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Abstract A new fractional derivative is defined through the variational iteration method, and its
application in explaining the excellent thermal protection of polar bear hairs is elucidated. The frac-
tal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. Thisis
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There are many definitions on fractional derivatives. The most
used ones are (Yang, 2012):

1) Caputo’s definition:

D) = g [ =00 "
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2) Riemann—Liouville definition

Dif) = s e [ = 0 o 0

(n—a) dx"

3) Jumarie’s definition (Jumarie, 2006)

D) =y g, 0O~ o 3)

4) Xiao-Jun Yang’s definition
Dgcl)f(x()) :f(x)(xo) _ dxf(x) m Ai(f(x) 7f(a'(x()))
(x — xo)

;dT |x:x0 = X0
where A”(f(x) — f(x0)) = T(1 + 2)A((x) - flx,)):
5) Chen’s fractal derivative (Chen et al., 2010; Chen, 2006):
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6) Ji-Huan He’s fractal derivative (He, 2011, 2014)

Du . u(xy) — u(xy)
2 I ) — #xa)
Dx* ( + a)Ax:xIH;r.‘IQHL (xl — .Xz)a

(6)

where Ax does not tend to zero, it can be the thickness (L) of a
porous medium. Applications of the fractal derivative to frac-
tal media have attracted much attention, for example it can
model heat transfer and water permeation in multi-scale fab-
rics and wool fibers (Fan and He, 2012; Fan and Shang,
2013a,b).

The definition, Eq. (6), is similar to Leibniz’s calculus.
Leibniz did not take the limit in his infinitesimal calculus. The
derivative of f{x) with respect to x, in the sense of Leibniz’s nota-
tion, is the standard part of the infinitesimal ratio:

f/(x):sl(g) :St<f(x1)—f(>€2)) )

X1 — X2
instead of Newton’s notation f'(x) = Alimo Ay/Ax.
X —

In a fractal medium, the distance between x; and x, tends
to infinity (Ax — o0) even when x; — x, , and therefore
Leibniz’s work was nearer to fractal and Cantor sets which
are the basis for fractional calculus (He, 2014).

2. Definition on fractional derivative through the variational
iteration method

The variational iteration method was first used to solve frac-
tional differential equations in 1998 (He, 1998), and it has been
shown to solve a large class of nonlinear differential problems
effectively, easily, and accurately with the approximations con-
verging rapidly to accurate solutions, and now it has matured
into a relatively fledged theory for various nonlinear problems,
especially for fractional calculus (He, 1998, 2011, 2012; Wu,
2012). A complete review on its development and its applica-
tion is available in Refs. (He, 2006, 2008).
We consider the following linear equation of n-th order

) = f(0) (8

By the variational iteration method (He, 1998), we have the
following variational iteration algorithm

1 (1) = (1) + (=1)" / ﬁ(s— " ) (s)
— fu(s)]ds. ©)

We introduce an integration operator I" defined by He,
2014

rr= [ s =0 0 e
1 t

=t | 6= 0 o)~ s o)

where f; (1) = u" (1).
We can define a fractional derivative in the form

Dif= D‘f%([’ff) — %(,@ﬁ
- ﬁ % /tﬂ (s = l)nﬂil[f(.)(s) — f(s)]ds (11)

where f, () is a known function, its physical explanation will be
given in the next section.

3. An application

As an application of the new fractional derivative, we consider
the fractal-like porous hairs of polar bear (He et al., 2011;
Wang et al., 2012). Hairs of a polar bear (Ursus maritimus)
are of superior properties such as the excellent thermal protec-
tion. How can polar bears resist such cold environment? Its
fractal porosity plays an important role.

Using Fourier’'s Law of thermal conduction in fractal
porosity of polar bear hairs (Yang, 2012), we obtain the fol-
lowing fractional differential equation

0" T

— [ p==)\= 12
0x* < (‘)x“) 0 (12)
with boundary conditions

T(0) =Ty, T(L) =T, (13)

where T is the temperature, D is the thermal conductivity of
heat flux in the fractal medium, o« is the fractional dimensions
of the fractal medium, 0/dx* is the fractional derivative
defined as (He, 2014)

oT” 1 d'

T g 60O T (4)

where T;,(x) can be the solution of its continuous partner of
the problem with the same boundary/initial conditions of the
fractal partner.

By the fractional complex transform (Li and He, 2010; He
and Li, 2012; Li et al., 2012)

xﬂ(
_ 15

ST 1) (15)

Eq. (12) is converted to a partial differential equation,
which reads

0 oT
o (Da) =0 (16)
Eq. (16) has the solution
bx*
Tfa—l—bsfa—&-—r(“ra) (17)

After incorporating the boundary conditions of Eq. (13),
we have

(TL — To)

T=Ty+~p

x* (18)

It is obvious that the solution has the following remarkable
property:

JT 0,00 > 1
a(x =0)= —(TLZT”),oc =1 (19)
oo, 0 < 1

The slope at x = 0 depends strongly upon the value of the
fractional order, or value of the fractal dimensions (He et al.,
2012). For a polar bear the temperature of its body surface
should be changed as smooth as possible, it requires o > 1 .
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A hollow hair with a labyrinth-like fractal porosity in polar
bear hairs was found in Ref. (He et al., 2011), this special struc-
ture guarantees o > 1.

4. Conclusions

Using the variational iteration method, we can easily derive a
more generalized fractional derivative. A simple example is
given to illustrate how to solve fractional differential equations
in the new fractional notation. The slope at the boundary
depends strongly upon the fractal structure of porosity. The
polar bear has evolved in a perfect mathematical way, and
its mechanism can be used for biomimic design for various
functional textiles.
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