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Abstract Liquefaction microzonation is a process that involves incorporation of geologic, seismo-

logic and geotechnical concerns into economically, sociologically and politically justifiable and

defensible land-use planning for earthquake effects so that engineers can site and design structures

that will be less susceptible to damage during earthquakes.

The scope of present study is to prepare the liquefaction microzonation map for the Babol city

based on Seed and Idriss (1983) method using artificial neural network.

Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches that can be

classified as machine learning. Simplified methods have been practiced by researchers to assess non-

linear liquefaction potential of soil. In order to address the collective knowledge built-up in conven-

tional liquefaction engineering, an alternative general regression neural network model is proposed

in this paper.

To meet this objective, an effort is made to introduce a total of 30 boreholes data in an area of

7 km2 which includes the results of field tests into the neural network model and the prediction of

artificial neural network is checked in some test boreholes, finally the liquefaction microzonation

map is produced for research area.
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Based on the obtained results, it can be stated that the trained neural network is capable in pre-

diction of liquefaction potential with an acceptable level of confidence. At the end, zoning of the city

is carried out based on the prediction of liquefaction potential variations in the study area.

ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Microzonation is subdivision of a region into a number of
zones that have relatively similar exposure to various earth-

quake-related effects. Microzonation should provide general
guidelines for the types of new structure that are most suited
to an area, and it should also provide information on the rel-

ative damage potential of existing structures in the region.
They are also useful in establishing criteria for land-use
planning and strategy for formulation of a systematic and in-
formed decision-making process, for the sitting and develop-

ment of new communities in areas that are made hazardous
by nature.

With the increase in population (Fig. 1) the evaluation of

liquefaction is becoming more important for land-use planning
and development. In soil deposits under undrained condition,
earthquakes induce cyclic shear stresses that may lead to soil

liquefaction (Ishihara and Yasuda, 1975).
When saturated sand deposits are subjected to earthquake-

induced shaking, pore water pressures are built-up leading to

liquefaction or loss of soil strength. Major earthquakes that
have occurred during past years, such as the 1964 Alaska,
1964 Niigata, 1989 Loma-prieta and the 1995 Hyogoken-
Nambu, have demonstrated the damaging effects of soil

liquefaction. Therefore, it is necessary to obtain a proper
understanding of zones with high liquefaction risk and this
work should be extended later in several stages to cover bor-

der areas of metropolis.
Liquefaction is a phenomenon in which the strength and

stiffness of a soil is reduced by earthquake shaking or other ra-

pid loading. During the liquefaction, pore water pressure ex-
erts a pressure on the soil particles that influences how
tightly the particles themselves are pressed together. Prior to
an earthquake, the water pressure is relatively low. However,

earthquake shaking can cause the water pressure to increase
to the point where the soil particles can readily move with re-
spect to each other. Earthquake shaking often triggers this in-

crease in water pressure, but construction-related activities
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N 
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Figure 1 Population zo
such as blasting can also cause an increase in water pressure
(Agrawal et al., 1997).

The behavior of a saturated soil under both monotonic and

cyclic shear is depicted in Fig. 2. The response of the same soil
in loose (contractive) and dense (dilative) states as indicated in
part (a) and (b), respectively, of this figure. A loose soil tends
to compact when sheared and, without drainage, pore water

pressures increase. As indicated in Fig. 2a, a contractive soil
sheared monotonically reaches apeak shear strength and then
softens, eventually achieving a residual shear resistance. If

the same soil is sheared cyclicly, which also depicted in
Fig. 2a, excess pore pressures are generated with each cycle
of load. Without drainage, pore pressure accumulates and

the effective stress path moves towards failure. Shearing of
dense, dilative soil will also produce some excess pore pressure
at small strain. However, at large strains, the pore pressure de-
crease in soil volume (dilation). Consequently, as shown in

Fig. 2b monotonic shearing of a dilative soil results in an
increasing effective stress and shear resistance. Fig. 2b also
shows the response of the same dilative soil to dynamic load-

ing. In this case, pore pressure is generated in each shear cycle
resulting in an accumulation of excess pore pressure and defor-
mation (Whitman, 1971).

Ground response analyses based on the finite element meth-
od provide a better assessment of liquefaction of a soil deposit
by taking into account the nature of the earthquake and the

pore pressure dissipation; they are often costly and time con-
suming. In addition, constitutive models used in those pro-
grams need large number of parameters to determine the
pore pressure generation in soil due to earthquake loading

(Chern et al., 2008). Therefore, simplified methods in assessing
soil liquefaction are popular among practicing engineers.
These procedures are very useful at the preliminary design

stages to assess the liquefaction risk. If the liquefaction risk
is high, then a detailed finite element analysis can be carried
out to obtain the pore pressure distribution and ground dis-

placement along the depth of the soil deposit, which is neces-
sary in subsequent design of deep foundations. In more
Study area 

Very high population 
 in 1 Km2 

000 

nation of study area.



Figure 3 A three-layer feed-forward neural network structure.

Figure 2 Response of (a) contractive and (b) dilative saturated sands to undrained shear.
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details improving the reliability of liquefaction risk may lead to
cost reduction and helps to operation planning.
An artificial neural network is a mathematical model or

computational model based on biological neural networks. It
consists of an interconnected group of artificial neurons and
processes information using a connectionist approach to com-

putation. In most cases an ANN is an adaptive system that
changes its structure based on external or internal information
that flows through the network during the learning phase

(Malvić et al., 2008).
Artificial neural networks mimic human brains to learn the

relationships between certain inputs and outputs from experi-
ence. They are considered as information processing systems

that have the abilities to learn, recall and generalize from train-
ing data (Choobbasti et al., 2009) An ANN consists of several
layers of highly interconnected computational units called

neurons. Fig. 2 shows the general structure of a three-layer
feed-forward ANN (Riedmiller and Braun, 1993). The neural
network contains one input layer, one or two hidden layers,

and one output layer. The number of nodes in the input layer
equals the number of parameters in the process (Cal, 1995).
The output layer represents the quality responses of the prod-



Figure 4 (a) Map of study area and magnitude of earthquake recorded in study area and (b) the zone of the Babolrood river.
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Figure 5 The 6 zones in Babol area.

Table 1 Performance of different sets of data used in ANN.

Training set

Number of boreholes 18

Number of data (I/O data pairs) 1500

Table 2 Different combinations of input parameters.

Model # 1

Input M, Soil type , r, r0, Rd, Dr

MSE 8%
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uct. The hidden layer represents the interactions between the

input and the output layers. Normally the number of nodes
in the hidden layer is set to be half of the total number of input
nodes and output nodes. If the relationships between the oper-
ation parameters and the quality responses are difficult to

identify, two hidden layers may be used. Such neural networks
are capable of capturing complex nonlinear relationships
inherent in a process (Fig. 3).

The ANN uses a set of examples in a training database as
input, a learning algorithm to adjust the weights and an activa-
tion function to derive an output. If the connection weight be-

tween the neurons is changed, the relationship of the network’s
output to its input will be altered (Rumelhart et al., 1986). The
process of adjusting the connection weights by repeatedly

exposing the network to known input–output data is called
training. The error back-propagation learning method is the
most popular and successful training technique. A trained
ANN can take inputs and produce outputs very quickly, which

is an advantage in doing optimization in the proposed ap-
proach (Hornik, 1991).

ANNs have been proved to be a universal estimator, hence

they are promising techniques in solving pattern recognition
and classification, optimization and function approximation
problems. Recently, ANNs are used to model complex manu-

facturing processes and to identify the optimal process setting
(Rumelhart et al., 1986). In this research, the ANN is used to
establish the nonlinear multivariate relationships between liq-
uefaction potential and parameters, which can be used to pre-

dict the liquefaction potential in soil.
Validation set Testing set

3 9

250 750

2 3
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Figure 6 Network selection.

Figure 7 Results of ANN analysis for 3 random selected boreholes from test boreholes in study area.
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Recently, extensive studies have been done on application
of ANN to geotechnical engineering problems. Chan et al.
(1995) developed a neural network as an alternative to pile

driving formulae. The network was trained with the same in-
put parameters listed in the simplified Hiley formula, including
the elastic compression of the pile and soil, the pile set and the

driving energy delivered to the pile.
Sivakugan et al. (1998) explored the possibility of using

neural networks to predict the settlement of shallow founda-
tions on granular soils. A neural network was trained with five

inputs representing the net applied pressure, average blow
count from the standard penetration test, width of foundation,
shape of foundation and depth of foundation. The output was

the settlement of the foundation.
Several methods for liquefaction assessment have been

developed. One method of analyses (Seed and Idriss, 1971)

proposes using the estimated shear stress level and cycle num-
ber likely to be developed in the field, due to a design earth-
quake. Comparison of these stresses with those causing

liquefaction of soil samples obtained from laboratory tests
helps in identifying the liquefiable zones of a deposit. Another
method (Seed et al., 1975) considers field observations of per-
formance of sites during previous earthquakes. By combining
the data on earthquake characteristics and in situ properties
of soil deposits, an empirical relationship is established.

The purpose of this research is to investigate the effect of

the soil and seismic parameters, with an artificial intelligence
computational tool, and its success in assessing liquefaction
potential.

Data collection in explored soils is important for assessing
of liquefaction potential as well as estimation of strata thick-
ness, soil type, groundwater table etc. It is also time consuming
and often expensive process, which includes many field and

laboratory experiments (Penumadu and Zhao, 1999). There-
fore reliable prediction of liquefaction asks for careful plan-
ning of sampling, testing and exploration methods. Data had

been collected from the boreholes (maximum depth: 30 m)
over a 7 km2 area of Babol municipal region. Artificial neural
networks are trained with 60% and validated with 10% of

borehole data for prediction of liquefaction. The whole system
is eventually tested for efficiency, using 30% of borehole data
left for test of the network, distributed randomly over the

study area. Based on the obtained results and considering that
the test data were not presented to the network in the training
and validation process, it can be stated that the trained neural
networks are capable of predicting variations in the liquefac-
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tion potential of soil with an acceptable level of confidence
(Rizzo and Dougherty, 1994).

Successful prediction of liquefaction in soil deposit using
the existing data leads to improve the reliability of data which

will be used for construction in future. Such approach is pre-
sented in the following text that generally comprises presenta-
tion of the study area, then description and selection of the

neural model, its training, improving, and developing of final
model is completely described, then the generated ANN model
is used for the prediction of liquefaction.

2. Materials and methods

Babol, a city of Mazandaran province in the northern part of

Iran, is considered as the study area in this research. As shown
in Fig. 3 the city is located approximately 20 km south of Cas-
pian sea on the west bank of the river Babolrood and receives

abundant annual rainfall. Babolrood has 2 groups of river ter-
races, namely H1 and H2. H1, with down surface level of height
one to 2.5 m and width of 0–150 m. It is referred to as bound-
ary of active (yearly) flood plain in parts of river and as an

alternative flood plain in many sections. It consists of fine-
grained and unconsolidated alluvial sediments. H2 is referred
to as river terraces; with high surface level of 4–6 m. Vegeta-
tion on surface of terrace is compact. It consists of materials
of Aeolian deposits (i.e. loess). Most major earthquakes occur
around the boundaries of the tectonic plates such as those that
exist in north of Iran (Fig. 4).

Very often in geotechnical engineering, it is possible to
encounter some types of problems that are very complex and
cannot be completely understood. Mathematical models that

attempt to solve such problems cannot include entire physics
of process and necessarily need to simplify the model or incor-
porating some assumptions. Mathematical models also as-

sumed the knowing of model structure in advance, which
does not need to be optimal. Consequently, many mathemati-
cal models fail to simulate the complex behavior of most geo-
technical engineering problems. In contrast, ANNs are based

mostly on the input data structure, assuming that such struc-
ture and interaction among data can describe the prediction
model. In this case, there is no need to neither simplify the

problem nor incorporate any assumptions (expect user selec-
tion of data that are in some meaningful connection). More-
over, obtained neural models can always be trained again

with more extensive and newer dataset from the same area
with a goal to reach better results.

The data used in presented research, includes borehole logs

(data collected from digging boreholes) bored in the study area
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(Fig. 5) and is collected by different institutions for different

research purposes (Kusano et al., 1988). The database includes
more than 40 borehole logs in an area of more than 6 km2

from Babol zone.

From the total of 40 raw borehole data, only 30 logs with a
depth range of 10–30 m were acceptable for using in ANN
model. The regular tests were performed on the samples.

The available data set is divided into three sets, namely
training, validation, and test sets, based on random selection.
By this division the validity of the model could be examined

in a more comprehensive manner. In ANN forecasting models,
60% of the records are selected as training, 30% are taken for
test for final evaluation, and the remaining 10% are used for
validation or monitoring the performance of the model during

the training phase (Table 1).
In problems dealing with different variables and with differ-

ent ranges and dimensions, the application of several networks

may be a good choice. Neural networks are efficient tools
when used as pattern classifiers, it is important to properly
select the input variables for training (learning) process of

ANNs, as the way how to determine relationships between in-
put and output variables. A set of known input and output val-
ues is named as input–output pair. All such pairs are usually
divided into three sets. The first and second are described as
training and validation sets which are used to determine the

connection weights or weighting coefficients (like in interpola-
tion methods), usually marked as wij

1, also the training and
validation sets are used during the training process and the test

set is used for obtaining the estimates. All ANN models were
trained using the automated regularization algorithm to
improve generalization. The validation set served as a con-

straint on training, in order to minimize over fitting.
The usefulness of the neural network approach for populat-

ing the similarity model is presented in this case study. The in-

puts to the network were data on a set of soil formative
environmental factors; the output from the network was a
set of similarity values to a set of prescribed soil liquefaction
potential. A set of 2500 samplings are performed in the study

area from 30 boreholes. Data are collected using geotechnical
investigation. Each sample is carefully checked, because to en-
sure the accurate prediction of an ANN model we need to

build a reliable training, validating and testing sets.
In this analysis, based on the available data and their qual-

ity, a neural network program written in back-propagation

algorithm is used. Six soil and seismic parameters are selected
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as input in different models, and these parameters are divided
into data groups. Each data group is introduced to the net-
work individually, and performance of the network on the

assessment of liquefaction potential is investigated. The net-
work predictions are compared with the conventional liquefac-
tion determination method proposed by Seed et al.

Back-propagation algorithm is selected as the training algo-
rithm for neural network (Table 2). It is the best known train-
ing algorithm for multilayer perceptrons neural networks, and
still one of the most useful and later improved in some ad-

vanced forms like RProp. Back-propagation algorithm means
that the network training includes determination of the differ-
ence between true and wanted network response, i.e. means

calculation of error that is backed in the neural network for
obtaining optimal training. It has lower memory requirements
than most algorithms, and usually reaches an acceptable esti-

mation error quite quickly (in relative low number of iterations
or epochs).

The ANN model for this study was developed, trained,

validated and tested within STATISTICA computational envi-
ronment utilizing the neural network toolbox. And the accu-
racy of the ANN model was evaluated using RMSE between
measured and predicted values and pressed as:
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðzs � z0Þ2

n

s
ð1Þ
where zs is observed value, z0 is predicted value, n is number of
samples. The RMSE of the different neurons in hidden layer is

plotted in Fig. 5. The ANN architecture for prediction of soil
liquefaction potential in the study area was a feed-forward,
supervised, multilayer perceptron (MLP) network with one

hidden layer and an output layer. The best fitting training data
set was obtained with eight neurons in the hidden layer for pre-
diction of liquefaction.

In the selection of learning/training algorithm, number of

neurons in different layers (input, hidden, output), number
of epochs, learning rate and the momentum have been applied
instantly (Fig. 6).

In each epoch, the entire training set is fed through the net-
work, and used to adjust the network weights. Not only num-
bers of epochs are specified at the start, but also alternative

stopping criterion may be specified, and if over-trained net-
work occurs the best network discovered during training can
be retrieved. In this analysis, the number of epochs varied be-

tween 500 and 800.
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An adaptive learning rate was employed to keep the learn-
ing step size as large as possible while the training is stable.
According to a universal approximation theorem, demon-
strated concurrently by several researchers for traditional
MLP, a single hidden layer network is sufficient to uniformly
approximate any continuous and nonlinear function. The

model architecture was built with one hidden layer, a learning
rate of 0.1 updated with a coefficient of 0.9 after each epoch
and a momentum term of 0.9 updated with a coefficient of

1.05 after each epoch. The input vector is fully connected to
the hidden neurons by a tan-sigmoid transfer function and
the neurons of hidden layer are fully connected to the output

layer via a linear function. Experimental studies were started
with one hidden neurons to reach the optimum number of hid-
den neurons and desired precision. Input vector contains soil
initial parameters and output (the target vector) is liquefaction

potential. In order to obtain a more efficient training process,
the input and target were standardized to have zero mean and
unity standard deviation. Cross-validation or employing an-

other set of data for more testing can be used to increase the
generality of the models for future predictions. In this study,
10% of borehole data were used as validation set. In fact,

several ANN models using element tests data were constituted
for generating the models. Among them, the model with
better performance (greater coefficient of determination and
smaller RMSE) for validation data set was selected. In other
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Figure 9 Liquefaction microzonation of Babol.
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words, the ANN models were developed with the best
performance concurrently for training, testing and validation

data sets. Three different ANN models were developed using
different combinations of input parameters in. It can be seen
from Table 2 that, except for model #1, performances of the

models are generally improved when input parameters are
increased.

3. Results and discussion

At the end of the training process, it is necessary to evaluate
the capability of ANN model in prediction of liquefaction po-

tential. For this purpose, the data of 3 boreholes which were
not used in training of neural network was selected and the
prediction of liquefaction potential by ANN model in each
of these 3 boreholes was compared with Seed method. Fig. 7

shows the accuracy of ANN model in 3 mentioned boreholes.
In the previous section, the learning or training dataset is

used to determine the weights. Then a second validation set

is used to monitor the performance of the model during the
training phase and to minimize over fitting and finally the test
sets to evaluate the trained neural network. It is evident from

test data sets that the experimental ANN can be applied suc-
cessfully to predict liquefaction potential.

The samples are divided into 3 groups (training, validation

and testing). In Fig. 6 samples of testing group and the
RMSE value (comparison between prediction and real data)
of each group are shown. Scattering pattern indicates the dif-
ferences. It is clear that the average correlation of the ANN

model and true data in all case is over 91%. So it can be
concluded that the prediction of liquefaction potential
agrees with calculated value collected from boreholes (see

Fig. 8).
Zoning of the city is carried out based on the predicted liq-

uefaction potential variations. Based on these values and soil

bore log details, the severity boundary for each group is
marked which is indicated in zoning map. The guide map of
Babol city is shown in Fig. 7. The undertaking of liquefac-

tion-related microzonation in Babol was conducted for the first
time in 2005 by this research group (Fig. 9).
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4. Conclusion

In this research, the data used in training of the model were ta-
ken from an area of 7 km2 of Babol region in the northern part

of Iran. The dataset encompasses 2500 sampling points (sam-
ples) from 30 boreholes. To this end, first a complementary
study involving field and laboratory tests, detailed geological

survey of the site and its surroundings, using available bore-
holes data and published literature has been performed. In this
ANN model, a back-propagation learning algorithm was used
for the training process. The input data for liquefaction poten-

tial estimation consist of values of geotechnical and seismic
parameters. The average accuracy between the ANN predic-
tion and real data in all cases is over 91%.

Further work on the presented topic would be very useful
to modify the procedure for better adapting artificial neural
network with the concept of prediction of liquefaction poten-

tial. The results produced by the proposed artificial neural net-
work model were compared well with the determined
liquefaction decision obtained by simplified methods. It pro-

vides a viable liquefaction potential assessment tool that assist
geotechnical engineers in making an accurate and realistic pre-
dictions. The results show that there is liquefaction potential in
western part of Babol, and in southern part of Babol no lique-

faction potential was seen. In middle part and eastern part low
liquefaction potential was predicted by ANNs. This study
shows that the neural networks are a powerful computational

tool which can analyze the complex relationship between soil
liquefaction potential and effective parameters in liquefaction.
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