of SSE is 41.20 %. There were no changes in the rigid 
portions of the protein molecule, and 41.20 % of the total SSE constantly 
participated in amino acid interactions during the entire simulation. The 
RMSD plot shows the structural and conformational changes of the 
system. The average values of both complexes lie near the reference 
molecule’s range, indicating the system’s stability. The RMSF value is 
involved in characterizing local changes that take place along the pro-
tein and its flexibility throughout the trajectory. Typically, the C-ter-
minal and N-terminal ends fluctuate more than the unstructured part of 
a protein and thus fluctuate less than the loop regions. Therefore, the 
RMSD, RMSF, and secondary structure analysis indicated that the li-
gands remained within the active site pocket while the proteins unfolded 
throughout the trajectory. 

3.3.5. Ligand RMSD of molecules1 and 3 
The ligand RMSD of molecule 1 started at 2 Å and slightly increased 

to 2.5 Å up to 20 ns, indicating minor conformational adjustments. A 

Fig. 6. Protein-Ligand contacts of molecule 1, 3 and reference.  

Table 2 
Counterplots of the HOMO-LUMO of molecules 1 and 3.  

Molecule code HOMO (ev) LUMO (ev) Energy gap (ev) 

1  − 2.22720  − 0.08042  2.14678 
3  − 0.23049  − 0.08237  0.14819  
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significant increase to 3 Å at 20 ns suggested a structural transition. 
Subsequently, the RMSD stabilized between 3 and 3.5 Å, indicating a 
consistent binding conformation from 20 to 100 ns. These findings 
justify a stable ligand-target interaction after an initial transition phase, 
providing insights into the ligand’s structural dynamics and potential 
binding modes during the simulation. 

The ligand RMSD of molecule 3 started initially at 2.5 Å, gradually 
increased to 5 Å within the first 5 ns and then maintained up to 50 ns. 
The initial changes up to 5 ns indicated some structural adjustments in 
the ligand. However, at 50 ns, there was a sudden increase in the RMSD 
from 2.5 Å to 5 Å. This abrupt increase is indicative of a significant 
transition in the ligand’s interaction with the target molecule. Subse-
quently, the RMSD continued to increase and stabilized at 6 Å from 50 ns 
to 100 ns, indicating a relatively stable conformation compared to the 
initial state. 

3.3.6. Radius of gyration (RoG) 
The radius of gyration reveals the structure of a protein’s compact-

ness, which in turn reflects its stability during the simulation. The 
analysis of molecule 1 initially started at 5 Ã… and showed slight 
fluctuations up to 15 ns, indicating structural adjustments in the com-
pound. However, beyond 15 ns, there was a slight decrease to 4.8 Å, and 
the peak remained stable throughout the simulation up to 100 ns. The 
stability of Rg from 15 ns to 100 ns indicates that molecule 1 reached an 
equilibrium state, where its overall shape and size remained relatively 
constant over time. Molecule 3 started at 4.5 Å and was maintained for 
up to 5 ns, indicating a well-defined conformation. A slight increase to 
6.4 Å occurred after that, followed by minor fluctuations between 5.6 
and 6.4 Å. From this point onwards, molecule 3 maintained a stable Rg 
for up to 100 ns, suggesting it reached an equilibrium state. 

3.4.HOMO-LUMO analysis 

The energy gap is relatively larger at 2.14678 eV for molecule 1, 
suggesting that it has moderate stability and may exhibit lower reac-
tivity towards electron transfer or chemical reactions than molecule 3. 
This larger energy gap indicates that compound 1 requires more energy 
to promote an electron from the HOMO to the LUMO, reflecting a more 
stable electronic configuration. The DFT results for molecule 1 and 3, 
shows the energy gap between the highest occupied molecular orbital 
(HOMO) energies and lowest unoccupied molecular orbital (LUMO) 
energies, are presented in Table 2, and Fig. 7. 

Additionally, molecule 3 has a significantly smaller energy gap of 
0.14819 eV, indicating higher reactivity and a lower energy requirement 
for electron transfer or participation in reactions. The smaller energy 
gap suggests that compound 3 may exhibit more dynamic electronic 
properties, making it potentially more reactive or prone to interactions 
with other molecules. The differences in the HOMO-LUMO energy gaps 
between molecules 1 and 3 can influence their electronic and chemical 
behaviours, affecting their suitability for specific applications, such as in 
electronic devices or chemical reactions. 

4. Conclusion 

The docking and dynamics studies confirm the potential of imida-
zoxazines as anti-mycobacterial agent, particularly in inhibiting Myco-
bacterium tuberculosis growth. Molecules 1 and 3 displayed excellent 
binding affinity to Pks13-TE, indicating promise in combating drug 
resistance. Stability assessments via dynamic simulations reveal that 
molecule 1 forms strong and sustained hydrogen bonds while molecule 3 
exhibits less stable bonding. These findings underscore the stability and 

Fig. 7. Counterplots of the HOMO-LUMO for molecules 1 and 3.  
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efficacy of molecule 1, offering valuable insights for therapeutic devel-
opment against anti-mycobacterial resistance. These molecules could be 
developed as lead in the discovery of drugs targeting the thioesterase 
domain of polyketide synthase 13 in Mtb. 

CRediT authorship contribution statement 

B. Shanthakumar: Writing – original draft, Methodology, Formal 
analysis, Data curation, Conceptualization. P. Gopinath: Writing – 
original draft, Methodology, Formal analysis, Data curation, Conceptu-
alization. Bharath Kumar Chagaleti: Writing – original draft, Meth-
odology, Formal analysis, Data curation, Conceptualization. 
Venkatesan Saravanan: Writing – original draft, Validation, Re-
sources, Methodology. Senthil Kumar Palaniappan: Writing – original 
draft, Validation, Resources, Methodology. Saeedah Musaed Almu-
tairi: Writing – original draft, Validation, Resources, Methodology. 
Dina S. Hussein: Writing – original draft, Validation, Resources, 
Methodology. Yasmine Hamdy Eisa: Writing – original draft, Valida-
tion, Resources, Methodology. M.K. Kathiravan: Writing – original 
draft, Validation, Resources, Methodology, Investigation, Formal anal-
ysis, Conceptualization. Jesu Arockiaraj: Writing – review & editing, 
Visualization, Validation, Supervision, Resources, Project administra-
tion, Methodology, Investigation, Funding acquisition, Formal analysis, 
Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We thank the Management of SRM College of Pharmacy, SRM 
Institute of Science and Technology, Kattankukatur for their constant 
support and encouragement. The authors extend their appreciation to 
the Researchers Supporting Project Number (RSP2024R470), King Saud 
University, Riyadh, Saudi Arabia. 

References 

Altharawi, A., Alossaimi, M.A., Alanazi, M.M., Alqahatani, S.M., Tahir Ul Qamar, M., 
2023. An integrated computational approach towards novel drugs discovery against 
polyketide synthase 13 thioesterase domain of Mycobacterium tuberculosis. Sci Rep. 
13 (1), 7014. https://doi.org/10.1038/s41598-023-34222-8. 

Altharawi, A., Riadi, Y., Tahir ul Qamar, M., 2023. An in silico quest for next-generation 
antimalarial drugs by targeting Plasmodium falciparum hexose transporter protein: a 
multi-pronged approach. J. Biomol. Str. Dyn. 41(23), 14450–59. doi:10.1080/ 
07391102.2023.2181635. 

Adeniji, S.E., Uba, S., Uzairu, A., Arthur, D.E., 2019. A Derived QSAR Model for 
Predicting Some Compounds as Potent Antagonist against Mycobacterium 
tuberculosis: A Theoretical Approach. Adv. Prevent. Med.2019, 5173786. https://doi. 
org/10.1155/2019/5173786. 

Chitre, T.S., Kathiravan, M.K., Bothara, K.G., Bhandari, S.V., Jalnapurkar, R.R., 2011. 
Pharmacophore optimization and design of competitive inhibitors of thymidine 
monophosphate kinase through molecular modeling studies. Chem. Biol. Drug Des. 
78 (5), 826–834. https://doi.org/10.1111/J.1747-0285.2011.01200.X. 

Cınaroglu, S.S., Timuçin, E., 2019. Insights into an alternative benzofuran binding mode 
and novel scaffolds of polyketide synthase 13 inhibitors. J. Mol. Model. 25 (130) 
https://doi.org/10.1007/S00894-019-4010-Y. 

Deb, P., Al-Shar’i, N., 2021. n vitro anti-TB properties, in silico target validation, 
molecular docking and dynamics studies of substituted 1, 2, 4-oxadiazole analogues 
against Mycobacterium tuberclosis. Taylor Fr. 36 (1), 869–884. https://doi.org/ 
10.1080/14756366.2021.1900162. 

Dixit, S.B., Ponomarev, S.Y., Beveridge, D.L., 2006. Root mean square deviation 
probability analysis of molecular dynamics trajectories on DNA. J. Chem. Inf. Model. 
46 (3), 1084–1093. 

Pinto, V.d.S., Araújo, J.S.C., Silva, R.C., da Costa, G.V., Cruz, J.N., De A. Neto, M.F., 
Campos, J.M., Santos, C.B.R., Leite, F.H.A., Junior, M.C.S. 2019. In Silico Study to 
Identify New Antituberculosis Molecules from Natural Sources by Hierarchical 
Virtual Screening and Molecular Dynamics Simulations. Pharmaceuticals 12, 36. 
https://doi.org/10.3390/ph12010036. 

Ghosh, S., Keretsu, S., Cho, S.J., 2021. Computational modeling of novel 
phosphoinositol-3-kinase γ inhibitors using molecular docking, molecular dynamics, 
and 3D-QSAR. Bull Korean Chem Soc. 42 (8), 1093–1111. https://doi.org/10.1002/ 
bkcs.12305. 

Gopinath, P., Kathiravan, M.K., 2019. QSAR and docking studies on Triazole benzene 
sulfonamides with human carbonic anhydrase IX inhibitory activity. J. Chemom. 33 
(12), Dec. https://doi.org/10.1002/CEM.3189. 

Gramatica, P., Chirico, N., Papa, E., Cassani, S., Kovarich, S., Sep. 2013. QSARINS: a new 
software for the development, analysis, and validation of QSAR MLR models. Artic. 
J. Comput. Chem. 34 (24), 2121–2132. https://doi.org/10.1002/jcc.23361. 

Gramatica, P., Cassani, S., Chirico, N., 2014. QSARINS-chem: Insubria datasets and new 
QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem. 35 
(13), 1036–1044. https://doi.org/10.1002/JCC.23576. 

Gupta, N., Choudhary, S.K., Bhagat, N., Karthikeyan, M., Chaturvedi, A., 2021. In Silico 
Prediction, Molecular Docking and Dynamics Studies of Steroidal Alkaloids of 
Holarrhena pubescens Wall. ex G. Don to Guanylyl Cyclase C: Implications in 
Designing of Novel Antidiarrheal Therapeutic Strategies. Molecules 26 (14), 4147. 
https://doi.org/10.3390/molecules26144147. 

He, W., Tan, Y., Liu, C., Wang, Y., He, P., Song, Z., Liu, D., Zheng, H., Ma, A., Zhao, B., 
Ou, X., Xia, H., Wang, S., Zhao, Y., 2022. Drug-Resistant Characteristics, Genetic 
Diversity, and Transmission Dynamics of Rifampicin-Resistant Mycobacterium 
tuberculosis in Hunan, China, Revealed by Whole-Genome Sequencing. Microbiol 
Spectr 10 (1), e0154321. https://doi.org/10.1128/spectrum.01543-21. 

Irfan, A., Faisal, S., Zahoor, A.F., Noreen, R., Al-Hussain, S.A., Tuzun, B., Javaid, R., 
Elhenawy, A.A., Zaki, M.E.A., Ahmad, S., et al., 2023. In silico development of novel 
benzofuran-1,3,4-oxadiazoles as lead inhibitors of M. tuberculosis polyketide 
synthase 13. Pharmaceuticals 16, 829. https://doi.org/10.3390/ph16060829. 

Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L., 2001. Evaluation and 
reparametrization of the OPLS-AA force field for proteins via comparison with 
accurate quantum chemical calculations on peptides. J Phys Chem b. 105 (28), 
6474–6487. https://doi.org/10.1021/jp003919d. 

Kennard, R.W., Stone, L.A., 1969. Computer aided design of experiments. Technometrics 
11 (1), 137–148. https://doi.org/10.1080/00401706.1969.10490666. 

Khade, A.B., et al., 2020. Design, synthesis, biological evaluation and molecular dynamic 
simulation studies of diphenyl ether derivatives as antitubercular and antibacterial 
agents. ChemistrySelect 5 (1), 201–210. https://doi.org/10.1002/SLCT.201903305. 

Kim, S.K., Dickinson, M.S., Finer-Moore, J., Guan, Z., Kaake, R.M., Echeverria, I., 
Chen, J., Pulido, E.H., Sali, A., Krogan, N.J., Rosenberg, O.S., Stroud, R.M., 2023 
Mar. Structure and dynamics of the essential endogenous mycobacterial polyketide 
synthase Pks13. Nat Struct Mol Biol. 30 (3), 296–308. https://doi.org/10.1038/ 
s41594-022-00918-0. 

Lun, S., Xiao, S., Zhang, W., Wang, S., Gunosewoyo, H., Yu, L.F., Bishai, W.R., 2023. 
Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis. Antimicrob 
Agents Chemother 95 (5), e02190–20. https://doi.org/10.1128/AAC.02190-20. 

Maitra, A., Munshi, T., Healy, J., et al., 2019. Cell wall peptidoglycan in mycobacterium 
tuberculosis: an achilles’ heel for the TB-causing pathogen. FEMS Microbiol Rev. 43 
(5), 548–575. https://doi.org/10.1093/femsre/fuz016. 

Moulishankar, A., Pharmacophore, S.T., 2024. QSAR, molecular docking, molecular 
dynamics and ADMET study of trisubstituted benzimidazole derivatives as potent 
anti-tubercular agents. Chem Phys Impact. 8, 100512. https://doi.org/10.1016/j. 
chphi.2024.100512. 

Moulishankar, A., Sundarrajan, T., 2023. QSAR modeling, molecular docking, dynamic 
simulation and ADMET study of novel tetrahydronaphthalene derivatives as potent 
antitubercular agents. Beni-Suef Univ J Basic Appl Sci 12, 111. https://doi.org/ 
10.1186/s43088-023-00451-z. 

Nilewar, S.S., Kathiravan, M.K., Jan. 2014. 3D CoMFA, CoMSIA, topomer CoMFA and 
HQSAR studies on aromatic acid esters for carbonic anhydrase inhibitory activity. 
J. Chemom. 28 (1), 60–70. https://doi.org/10.1002/CEM.2574. 

Nyambo, K., Tapfuma, K.I., Adu-Amankwaah, F., Julius, L., Baatjies, L., Niang, I.S., 
Smith, L., Govender, K.K., Ngxande, M., Watson, D.J., Wiesner, L., 
Mavumengwana, V., 2024. Molecular docking, molecular dynamics simulations and 
binding free energy studies of interactions between Mycobacterium tuberculosis 
Pks13, PknG and bioactive constituents of extremophilic bacteria. Sci Rep 14 (1), 
6794. https://doi.org/10.1038/s41598-024-57124-9. 

O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., 
2011. Open babel: an open chemical toolbox. J. Cheminform. 3, 33. https://doi.org/ 
10.1186/1758-2946-3-33. 

Obakiro, S.B., K’Owino, I., Andima, E.K.M., Owor, R.O., Kiprop, A., 2023. Molecular 
Docking Interactions with Mycobacterial ATP and Polyketide-13 Synthase Enzymes 
of Phytoconstituents Isolated from Entada abyssinica Stem Bark. Biointerface 
Research in Applied Chemistry 13 (4), 323. https://doi.org/10.33263/ 
BRIAC134.323. 

Pandey, B., Grover, S., Tyagi, C., Goyal, S., Jamal, S., Singh, A., Kaur, J., Grover, A., 
2018. Dynamics of fluoroquinolones induced resistance in DNA gyrase of 
mycobacterium tuberculosis. J. Biomol. Struct. Dyn. 36 (2), 362–375. https://doi. 
org/10.1080/07391102.2016.1277784. 

Rajasekhar, S., Karuppasamy, R., Chanda, K., 2021. Exploration of potential inhibitors 
for tuberculosis via structure-based drug design, molecular docking, and molecular 
dynamics simulation studies. J. Comput. Chem. 42 (24), 1736–1749. https://doi. 
org/10.1002/JCC.26712. 

Bon, C., Cabantous, S., Julien, S., Guillet, V., Chalut, C., Rima, J., Brison, Y., Malaga, W., 
Sanchez-Dafun, A., Gavalda, S., Quémard, A., Marcoux, J., Waldo, G.S., Guilhot, C., 
Mourey, L., 2022. Solution structure of the type I polyketide synthase Pks13 from. 
Mycobacterium tuberculosis. BMC Biol. 20, 147. doi.10.1186/s12915-022-01337-9. 

N. Thobeka, P. Ngidi, K. E. Machaba, N. N. Mhlongo, “In Silico Drug Repurposing 
Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA- 

B. Shanthakumar et al.                                                                                                                                                                                                                        

https://doi.org/10.1038/s41598-023-34222-8
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0020
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0020
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0020
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0020
https://doi.org/10.1155/2019/5173786
https://doi.org/10.1155/2019/5173786
https://doi.org/10.1111/J.1747-0285.2011.01200.X
https://doi.org/10.1007/S00894-019-4010-Y
https://doi.org/10.1080/14756366.2021.1900162
https://doi.org/10.1080/14756366.2021.1900162
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0050
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0050
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0050
https://doi.org/10.3390/ph12010036
https://doi.org/10.1002/bkcs.12305
https://doi.org/10.1002/bkcs.12305
https://doi.org/10.1002/CEM.3189
https://doi.org/10.1002/jcc.23361
https://doi.org/10.1002/JCC.23576
https://doi.org/10.3390/molecules26144147
https://doi.org/10.1128/spectrum.01543-21
https://doi.org/10.3390/ph16060829
https://doi.org/10.1021/jp003919d
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1002/SLCT.201903305
https://doi.org/10.1038/s41594-022-00918-0
https://doi.org/10.1038/s41594-022-00918-0
https://doi.org/10.1128/AAC.02190-20
https://doi.org/10.1093/femsre/fuz016
https://doi.org/10.1016/j.chphi.2024.100512
https://doi.org/10.1016/j.chphi.2024.100512
https://doi.org/10.1186/s43088-023-00451-z
https://doi.org/10.1186/s43088-023-00451-z
https://doi.org/10.1002/CEM.2574
https://doi.org/10.1038/s41598-024-57124-9
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.33263/BRIAC134.323
https://doi.org/10.33263/BRIAC134.323
https://doi.org/10.1080/07391102.2016.1277784
https://doi.org/10.1080/07391102.2016.1277784
https://doi.org/10.1002/JCC.26712
https://doi.org/10.1002/JCC.26712


Journal of King Saud University - Science 36 (2024) 103220

10

Approved Drugs,” mdpi.com, vol. 27, no. 3, Feb. 2022, doi: 10.3390/ 
molecules27030668. 

Shanthakumar, B., Kathiravan, M.K., 2020. Insights into structures of imidazo oxazines 
as potent polyketide synthase XIII inhibitors using molecular modeling techniques. 
J. Recept. Signal Transduct. Res. 40 (4), 313–323. https://doi.org/10.1080/ 
10799893.2020.1742740. 

Thompson, A.M., O’Connor, P.D., Marshall, A.J., Yardley, V., Maes, L., Gupta, S., 
Launay, D., Braillard, S., Chatelain, E., Franzblau, S.G., Wan, B., Wang, Y., Ma, Z., 
Cooper, C.B., Denny, W.A., 2017. 7-Substituted 2-Nitro-5,6-dihydroimidazooxazines: 
novel antitubercular agents lead to a new preclinical candidate for visceral 
leishmaniasis. ACS Publ 60 (10), 4212–4233. https://doi.org/10.1021/acs. 
jmedchem.7b00034. 

Umar, A.B., Uzairu, A., Shallangwa, G.A., Uba, S., 2021. Ligand-based drug design and 
molecular docking simulation studies of some novel anticancer compounds on 

MALME-3M melanoma cell line. Egypt. J. Med. Hum. Genet. 22 (6) https://doi.org/ 
10.1186/S43042-020-00126-9. 

Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C.P., Agrawal, R.K., 2011. 
Validation of QSAR Models-Strategies and Importance. International Journal of Drug 
Design and Discovery 2, 511–519. 

Wellington, S., Hung, D.T., 2018. The expanding diversity of mycobacterium tuberculosis 
drug targets. ACS Infect Dis. 4 (5), 696–714. https://doi.org/10.1021/ 
acsinfecdis.7b00255. 

Yap, C.W., 2011. PaDEL-descriptor: an open source software to calculate molecular 
descriptors and fingerprints. J Comput Chem 32 (7), 1466–1474. https://doi.org/ 
10.1002/jcc.21707. 

Yuanita, E., Sudirman, D.N., Ulfa, M., Syahri, J., 2020. Quantitative structure–activity 
relationship (QSAR) and molecular docking of xanthone derivatives as anti- 
tuberculosis agents. J Clin Tuberc Other Mycobact Dis. 21, 100203 https://doi.org/ 
10.1016/j.jctube.2020.100203. 

B. Shanthakumar et al.                                                                                                                                                                                                                        

https://doi.org/10.1080/10799893.2020.1742740
https://doi.org/10.1080/10799893.2020.1742740
https://doi.org/10.1021/acs.jmedchem.7b00034
https://doi.org/10.1021/acs.jmedchem.7b00034
https://doi.org/10.1186/S43042-020-00126-9
https://doi.org/10.1186/S43042-020-00126-9
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0190
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0190
http://refhub.elsevier.com/S1018-3647(24)00132-0/h0190
https://doi.org/10.1021/acsinfecdis.7b00255
https://doi.org/10.1021/acsinfecdis.7b00255
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1016/j.jctube.2020.100203
https://doi.org/10.1016/j.jctube.2020.100203

	Imidazooxazine moiety as polyketide synthase 13 inhibitors targeting tuberculosis
	1 Introduction
	2 Materials and methods
	2.1 QSAR method development and validation
	2.2 Molecular docking
	2.3 Molecular dynamics simulation studies
	2.4 HOMO-LUMO studies

	3 Results and discussion
	3.1 QSAR
	3.1.1 Interpretation of the descriptor in model

	3.2 Docking analysis
	3.3 Molecular dynamics simulation
	3.3.1 RMSD of protein 5 V41 complexes
	3.3.2 Dynamic properties of a protein
	3.3.3 H bond analysis
	3.3.4 Protein structural analysis
	3.3.5 Ligand RMSD of molecules1 and 3
	3.3.6 Radius of gyration (RoG)

	3.4.HOMO-LUMO analysis

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


