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In this paper we proposed a new surface fitting method based on combining the Clough-Tocher method
(CT) and multiquadric radial basis function enhanced with a cubic polynomial (MRBFC) method to accu-
rately reconstruct a real leaf surface from 3D scattered data. The accuracy of the CT-MRBFC method is
validated by implementing it to a real 3D leaf data.
The accuracy of the method depends highly on the RBF shape parameter and the triangular mesh struc-

ture. Consequently we employed three different methods numerically to estimate the RBF parameter as
variable or constant including the square root method, the cubic root method and the fminbnd method
which is a MATLAB command based on minimizing a single-variable function locally on a fixed interval.
Moreover, the quality of the triangles in the mesh is measured to ensure that each triangle is close to
equilateral triangle to achieve a better accuracy of the proposed CT-MRBFC method. It is concluded that
the proposed CT-RBFC method generates an accurate representation of the leaf surface.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The aim of the present paper is the application of surface fitting
methods to generate a leaf surface. Leaf models have been
researched widely by Kempthorne et al. (2015a,b, 2015), Oqiela
and Ogilat (2018). Recently, Oqielat et al. (2007), Oqielat et al.
(2009), Oqielat (2017) presented a model for the surface of leaf
using finite elements method based on hybrid Clough-Tocher
radial basis function method. Moreover, Oqielat and Ogilat
(2017), Oqielat, (2018) implemented Hardy’s multiquadrics RBF
interpolant to model the leaf surface. Kempthorne et al. (2015a)
applied discrete smoothing D2 -splines to build the surface of
wheat and cotton leaves. The leaf model can be used to simulate
the water droplet path on the leaf surface (Oqielat et al., 2011;
Dorr et al., 2014; Lisa et al., 2016).

Two interpolation methods for surface fitting have been inves-
tigated in this article including Clough-Tocher method (CT) and
radial basis function (RBF) method. Afterward, we proposed a
hybrid method (CT-MRBFC) that joins the CT method and multi-
quadric RBF enhanced with a cubic polynomial method. The
proposed CT-MRBFC method is then applied to reconstruct the
surface of real leaf from 3D scanned data. The CT method is finite
element method based on surface triangulation and requires
derivative computing at the vertices and midpoints of the triangu-
lar elements. Therefore the multiquadric RBF enhanced with a
cubic polynomial is used to estimate the necessary derivative for
the CT method.

The RBF shape parameter has great influence on the accuracy of
the RBF so we compared three methods to estimate the RBF param-
eter. Furthermore, a triangulation of the surface is essential to
apply the proposed method where we introduced a methodology
for triangulation that assure each triangle in the mesh is equilateral
to obtain a more accurate representation of the surface. Finally, the
hybrid CT-MRBFC method is validated using a real 3D data points
sampled from Anthurium leaf.

This paper consists of four main sections. In Section 1, outline of
the CT method, multiquadric RBF enhanced with a cubic polyno-
mial method and the RBF parameter as a constant or variable is
given. In Section 2, the CT-MRBFC method is proposed locally
and globally. Moreover, a numerical investigation to measure the
accuracy of the method is presented. In Section 3, the application
of the CT-MRBFC method on the Anthurium leaf data set is exhib-
ited where a triangulation methodology for the leaf surface and a
new reference plane for the leaf data points are also given in this
section. The results and conclusion are presented in Section 4.
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1.1. The Clough-Tocher method

The Clough-Tocher (CT) technique (Clough, 1965) is an interpo-
lation finite element approach based on triangulation of the data
on a given domain to develop elements on which interpolants
can be build. The triangle in the CT method is divided into three
sub triangles (see Fig. 1) where a cubic polynomial is constructed
on each sub triangle to facilitate piecewise cubic to be formulated
over the whole domain which is continuous and differentiable, see
Oqielat et al. (2009), Oqielat et al. (2007). Finite element methods
have been researched broadly by Tinh et al. (2014); Tinh et al.
(2016), Minh et al. (2016), Minh et al. (2017a,b). More information
about CT method can be found in Lancaster (1986), the interpola-
tion CT is defined by

/ðx; yÞ ¼
X3
i¼1

ðf ibi þ ðci; diÞT � rf iÞ þ
X3
j¼1

@f
@nj

ej: ð1Þ

where biðx; yÞ; ciðx; yÞ; diðx; yÞ are the twelve functions and
ejðx; yÞ; i ¼ 1;2;3 are basis functions (Lancaster, 1986). The function
values f i and the derivatives rf i at the three vertices of each trian-
gle in addition to the directional derivative at the three edges mid-
points @f

@nj
are required to establish /, see Fig. 1. The derivatives at

the triangle vertices and midpoints are not given often and can be
estimated from the neighbouring data. The authors (Turner et al.,
2008; Belward et al., 2008) investigated the least-square gradient
method to measure the precision of the CT method.

1.2. Radial basis function approximation with polynomial
reproduction

The RBF approximation to f is a function H of the form

Hð�xiÞ ¼
XN
j¼1

cj/i;j kx� xjk2
� �

; i ¼ 1; . . . ;N ð2Þ

where rj ¼ kx� xjk and k:k is the Euclidean norm, xi; i ¼ 1;2; . . . ;N
are the centres of the RBF (Buhmann, 2003). The RBF H interpolates
f at xi if the coefficients ai assures the system.

Aa ¼ F with Aij ¼ uijðjjxi � xjjjÞ i; j ¼ 1; . . . ;N ð3Þ

and ¼ ðf 1; . . . ; f NÞT :
Fig. 1. The clough-tocher triangle.
RBF method introduced by Hardy (1990), its offer a smooth sur-
face by producing a good estimate of the function values at the sur-
face points. The most common use RBF’s including thin plate
splines, Gaussian RBF and Hardy’s multiquadric. In this paper we
adopted the multiquadric RBF (Hardy, 1990) which is given by:

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ a2

p
ð4Þ

where a is the RBF shape parameter defined by the user and can be
variant or constant.

1.2.1. Constant and variable shape parameter
Many researchers studied the influence of the RBF parameter a

on the RBF accuracy and found that it has a large impact on the
quality of the RBF approximation where for some a the system
given in Eq. (3) becomes ill-conditioned. Majdisova et al. (2017)
suggested a RBF for large data sets where a was defined
experimentally.

The variable shape parameter methodology allows the user to
obtain a diverse value of the parameter at each centre of the RBF
which conduct well-conditioned system, see Eq. (3). However,
using a variable shape parameter sometimes leads to possibly sin-
gular and non-symmetric linear system whereas using a constant
shape parameter produces invertible system. Sarra and Sturgill
(2009), Golbabai and Rabeie (2012) suggested sinusoidal parame-
ter given by

ai ¼ amin þ ðamax � aminÞsin ði� 1Þp
2ðN � 1Þ

� �
i ¼ 1; . . . ;N ð5Þ

where its return N parameter in interval ½amin;amax�. Golbabai and
Saeedi (2015) proposed two strategies to producing different
entries in the matrices of the RBF and decreasing the matrices con-
dition number, including the cubic root (CR) parameter given by

ai ¼ a3
mina

2
max

i� 1
N � 1

� �1
3

i ¼ 1; . . . ;N ð6Þ

and the square root (SR) parameter given by

ai ¼ a3
mina

2
max

i� 1
N � 1

� �1=2

i ¼ 1; . . . ;N ð7Þ

In this paper, we considered the CR and SR shape parameter meth-
ods in our numerical experiments given in Section 2.2.

A polynomial PkðxÞ of degree (k) can be added to the RBF inter-
polant to improve the method accuracy, therefore in this research
we added a polynomial of degree three to the multiquadric RBF
given by:

Hð�xiÞ ¼ P3ð�xiÞ þ
XN
j¼1

cj/i;jðkx� xjk2Þ ¼ f ið�xiÞ; i ¼ 1; . . . ;N ð8Þ

ui;jðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ a2

p
is the multiquadric RBF, ci are the RBF interpola-

tion coefficients. Now, the function Hð�xiÞ interpolate f at �xi if a sat-
isfies the following system Aa ¼ F where

A ¼
M P

PT 0

2
4

3
5; M ¼

/1;1 /1;2 � � � /1;N

/2;1 /2;2 � � � /2;N

..

. ..
. ..

. ..
.

/N;1 /N;2 � � � /N;N

2
6666666664

3
7777777775
;



Table 1
The Franke functions exact gradients.

Function F3 F4 F6

Exact Gradient 1.4e�4 4.1e�5 44.4e�5
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P ¼

1 x1 y1 x2
1 x1y1 y21 x31 x31y1 x1y31 y31

1 x2 y2 x2
2 x2y2 y22 x32 x32y2 x2y32 y32

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 xN yN x2N xNyN y2N x3N x3NyN xNy3N y3N

2
666664

3
777775
;

a

c1
c2
..
.

cN
b0

b1

..

.

bN

2
6666666666666664

3
7777777777777775

and F ¼

f 1
f 2

..

.

f N
0
0
..
.

0

2
6666666666666664

3
7777777777777775

b0, b1, . . . , bN are the coefficients of the cubic polynomial P3ð�xÞ. An
additional condition

PN
j¼1cjP3ð�xjÞ ¼ �0 is applied to ensure that the

RBF is positive definite. To solve the system Aa ¼ F , the Pseudoin-
verse of A is used which compute the matrix inverse even if it is
not square.

2. Hybrid Clough-Tocher multiquadric radial basis function
enhanced with a cubic polynomial method

In this paper, we introduced a new hybrid interpolation
approach that combine the Clough-Tocher and multiquadric RBF
enhanced with a cubic polynomial methods (CT-MRBFC) to achieve
a smooth and accurate representation of the surface. This combina-
tion allow us to estimate the gradients requires for the CT-triangle
using multiquadric RBF enhanced with a cubic polynomial as
follows:

The gradient of the MRBFC H given in Eq. (8) is given by

rHð�xÞ ¼ rP3ð�xÞ þ
XN
j¼1

cjr/i;jðk�x� �xjk2Þ; �x ¼ ðxk; ykÞ; ð9Þ

where rP3ð�xÞ ¼ @P3
@xk

; @P3
@yk

� �
,

@P3

@xk
¼ b1 þ 2b3xk þ b4yk þ 3b6x2k þ 3b7ykx

2
k þ b8y3k

@P3

@yk
¼ b2 þ b4xk þ 2b5yk þ b7x3k þ 3b8xky2k þ 3b9y2k

and

r/ðk�x� �xjk2Þ ¼
@/
@xk

;
@/
@yk

� �
¼ ðxk � xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�x� �xjk22 þ a2
q ;

ðyk � yjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�x� �xjk22 þ a2

q
0
B@

1
CA

ð10Þ
The advantage of the CT-MRBFC method is that it results in a

continuous and smooth surface representation as well as the
method provides a decent precision adjacent the boundary of their
domain.

2.1. Numerical experiment for the Franke data

In this section, the outcomes of our numerical investigation for
the proposed CT-MRBFC is presented. The precision of the CT-
MRBFC method is measured using a data taken from Franke
(1982). The data consist of two sets of points and three test func-
tion. The first set includes 100 points defined on a unit square
where this set is used to built a surface triangulation for the CT
method (see Oqielat et al., 2007; Oqielat et al., 2009) while the sec-
ond set comprises of 33 points. The CT-MRBFC method assessed
using the 33 points by computing the error of the root mean square
(RMSE) given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s

Xs

i¼1
½Hðxi; yiÞ � f ðxi; yiÞ�2

r
; ð11Þ

where Hðxi; yiÞ is the approximate value for the data points and
f ðxi; yiÞ is the function exact value at the corresponding points.

The local MRBFC method that uses m ¼ 40 point and the global
MRBFC method that uses N ¼ 100 point are employed to approxi-
mate the gradients for the CT triangle. The shape parameter was
computed either locally using variety of m ¼ 40 adjacent points
to the center of the CT triangle or globally using N ¼ 100 points
(see Tables 2 and 3).

In this paper we investigated three techniques to estimate the
parameter (a) locally and globally. These methods are the fminbnd
method, the square root (SR) method (Eq. (7)) and the cubic root
(SR) method (Eq. (6)). The fminbnd method is a MATLAB command
based on minimizing a single-variable function locally on a fixed
interval either by the trisection approach that divides the interval
into three equal parts or by the bisection approach twice on the
interval. The numerical experiments given in the following section
shows that using fminbnd in the CT-MRBFC method produces
more accurate RMS than using the CR and SR method.

Tables 2 and 3 show the results of applying the global and the
local CT-MRBFC method via computing the RMS errors for the
three test functions. The RBF shape parameter in Tables 2 and 3
estimated globally using (N = 100) points by Fminbnd, square root
parameter (SR) and Cubic root parameter (CR) while in Table 4 the
parameter was estimated locally using m = 40 points.

We observe from Table 2 that using the global CT-MRBFC
method creates RMS error accurately same as the exact gradients
shown in Table 1, while the RMS error almost as good as the exact
gradients for the local CT-MRBFC approach. Moreover, the RMS
errors produces using global CT-MRBFC is slightly better than the
RMS error obtained by local CT-MRBFC knowing that the parame-
ter a computed globally using Fminbnd in both methods.

The observations in Table 3 show that the RMS obtained using
global CT-MRBFC method is more accurate than the RMS acquired
by the local CT-MRBFC for both cases (either using SR or CR to esti-
mate the parameter a). Moreover, in both global and local method,
employing the SR method produced better RMS error than using CR
method. In our numerical investigation the shape parameter
obtained using the CR method was a ¼ 0:1 and it was a ¼ 0:152
using the SR method on an interval ½amin;amax� ¼ ½1;3�.

Table 4 shows a comparison between the RMS error for the
three test function by local CT-MRBFC method, a computed locally
using m = 40 points using the Fminbnd method, SR method and CR
method. One observes from Table 4 is that using the local CT-
MRBFC method yielded the best RMS error obtained when a esti-
mated by fminbnd method, followed by the SR method and then
the CR method. Furthermore, the interval of the a values achieved
using the local CT-MRBFC method is given in the table. As we
expect, the a values computed globally (Table 2) were always
occur in the local interval of a given for each of the functions. How-
ever, computing a globally is less computationally costly than
computing a locally since a new a value must be computed each
time the local MRBFC is build.



Table 2
The RMS error comparison using the global CT-MRBFC (n ¼ 100 points) and the local
CT-MRBFC interpolants (m ¼ 40 points). The parameter a is computed globally by
fminbnd method.

Functions C Global CT-MRBFC Local CT-MRBFC

F3 0.5012 1.4e�004 1.5e�004
F4 1.0377 4.1e�005 4.2e�005
F6 1.5422 4.4e�005 4.8e�005
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In conclusion, the RMS error produced using the global
CT-MRBFC method, a computed globally using fminbnd, is more
accurate than all other method tested. Now, we pass this results
to the next section and we investigate the appropriateness of
the global CT-MRBFC method on a real data collected from real
leaf.
2.2. Local and global CT-MRBFC approximations

In this framework two types of CT-MRBFC method are investi-
gated which we denote to as the local and the global CT-MRBFC.
The global CT-MRBFC based on using (n) points to formulate a glo-
bal interpolation multiquadric RBF enhanced with a cubic polyno-
mial (global MRBFC) HNð�xÞ, then rHNð�xÞ is used to estimate the
gradients for the clough-Tocher triangles. Though, for the local
CT-MRBFC, a local subsets of bulk m = 40 of the entire data points
(say N) is implemented to create a local MRBFC Hmð�xÞ for each tri-
angle. Subsequently, the rHmð�xÞ is used to compute the gradients
for the CT element. In this paper, the (m) points are the closest
points to the vertices and edge midpoints of the interest CT ele-
ment. The steps of implementation the hybrid CT-MRBFC method
is outlined in the following algorithm

Algorithm 1: The CT-MRBFC Method for leaf Surface
reconstruction

INPUT: N data points fðxi; f iÞ; i ¼ 1; . . . ;Ng
Step 1: chose a subset of n � N data points to triangulae the

surface.
Step 2: measure the quality of the triangle in the mesh using

formula (15) to ensure that each
triangle is close to equilateral.
Step 3: compuate the MRBF given in Eq. (3) Using either a global

MRBF from n points or a
local MRBF construct on each triangle from m points.
Step 4: use the Pseudoinverse technique to solve the linear

system.
Step 5: use the RBF coefficients to estimate the local or the global

derivative of the CT interpolant
Step 6: employ the CT-MRBFC method either locally rHmðxÞ Or

globally rHn to construct the
leaf surface
Table 3
The RMS error comparison using the global CT-MRBFC (n ¼ 100 points) and the local CT-M
shape parameter method using the (n ¼ 100 points).

Functions Quadratic root shape parameter

Global CT-MRBFC Local CT-MRB

F3 5.0e�004 5.2e�004
F4 1.9e�004 9.0e�004
F6 2.2e�003 2.7e�003
3. Application of the CT-MRBFC technique to a real leaf data set
To reconstruct the surface of a leaf using interpolation methods,
it requires a collection of points sampled from the leaf surface.
Loch (2004) used a laser scanner to collect the surface points of
the Anthurium leaf. The Anthurium leaf data comprises of two sets,
the first set includes 4,688 surface points (Fig. 2) and 106 boundary
points for the second set, see Fig. 3(a). The accuracy of the hybrid
Clough-Tocher multiquadric RBF enhanced with a cubic polyno-
mial method (CT-MRBFC) proposed in Section 2 is evaluated using
the Anthurium leaf data. Two phases are essential to be able to
apply the CT-MRBFC technique to the leaf data, which contains
determination of a new reference plane for the leaf data and then
triangulation for the surface of the leaf.

3.1. Leaf reference plane

The sampled leaf points reference plane does not coincide with
the x,y-plane coordinate system, so to overcome this issue a refer-
ence plane that is the orthogonal distance regression plane fit to
the sampled points is used (Oqiela and Ogilat, 2018).

Given data points Pi ¼ ðxi; yiÞT ¼ zi; i ¼ 1;2; . . . ;N, fit Pi by the
following orthogonal distance regression plane:

!ðx; yÞ ¼ a1xþ a2yþ a3: ð12Þ

Find a1; a2 and a3 that minimize !ða1; a2; a3Þ ¼
PN

i¼1
jaxiþbyiþdj2

a2þb2
by

evaluating the partial derivative with respect to a3 to be zero,

@!
@a3

¼ a1
XN
i¼1

xi þ a2
XN
i¼1

yi þ Na3 ¼ 0 ð13Þ

) a3 ¼ �ða1x0 þ a2y0Þ
where ðx0; y0Þ is the data points center which lies in the plane.

Subsequently, Eq. (13) becomes

!ða1; a2Þ ¼
XN
i¼1

ja1ðxi � x0Þ þ a2ðyi � y0Þj2
a1 þ a22

ð14Þ

Eq. (14) can be represented in matrix form as follow:

Let vT ¼ ½a1; a2� and B ¼
ðx1 � x0Þ ðy1 � y0Þ
ðx2 � x0Þ ðy2 � y0Þ

..

. ..
.

ðxN � x0Þ ðyN � y0Þ

2
6664

3
7775 then

!ðvÞ ¼ vT ðBTBÞv
vTv .

Finally, after we projected the data points into the new refer-
ence plane, we rotated the coordinate system using a rotation
matrix (see Oqielat et al., 2009) to obtain the xy-plane as a new
reference plane to the leaf data.

3.2. Triangulation of the leaf surface

The shape of the triangle in the mesh can be detrimental to the
overall accuracy of the leaf surface fit. This problem is well known
in the finite element literature (Clough, 1965; Lancaster, 1986). The
CT-MRBFC method computational expenses can be decreased
RBFC interpolants. The parameter a is computed globally by Quadratic and Cubic root

Cubic root shape parameter

FC Global CT-MRBFC Local CT-MRBFC

7.8e�004 8.0e�004
1.3e�004 1.3e�004
2.9e�003 3.6e�003



Table 4
The RMS error comparison using the local CT-MRBFC interpolant The parameter a is computed locally by Fminbnd, Quadratic and Cubic root shape parameter methods using the
same (m ¼ 40) points.

Function Local CT-MRBFC method (m = 40)

Using Fminbnd method Quadratic root method Cubic root method

[c_minc_max] RMS [c_minc_max] RMS [c_minc_max] RMS

F3 [0.46 1.4] 1.5e�004 [0.01 0.3] 7.2e�004 [0.006 0.1] 8.5e�004
F4 [0.85 1.4] 4.1e�005 [0.04 1.2] 1.6e�004 [0.026 0.7] 1.9e�004
F6 [1.13 1.6] 5.2e�005 [0.10 2.9] 5.1e�004 [0.065 1.9] 6.9e�004
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Fig. 2. The 4,688 scanned Anthurium leaf points in 2D and 3D.
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Fig. 3. (a) Represent the 762 vertix point of the Anthurium leaf including 106 boundary points and 565 interior point. (b) The corresponding triangulation of the 762 points.
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by choosing a subset of 762 points from the Anthurium data to
triangulate the leaf surface. In the model presented here the mesh
generation is curried out to ensure that every triangle is close to
equilateral as possible. This should help to reduce the error since
it reduces a multiplicative term in a theoretical error bound. So
to get some indication of how good or bad is the RMSE and the rep-
resentation of the leaf surface, it is useful to evaluate the quality of
the mesh which is based on measuring the quality of each triangle
in the mesh. One way to measure the quality (Daniel, 2005) of the
element is:

Quality ¼ f
A

a2 þ b2 þ c2

� �
: ð15Þ
where A ¼ 1
2 of the triangle area, a; b and c are the lengths of the

sides of the triangle and f ¼ 4
ffiffiffi
3

p
is a normalizing coefficient which

scales the quality of an equilateral triangle to be 1.
In this context we perform a numerical experiment on one equi-

lateral triangle to measure the quality of the mesh. We started with
equilateral triangle and we finished with a thin triangle, see Fig. 4
(a). The CT approximation value is evaluated at a point ðpcÞ close to
the center of the equilateral triangle. Afterward, the height of the
equilateral triangle ðh) is reduced toward its base (see Fig. 4(a))
and we compute the CT approximation value again at a point
ðnewpcÞ close to the center of the new triangle. This process is
repeated and each time we evaluate the CT approximation value,
the exact value at that point is computed using the test function
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Fig. 4. (a) Represent equilateral triangle where the height of the triangle reduced toward its base, (b) represent the relation of the triangle quality with the relative error of the
CT method.

Table 5
The quality of a triangle start with an equilateral triangle and finish with a thin
triangle as well the relative RMS error using the CT method.

Exact value f ðx; yÞ ¼ sinðrÞ
r

CT value RMS error Triangle quality

�0.1391 �0.0831 0.2568 0.9990
�0.1334 �0.0812 0.2496 0.9959
�0.1276 �0.0787 0.2446 0.9904
�0.1217 �0.0757 0.2417 0.9822
�0.1158 �0.0721 0.2410 0.9710
�0.1098 �0.0681 0.2425 0.9564
�0.1037 �0.0637 0.2464 0.9382
�0.0976 �0.0590 0.2528 0.9159
�0.0915 �0.0540 0.2617 0.8893
�0.0854 �0.0488 0.2735 0.8581
�0.0793 �0.0435 0.2884 0.8220
�0.0732 �0.0380 0.3067 0.7806
�0.0671 �0.0325 0.3292 0.7340
�0.0611 �0.0270 0.3564 0.6818
�0.0551 �0.0215 0.3896 0.6243
�0.0492 �0.0160 0.4304 0.5614
�0.0434 �0.0107 0.4811 0.4934
�0.0377 �0.0055 0.5452 0.4207
�0.0321 �0.0006 0.6275 0.3437
�0.0266 0.0040 0.7349 0.2632
�0.0212 0.0078 0.8729 0.1799
�0.0160 0.0091 1.0000 0.0945

Table 6
The error computed by the global CT-MRBFC for the Anthurium leaf points.

Global CT-MRBF With Cubic
Polynomial (Anthurium leaf)

Maximum error 4.4e�002
Relative RMS 8.9e�003
Number of point tested 3688
Number of Boundary points 106
The RBF Parameter (a) 2.9953
Triangulation points 762
Number of triangles 1486

Fig. 5. (a) The leaf surface model of the Anthurium leaf created using the Global CT-
MRBF With Cubic Polynomial method. (b) The corresponding visualization of the
leaf.
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f ðx; yÞ ¼ sinðrÞ
r , (where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ y2Þp

to measure the error, the RMS
error and the triangle quality, see Table 5. One observes from
Table 5 that each time we reduced the height of the triangle, the
quality of the triangle decreased and the error increased (see
Fig. 4(b)). The final Triangulation of the Anthurium leaf is shown
in Fig. 3(b).

3.3. Numerical experiments for the leaf surface

The outcomes of employing the CT-MRBFC method to the data
points sampled from Anthurium leaf is presented in this section.
The accuracy of the CT-MRBFC method is evaluated using the
remaining leaf points (say s) after selection the triangulation points
by the RMS error given in Eq. (11) and the maximum error com-
bined with the surface fit given in the following equation
Maximum Error ¼ maxðjHðai; biÞ � f ijÞ
maxðf iÞ �minðf iÞ

; ð16Þ

Table 6 represent the maximum error and the RMS error by the
CT-MRBFC method for the data points sampled from the Anthur-
ium leaf. Note that the triangular mesh consists of 1486 triangles,
given a total of 3793 point to measure the approximation of the
proposed method. Furthermore, the maximum error obtained by
the CT-MRBFC technique is less accurate than the RMS error. The
optimal value of the multiquadric RBF is computed using Fminbnd
and it was 2.9953. In conclusion, the CT-MRBFC method produces
an accurate depiction of the Anthurium leaf (see Fig. 5)
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4. Results and conclusions

A new surface fitting method (CT-MRBFC) based on combining
the Clough-Tocher method (CT) and multiquadric RBF method
enhanced with a cubic polynomial (MRBFC) to model the leaf
surface is presented. The CT-MRBFC method is applied to recon-
struct the Anthurium leaf surface from 3D scanned points and
it’s provide an accurate leaf representation, see Fig. 5. The leaf
model can be used later to model a droplet of fluid (water or
pesticide) movements on a leaf surface.
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