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1. Introduction

The sample survey literature mainly comprised of estimating
the population characteristics of the study variable using associ-
ated auxiliary information, the characteristics are closely related
to the study variable and enhances our estimators for better effi-
ciency. In this regard ratio, product and regression methods are
good examples. This theory based on auxiliary information is fur-
ther extended by using two or more than two auxiliary variables
such as chain-type ratio cum regression, a linear combination of
two auxiliary variables, etc. to estimate and enhance the estimator
for better efficiency. These estimation procedures based on auxil-
iary information or merely on study variable presumed that all
the data is free from error (without measurement errors). In the
actual scenario, we never meet such ideality, that is the data is con-
taminated with or have hidden measurements error due to various
kind of reasons, (see Cochran (1968) and Murthy (1967)). Measure-
ment error is nothing, but a difference between the actual value
and observed value. This can be revealed only when the measure-
ment process is repeated or responses are compared to a gold stan-
dard (true value). There are many authors like Biemer and Stokes
(1991), Shalabh (1997), Manisha and Singh (2001), Maneesha
and Singh (2002), Carroll et al. (2006), Fuller (1987), Gregoire
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and Salas (2009) and Kumar et al. (2011) have given the estimation
procedures for the population characteristics under the measure-
ment errors. There is a different concern that measurement errors
have presented in both the study and auxiliary variable are uncor-
related. When the same surveyor or researchers are collecting
information on both study and auxiliary variable with the mea-
surement errors then there may be a correlation between measure-
ment errors on both study and auxiliary variable. This correlated
measurement errors may arise due to hidden biased tendencies
of the surveyor or researchers and can affect the estimators in
many ways (see Shalabh and Tsai, 2017). While dealing with sam-
ple surveys, you may face a heterogeneous population then it is
convenient to use stratified sampling than to simple random sam-
pling. In stratified sampling, we divide the heterogeneous popula-
tion into homogeneous strata that enhances our estimator for
better efficacy than to simple random sampling. Here, the auxiliary
information is used at the estimation stages in stratified sampling
to estimating the population means. As an illustration of stratified
sampling, you may see Vishwakarma and Singh (2012), and Tailor
et al. (2014) of estimation procedure for the means in stratified
sampling.

The statisticians are always keen to find out or employ some
new technique for better precision of their proposed estimators.
Calibration approach is one of them for the stratified random sam-
pling which provides better precision for the estimators using cal-
ibration weight. It is the technique of adjusting weights for
estimating population characteristics associated with characteris-
tics based on auxiliary information as constraints. The calibration
technique firstly was proffered by Deville and Sarndal (1992)
which minimize the distance function (chi-square) associated with
constraints. The calibration approach for the combined generalized
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linear regression estimator (GREG) also was made known by Singh
et al. (1998). Similarly, in the reference of this, many authors like
Singh (2001), Tracy et al. (2003), Kim et al. (2007), Singh and
Arnab (2011), Singh (2012), Singh (2013), Clement and Enang
(2015), Sinha et al. (2017), Rao et al. (2017), Singh et al. (2019),
Alka et al. (2019) and, Garg and Pachori (2019) have proposed dif-
ferent calibration approach for estimating the population charac-
teristics associated to different calibration constraints based on
auxiliary information.

Consider a finite population U* = (1, .....,N), for estimating the
population characteristics of the variable of matter y (known to
sample only) associated with auxiliary variable x, which is known
to the whole population. Let u* be the set of samples of size n
drawn without replacement from a population set with some prob-
abilistic sampling having inclusion probability 7t; = p(i € u*). In the
support of the estimators and for the efficient estimation of the
population characteristics Y = Zf’yi, Deville and Sarndal (1992)
firstly have proposed calibration estimator of the population char-

acteristics Y, which is established as Y. = 3°,.,.p;y;, where p;’s are
the calibration weights chosen to minimize their average distance
from the basic design weights d; utilized in Horvitz-Thompson esti-
mator and equal to 1/m;. The Horvitz-Thompson estimator is as

Vir =3 i 00 @

associated with the constraint >°,_,.p;x; = X, where X is the popula-
tion characteristics of the auxiliary variables. The distance measure
is mostly in the chi—square form which is as

(di—y;)*
¢ = Z,ew i (2)
where g;’s is the positive value could be chosen suitably to estima-
tors and also unrelated to d;. Hence the resulting calibration estima-
tor can be given as

Y= Py =Y + B(X - XHT) (3)

ieu*

. _27-1 - . N
where B = {Ziew diq,-x,-z] > icw diq@iXiy;, Yur and Xyr are the Horvitz-

Thompson estimators. The calibrated estimator Y. is generalized by
chosen different form of ¢ associated with the different type of con-
straints (See Singh et al. (1998), Singh (2003) and Tracy et al
(2003)).

Further, the impact of measurement errors ridden data on the
statistical properties of the estimators of parameters like popula-
tion mean and population variance, cannot be avoided in the esti-
mation until proper care is not taken. For example, in a satellite
launching, the let study variable be the path reading of the satellite
and speed of the satellite be the auxiliary characteristics. Second, in
a vaccine testing, let study variable be the efficacy of the vaccine
and time given to preparing a vaccine be the auxiliary characteris-
tics. If there are any measurement errors then in a satellite launch-
ing mission, mission may fail or in a vaccine testing, vaccine could
be pestilent. Similarly, in a making or testing of destructive bombs,
in a dog fight of fighter plane or in any others exterminatory ele-
ments, measurements errors can’t be ignored, because “a miss is
as good as a mile”.

We have used some existing basic calibration estimation and
the major disadvantages of this existing research is that it doesn’t
count seriousness of the measurement errors. To tackle this seri-
ousness or problems along with the variation of measurement
errors. In this manuscript, we have explained the calibration tech-
nique under both correlated and uncorrelated measurement errors
in stratified random sampling to examine the effect of measure-
ment errors on the proposed estimators under different calibration
weights. Here, we have described proposed estimators under two

different calibration weights, in the first case, it reduced to ratio
form and while in the second case it reduced to regression form.
A simulation study is conducted to examine the properties of pro-
posed estimators under both cases in measurement errors (corre-
lated and uncorrelated) and without measurements errors in
stratified sampling. Also, the efficiency comparisons have been
given to examine the precision of the proposed estimators under
measurements errors in stratified sampling using different calibra-
tion weights over unbiased estimator in stratified sampling. The
effect of the measurement errors has given as percentage contribu-
tion of measurement errors (PCME). Further, this manuscript fol-
lowed by as: proposed calibration estimators are given in
Section 2, Section 3 consists of efficiency comparisons, Section 4
describes the compilation of simulation study, Section 5 describes
the discussion and Section 6 mention the conclusions and further
study.

2. Proposed ratio and regression type calibrated estimators
under measurement errors

Let us consider a finite heterogeneous population of size N, par-
titioned into L non-overlapping strata of sizes Np, h = 1,2, ..., L,
where 3°f_ N, = N. Let (Vwenj> Xwenj) be the pair of observed values
instead of true pair values (V, Xu;) of the study character y and the
auxiliary character x respectively of the j unit (j =1, 2, ..., Ny) in
the h™ stratum. Also, let (,,.;, Xwe;) be the pair of values on (y, x)
drawn from the h" stratum (j=1,2, ... ny; h=1, 2, .., L). It is
familiar that in stratified random sampling an unbiased estimator

L
of  the population means Hwey = 2 Whillyey, s Hiex =
h=1

L L L
Z Whllyex, > tey = Z Whlly,, U = Z Wiy, s Wi = % of the vari-

able y and x are given by ¥, = Z WY wenXwest = Z WiXyen and
h=1 h=1
_ - _ _ . _
Vist = Z Wiy, Xese = Z Wi, where  Yyep =5 Zywehjv Xweh =
j=1
waehjv and yweh — ZyWEhj‘ Xweh

=
mean of h™ stratum of observed value and true value, and

Np N
— 1 . 1 .
S Ve, = > X

np
waehj are the sample
=

and iy,

:uweYh

Np
_ 1 _
=N, > Yoy, =
=

Ny
NLh S Xy are the population mean of h™stratum of the observed
j=1

and true value. Let the observational errors be
Unj = (Xwetj — Xety) » Unj = (Vwenj — Yuy)» Which are normally dis-
tributed with mean zero and variances ¢, and g2, respectively.
Also let p ,, be the population correlation coefficient between
Y, and X, in h*" stratum. For simplicity in exposition, assume that
the variables up; and v are correlated with correlation coefficient
PULV as (Yenj» Xuyj) are correlated. The usual mean estimator and
its variance under measurement error are given by

—~ L
Ywest = Z Whyweh (4)
h=1
=~ L. o2
V<yW"’5t> Z Wi :;;Yh = O-afest(saY)v (3)
h=1
2 - S 2 1
where Opoyh = Nn 1 Z ( wehj — Nweyh> =0, 0V, =§—1

_ .2
S (ij utyh) +ﬁ Z] <th — Vh) is the h'" stratum population
i=
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variance. the unbiased estimate of this variance o2, can be written
as

~ L

A~ 0 N

|4 (y west) = Z W2 z;Yh O-west (6)
h=1

ny _ 2 np _ 2
— 72 2 __1
where Gweyh - 71 z; (ywehj 7yweh) - thh + O-vh T np—1 Z} (ythj 7yth> +
= =

ny ~\2 . . - _
,M‘T]Z (vhj - uh) is the h™ stratum sample variance, V,~0= U,
j=1

Ueyn» Yo Un and vy, are population stratum mean, sample stratum
mean and sample mean of the errors.

To obtaining the expression up to first degree of approximation,
we have defined some error terms are given by as:

€no = QW&;;TY“) ) € = <Xwe;;:hx"> are such that E(ey)=0=
E(en) with E(e},) = - (i, +C7, ),

E(efy) = (Ch, + cgh) and
Puv,Cu,Cv, ). Where Cry, =70 s oy = g

Thus, variance of the estimator up to first order of approxima-

tion is given by:
= Cov, +
|4 (ywest) = Z Wh:utY,l <hr14hh> (7)
h=1

which is same as in Eq. (5). Now, we are going to define new pro-

E(enoem) = - <thY,, Cox, Coy, +

th Iy

CtXh = and th

posed calibration estimators instead of <37wm> under measurement

errors, here calibration estimators are as
Case 1: Ratio form

The estimator based on Kim et al. (2007) for the population
mean in stratified random sampling under measurement errors
with new calibration weight W, is given as

~1

Y west = Z w hYWeh (8)

h=1

where W) are chosen such that the chi-square-type distance
function

LWy = W)
,; W, ®

is minimized associated to constraint

L
Z Wlhxweh = Z Wh,“wex,, = Hyex (]0)
=1 h=1

where Q, provide form of calibration estimator and can be arbitrary
chosen.
Then we have the following theorem

Theorem 1. A calibrated estimator for the population mean under
measurement errors along with calibrated weight W), is given by:

~/

- L _ ~) L _
ywest:thyh""ﬂwezwh(uwexh _Xh> (11)
h=1 h=1

~l L - - L =2
where B, = > QuWiXuenYwen/ hZ QWX and
h=1 =1

Zﬁ:l Wy Hovex, with

L _
> Wiy =
P

Xweh = Xth + Un; Ywen = Yen + Uhs Hwex, = Hex,> Bwey, = ey,

Proof. By defining /1, as Lagrange multiplier, and from

Egs. (8)-(10), we have Lagrange function as

o3 W

Differentiating ¢, in Eq. (12) with respect to calibration weight
W}, and equating to equal to 0, we have

- 2)-a (Z W hxweh - Z thweh) (12)

h h=1

W;1 = Wh + ;LthWhiweh (13)

Multiplying above Eq. (13) by X,.;, on both side and taking sum-
mation we have

L L L
_ - -2

Z W/hxweh = Z thweh +a Z Qhwhxweh (14)

h=1 h=1 h=1

solving above Eq. (14), we have Lagrange multiplier as

L _ L _
<Z W,hxweh - Z thweh>
Jg = h=1 h=1

L (15)
Z Qhwhxweh
h=1

and by putting the value of /, in Eq. (13), we have calibrated weight

as

Qhwhxweh
Z Qx th oh

W), = W), + —nhweh

|:Z W hxweh - Z thweh:| (16)

and hence from Egs. (8) and (16), we have calibrated estimator as

Z Why weh

Z QW rXuehYuwen [ 1 L
S {Z Whklyex, = Wtheh} (17)
h=1

h=1

y west —

+ I 3
hZ: Qh thwgh
=1

finally, new estimator under calibration weight W), can be written
as

~ L L
5’ west — Z Whj’h + Bwe Z Wh (luweX,, - ;(h

h=1 h=1

) (18)

- -1
Also, setting Q;, = (xweh) , we get combined ratio estimator in
stratified random sampling under measurement errors as

~!

~ L _ L _
Y west = (hz W1Ywen/ hz thweh> Uwex» hence ratio form.
-1 =1

o~/
Theorem 2. The variance of the estimator y ., under measurement
errors, to the first order approximation is given by:

~ c +C
=, Hx, ty), 1%
V(.y west) = (tXl) th ty,,% (19)

Xest

Proof. From the Eq. (8), we have

-~

Y west = Z w’ hyweh and
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4 (;’rwest> =

L
= X wirv(l > WPE(el,) (20)

2 2
Lo, !C:v,ﬁfvh
= > Wylly,

n
h=1 h

V(é W,h.;’weh) Z 1143% (yweh)

+en) =

From Eq. (16) we have

1% Xwe
Wh =W+ ——"7-—7-— Qh h i |:Z w’ hxweh - Z thweh:| (21)
Z Qhwhxweh =1
h=1

and also, from Eq. (10) we have

L _ L
Z Wlhxweh = E Wh:uwexh
h=1 h=1
following

= Wwex = Usx, SO, we have Eq. (21) as

QW iXwen
Z Qh thweh

W;:Wth

{ Z thwe,,} (22)

_ -1
On setting Q;, = (xweh) in Eq. (22), we have new weight as

Wi, = Watte _ Watty _ Whitix - since, now substituting this W’

Xwest Xist
Z WhXen
h=1

in Eq. (20),

~/
We have variance of the calibrated estimator y ,,.,; as following

2, ey (nyh +CY, ) .
V(Y west | = <,—1) hz Wh,uﬂ,h ~— 2/ which proves the the-

Xest Ny

orem 2.

Lemma 1. The variance of the estimator y ,,, Without measure-
ment errors, to the first order approximation is given by:

2 2

= = u L Cty1
V(e ) =V (Ve ) = (i> ZWﬁu?yh<n'> 23)

Xist h=1 h

Proof. From the theorem 2, we have variance of the estimator

~I

¥ west Under measurement errors as following

V(ﬁ/wm) _ (ﬂrxh> Z Wh i, (Cth + C )

Xist L

If there are no measurement errors then in the expression of the
~!
variance of the estimator y ., the coefficient of variation Cy, will

~/
be zero and the variance of the estimator y ., will be now as
following

=~ -~ e \2 L C[ZY]
V(.y/west) = V<y/west> = <Ti:> hz:l Wﬁ,ufyh <nh’

lemmal.

this proves

o~
Lemma 2. The variance of the estimator y .., under measurement
errors, to the first order approximation has greater variance than to

~

variance of the estimator y ., without measurement errors:

v (C’Wm> SV (§/m> (24)

Proof. From the theorem 2 and lemma 1, the variance of the esti-
:\I

mator y ., under measurement errors in Eq. (19) can be expressed

as following

() ovoe) () o

Xist h=1

That is V(;’Wes[> > V<§/’m>, hence the proof of the lemma 2.

Case 2: Regression form

Again, we are considering here new estimator, and this estima-
tor based on Sinha et al. (2017) for the population mean in strati-
fied random sampling under measurement errors along with
weight W,"” and is given by:

~I

y west

Z W b e (26)

where W," are chosen such that the chi-square-type distance
L
(Wy" - Wh)
27
Z QWs @)

is minimized s. to c.

L L L
Z W' hXweh = Z Whﬂwex,, = My,exand Z W'y =
h=1 h=1 h=1

L
Z W, =1
h=1

(28)

Theorem 3. A calibrated estimator for the population mean under
measurement errors along with calibrated weight Wy, is given by:

~1

- L _ N L _
Y west = E Whywen + Bue E Wi (lutxh B Xweh) (29)
h=1 h=1

L L L L
v |: (Z Qp Wh;(weh;weh> <Z Qp Wh> - <Z Qn W’&weh) <Z QhWh;(weh) }
Whel—e ﬁwe — h=1 h=1 h=1 h=1

2
L L L
|: <Z Qn Wh) (Z Qn Wh’fa/eh) - (Z Q Wh;(weh) :|
=t =t =t

Proof. By defining /1, and /. as Lagrange multiplier, and from Eqgs.
(26) to (28), we have Lagrange function as

L W”*W 2 L "o, : v
¢2 — Z (thiWhh)_ Zj,b (ZW hXweh — thxweh>

h=1 h=1 h=1
L L
2 (Z W - th> (30)
h=1 h=1

Differentiating ¢, in Eq. (30) with respect to calibration weight
W} and equating to equal to 0, we have

W;: = Wh [1 + ;,th;(h + )LCQh} (31)

the following equations are obtained solving above Eq. (31) by mul-
tiplying .., and over summation

Z W'y = Z Wi+ 2 ZQhWtheh + Ze ZQhWh (32)

h=
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Z w” hxweh = Z thweh + A Z Qh Wh Xwen T S
h=1 h=1 h=1

L
X3 QuWokuen (33)
h=1

by substituting the Z W i X = Z Whllyex,» Z W', = Z Wyp=1
h= h=1 h=1
and solving Egs. (32) and (33), we have

L L L
= Z Qh Wh |:Z Wh,ungh - Z thweh:| /
71 [ 71
L L 5 L C\?
<Z Qs Wh) (Z Qhthweh> - (Z Qn thweh>
h=1 =1 h=1

L
|:Z thweh (Z Wh :uweXh Z thweh> :|
h=
L L 2 L _ z
QWh QWX | — QWhXwen
h=1 h=1

h=1

putting both the value of 4, and /. in Eq. (31), we have new calibra-
tion weight as

Wy =W,

- L L — L —
({2 Qa4 ) - QW (£ QoWiskn ) 5 Wi (e, ~1)}
h=1 h=1 h=1

[(hil Qhwh) (hil Qhwn?czweh) - (hil Qhwh&weh)z]

and the new estimator under calibration weight W}" can be written
as

L
t

(34

"

; west — Z Whyweh + ﬁwe Z Wi (:uwexh XWE’l) (35)

, [(EL: Qn Wh;(weh.;/weh> <é Qn Wh) - <h§ Qn Wh};weh> <EL: Qn Whiwehﬂ

F h=1 h=1
ﬂWE =

2
Kil Qhwh> (lil Qhwhffwe,,) - ( hil Qhwhiweh> }

hence, proves the theorem 3. Also, when we put the value Q, = 1 in
Eq. (35) then we have calibrated estimator in the regression form as

"

; west — Z Why weh

h=1

(= Wik ) = (5 Widho ) (£ Wit |
{(hil Wh;(iveh> <Z WXuweh }

XS Wy — o)

+

h=1
(36)
The estimator in Eq. (35) has another form is given by:
;/ westl — Z WhYWeh + ﬂwe Z Wh (Mwexh xweh) (37)

h=1

where is a constant to be determined such that the variance of the

~It

estimator y .., is minimum. The regression coefficient ., is con-
sidered as consistent estimator of f,,. Therefore, the variance of

/://
the calibrated estimator y ., under measurement errors, up to first
order approximation, is asymptotically equivalent to the variance of

n

the estimator y . (see Salinas et al., 2019).

~I

Theorem 4. The variance of the calibrated estimatory ., under cor-
related measurement errors, to the first order approximation is given
by:

~ L
v <y”west1 > = Z
min h=1

2.2
Wh ‘urY,,
X
np

2
Pexy, CtX,, Cth + Puv, CUh th)
2
(C x, T c Un )

(nyh + Cﬁh) - (
(38)

Proof. From the Eq. (37) and following the approach of Koyuncu
and Kadilar (2014), and Salinas et al. (2019), we have variance of

~n

the estimator y ., as

v (j’nwes[1> = |:’Z Whyweh + B we z Wy (/'tweX,, iweh>:|

L

= [}; Wﬁ {luthhE(eﬁo) + ﬁ”wez.ugth(eﬁl) - zﬁﬂwelutY,, .utx,, E(ehoehl )}] (39)
L 2

= L; urt {.uzy, (C[Y, + Cv,,) +p wezﬂ[x, (Cth + C[zjﬁ)

*zﬁ”weﬂn’,1 Hux, (prxy,, Cix, Crv,, + puy, Cu, th) }]

To obtaining the optimum value of for the minimum variance of

:\// :\//
the estimator y ., we are differentiating Vy ., along with Eq.
(39) with respect to equating it equal to zero, that is

D(V V" west )
—~- 7/ =0, we have

9B we
g Hey, (pm',, Cix, Cry,, + Pwy, Cu, th) (40)
" I, <C?xh + Cf,h>
Putting the value of from the Eq. (40) in V<§”Wm> along with

Eq. (39), we have minimum variance of the calibrated estimator

~n

Y west1 S
~ L

V(.V”westl) = Z

min h=1

2
Wi ‘u?Yn 2 2 (thY,, Cfxn Cth + pUV,, CUn th)
(C[Y + C‘V ) -
i h h

(Cth + ijh)
hence the proof of the theorem 4.

~

Lemma 3. The variance of the estimator y ,,.; under uncorrelated
measurement errors, to the first order approximation is given by:

~ L
4 (y”westl ) = Z
min h=1

2,2
Wh.utv,,

Ny

(P Xy, Cex, Cy, ) ’

() ()

(41)
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Proof. From the theorem 4, we have variance of the estimator
~Ir

Y wesr1 under correlated measurement errors as following

~ L 2,2
V4 o _ WhlutY,,
west = Z n

min  p—1 h

If there are uncorrelated measurement errors then in the

~I
expression of the variance of the estimator y ., the correlation
coefficient py,, will be zero and the variance of the estimator

~1

Y wesen Will be now as following

=~ L Wh/hy
4 (y//wesﬂ) Z .
min h=1

proves lemmas3.

(erY CIXthV;. + Puy, CU/x th>2
(e )G va)

2
(Prxvh Cix,, Cty,, )

2 2
<Crx,, +Cuh)

this

(Ctyh +C v,,>

:\/
Lemma 4. The variance of the estimator y ,,.,,; Without measure-
ment errors, to the first order approximation is given by:

-~ - L W22, C3
v (.y”westl) =V (y”tsn) = Z ! ';Yh s (1 - pé(Y,,) (42)
min min h=1 h

Proof. From the theorem 4, we have variance of the estimator
~I

Y wese1 under correlated measurement errors as following

~ L 22
V(_;’” ”> _ Z Wh‘uth
wes =
min My

h=1

(thY,, C[Xh CTYh + pUVh CUh th ) ’
2
N GREA

If there are no measurement errors then in the expression of the

~I

variance of the estimator y ., the correlation coefficient Puv,
and coefficient of variations Cy,, Cy, will be zero, and the variance

~I

of the estimator y .., will be now as following
~ ~ 2
V(il//westl) = V(i”tstl) - i Z Hch tYh (1 N p%XYn) this
min min h=1

proves lemmas3.

The expression for variance in lemma 4 of Eq. (42), is a variance
of the classical linear regression under stratified sampling when
there are no measurement errors. Similarly, the calibrated estima-

~I

tor y .1 from the Eq. (36) under measurement errors will be clas-
sical linear regression estimator under stratified sampling if there
are no measurement errors. Therefore, this also shows that the

~I

variance of the estimator y ,,.,; from the Eq. (37) will be equiva-

"

lent to the variance of the estimator y ., from the Eq. (36) under
both correlated and uncorrelated measurements errors. That is

~ - L W23
v <y”wesr1> ~V <y”west> = Z %
min T —t h

(ptxy Cx, Cev, + Py, Cu, th)z
(szy,, +C ) - " (Cth + Cuhh)

(43)

~1
Lemma 5. The variance of the estimator y ,.; under measure-
ment errors, to the first order approximation has greater variance

~I

than to variance of the estimator y ..y Without measurement
errors

v (.;/Hwestl ) >V (5///[5[1 > (44)

Proof. From the lemma 3 and lemma 4, the variance of the

~I

estimator y ,,.q; under measurement errors in Eq. (41) can be
expressed as following

~ ~ L
o' ' ,Ll
V(.y westl) = V(.y tstl) + Z h — (CZ p?XY,l C?Y,,) (45)

h=1

That is V<;“Wem> > V(JC//’M), hence the proof of the lemma 5.

3. Efficiency comparisons

In this section, we are giving efficiency comparisons of the cal—

~ ~

ibrated estimators y . and y .o Over unbiased estimator ywm
under measurement errors.

(i) v(fwwm> < v<§wes[) iff
(6) )

~1

from the Eqgs. (19) and (7), the variance of the estimator y ,,, can
also be expressed as following

V(¥ ) = (2)V (Vo) i
o) i) )
{2#;)(1,1 (;(tst - MtX;,) -3 (ug}h ()}m _ M[Xh)>2 _0p <n’;3/2> }

Since (Mﬂ)Z =1

Xist

(47)

(o e ) 3
(im - ﬂth))z —0p (nf/z)} see Kim et al. (2007). It is clear from

Eq. (46) V<9’wm) < V(mf).
(i) V(?’wm) < V(iwm) iff

() 5G), ) -

from the Eqs. (38), (7) and (48), we have following expression

(o) (), ) -

2
W2 Ky, (thY,, Cox, Cov,, + Puy, Cu, CVh)

L
Z my (Cth + Caﬁ)

h=1

(49)
>0

which is always true.

~1 ~ ~n

Hence, the calibrated estimators y ..y wesr; and ¥ west1 theoret-

ically have shown supremacy over unbiased estimator y,,, under
measurement errors.

4. Simulation study

To examine the merit of the proposed calibrated estimators
under measurement errors, we have conducted Monte-Carlo simu-
lation study (see Shalabh and Tsai 2017, ). The simulation study is
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conducted through using R studio. We have drawn heterogeneous
strata of the sizes Ny = 150,N; = 90 and N3 = 120 with the total
population N = 450. The different sizes of strata are drawn from
a 4-variate multivariate normal distribution with means

(llfx,17 Hyy,» O, 0) and covariance matrix

T, Pexy, O, Orr, O 0

Py, 0, Oy, Oy, 0 0

0 0 04, Puv,0u,0v,
0 0 Pw,0u,0v,  OF,

where h = 1, 2, and 3 for the different strata with the details of the
combination of the parameters. Which are given below as:

(Hox, Foxy» ox, = 94, 88, 91),
(ﬂrylv.“:vza My, =99, 92, 97)» (Hryla
Hogys Py, = 99,92, 97), (0%, 0%, 0%, = 3707, 35.76, 31.23),
(0%, 0%, ok, = 33.59, 36.47, 34.90),

(pm,] s Pixvys Pexys = 0.9, 0.5, 0.7), for all possible combination we
have

{af,l —02 =03 = (0, 1,2, 3),0% =03 =02 = (0, 1, 2, 3)}
and the correlation coefficient for the correlated and uncorrelated
measurement errors are as given following
{pwl = pu, = Puy, = (0.9, 0.7, 0.5, 0.0, —0.5,—0.7,—0.9)}. Sim-
ilarly, for  heterogeneous case are given by as
{pu‘,], Puv,s Puv, =05, 07, 09 & —045,—0.7,—0.9}.

Further, we have drawn samples n; = 50, n, = 30 and n; = 40
from each stratum with the total sample n = 120. The values of
the means, estimated variances, relative efficiencies and percent-
age contribution of the measurement error are computed based
on 5000 replications and are represented in the Tables 1-3 or by
graphs in Figs. 1 and 2, see Appendix A. The relative efficiencies

(RE) and percentage contribution of the measurement error (PCME)
are defined respectively as

V(;west)
RE(x) = e (50)
PCME:WX 100, (51)

where V(x), are the variances when there are no measurement
errors, V(x),, are the variances when there are measurement errors

~ ~ ~n

and * = .;/westv 5’ west andy west
Note: For the convenient of the graphical representation, the

estimators Yy, ¥ wesr ANd ¥ 0 are represented by y, y1 and y2
respectively in all Figs. 1 and 2.

5. Discussion

To analyze the contribution of measurement errors, we have

~1 -~

obtained two proposed calibration estimators y ., and y ., With
their respective variances to the first order approximation under

~

measurement errors. The two calibrated estimators y ., and
:\//

Y wes are stated in theorem 1 and 3, and their respective variances
are stated in theorem 3 and 4. Lemma 1 and lemma 4 state the

~1 -~

variances of the calibrated estimators ¥ ., and y ,., without
measurement errors and in lemma 3, the variance of the calibrated

~I
estimator y . under uncorrelated measurement errors have
shown. Lemma 2 and lemma 5 have shown that the variances of

~! -~

the calibrated estimators y ., and y . have greater variances
than to the respective same estimators under without measure-
ment errors. Theoretically, lemma 2 and 5 have shown that there
is contribution of measurement errors (correlated and uncorre-
lated). Also, in section 3, we have shown the supremacy of the cal-

~ ~I

ibrated estimators y ., and y ,,., OvVer mean per unit estimator

Vwee under measurement errors through the efficiency
comparisons.

Thus, theoretically we have shown the aim of the study but for
more analytical study, we have conducted a simulation study in
Section 4. The results are shown in Tables 1-3 as a numerical
and as a graphical in Figs. 1 and 2. We can see in the Tables 1-3,

~/
the relative efficiency of the proposed calibrated estimators y .
~I o~

and y ., are greater than mean per unit estimator y,,, under
measurement errors. Also, we have represented combination of
data in Figs. 1 and 2 along with data level. The Figs. 1 and 2 repre-
sent the results with changing values of the correlation coefficient
of the measurement errors. We can see from Figs. 1 and 2, the rel-
ative efficiency of the proposed calibrated estimators over mean
per unit estimator have increased with the increasing values of
the positive homogeneous correlation coefficient and have
decreased with the increasing values of the negative homogeneous
correlation coefficient of the measurement errors. Alike homoge-
neous correlation coefficient of the measurement errors, heteroge-
neous case has also shown the same pattern for the relative
efficiency of the proposed calibrated estimators.

Theoretically, lemma 2 and 5 have shown that there is contribu-
tion of measurement errors (correlated and uncorrelated) and
numerically, we have calculated as percentage contribution of
measurement errors (PCME) through simulation study. We can
see from the Tables 1 and 3 or from the Figs. 1 and 2, the PCME
of the proposed calibrated estimators under measurement errors
are increasing or decreasing with same pattern. In all the Tables
1-3 or in Figs. 1 and 2, we can see the PCME of the calibrated esti-
mators are increasing with the increased variability of the mea-
surement errors. In Tables 1, the proposed calibrated estimators
have high values of PCME for all the cases of the uncorrelated mea-
surement errors, that is the proposed estimators are highly
affected by the measurement errors. Also, in heterogeneous corre-
lated measurement errors case, the proposed estimators are highly
affected by the measurement errors for all the variability cases of
the measurement errors, But, for the positive correlated measure-
ment errors cases not much affected. In Table 2, the proposed esti-
mators are not much highly affected by measurement errors
except in the case 6, =2, o}, =2and g3, =3, gy, = 3 for which
the calibrated estimators have high values of PCME. While, in
Table 3, the proposed estimators are highly affected by measure-
ment errors for all possible correlation coefficient and variability
of the measurement errors due to high values of the PCME.

In Figs. 1 and 2, the effect of measurement errors is represented
with the changing values of the correlation coefficient of the mea-
surement errors. We can see from Figs. 1 and 2, the PCME of the
proposed estimators are decreasing with increased values of the
positive correlation coefficient of the measurement errors and
are increasing with increased values of the negative correlation
coefficient of the measurement errors. Even, the PCME of the pro-
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posed estimators are high in the case of negative correlation coef-
ficient of the measurement errors. This shows the proposed cali-
brated estimators are highly affected by the measurement errors
than to all cases when the negative correlation coefficient of the
measurement errors is observed.

6. Conclusions and further study

In this manuscript, we have proposed calibrated estimators in
stratified sampling under both the correlated and uncorrelated
measurement errors. The proposed calibrated estimators have
shown superiority over usual mean estimator under all the cases
of measurement errors and also when there are no measurement
errors by theoretically as well as numerically. To examine the
effect of measurement errors, we have calculated percentage con-
tribution of measurement error (PCME) and we found that the
PCME of the calibrated estimators are increasing with increased
variability of the measurement errors presented in both the study
and auxiliary variables. Also, the PCME of the calibrated estimators
decreases with the positive increment of correlation coefficient of
the measurement errors concerning to when there is no correlation
in the measurement errors of the both variables. While, the PCME
of the calibrated estimators increases with the negative increment
of the correlation coefficient of the measurement errors concerning
to when there is no correlation in both the variables of the mea-
surement errors. The calibrated estimators are highly affected by
the measurement errors when the correlation coefficient in the
measurement errors of the both variables are negative. A proper
care should be taken in those cases where proposed estimators

Table 1

are highly affected by the measurement errors and specially for
negative correlation coefficient of the measurement errors.

A further study can be done by applying different estimators on
a calibration estimator having a calibration weight subject to fix
single constraint (mean or variance), as in Eqgs. (9) and (10) (see
Kim et al. (2007), Clement (2017)). Second, by applying a calibra-
tion weight subject to many constraints (see Koyuncu and
Kadilar (2014), Clement (2018) and Salinas et al. (2019)).
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Appendix A

Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator for uncorrelated and heterogeneous correlations cases.

Estimators Punt = Purz = Puys = 0.0, 05, =2, 0f, =2
- V(%) RE PCME
.VWest
y 79.3 0.201 1.00 0
west
79.2 0.111 1.82 0
}’,” 79.2 0.110 1.83 0
west
Punt = Puv2 = Puvz = 0.0
o}, =1 o}, =1 oh =2 0}, =2 %, =3. 9, =3
= V(%) RE PCME = V(%) RE PCME = V(%) RE PCME
yWESf yW?S[ ywest
Vuwest 79.3 0.209 1.00 4.125 79.4 0.217 1.00 7.826 79.4 0.224 1.00 11.46
y, . 79.4 0.123 1.71 10.90 79.5 0.135 1.61 21.60 79.6 0.146 1.53 32.29
wesi
y” . 79.4 0.122 1.72 10.75 79.5 0.133 1.63 21.39 79.6 0.145 1.54 32.02
wesi
Punt =0.5,pyp =0.7,py3 =0.9
Vuvest 79.3 0.209 1.00 4.183 79.4 0.216 1.00 7.502 79.3 0.236 1.00 17.30
5,’ . 79.3 0.116 1.81 4.558 79.3 0.120 1.81 8.173 79.2 0.131 1.80 18.19
wesi
5,” . 79.3 0.115 1.82 4.514 79.3 0.119 1.82 8.100 79.2 0.130 1.81 18.38
wesi
Pun = —=0.5,0yp = =07, pyp3 = -0.9,
Vwest 79.3 0.205 1.00 1.983 79.3 0.221 1.00 9.909 79.2 0.216 1.00 7.586
;’ . 79.2 0.130 1.58 17.55 79.3 0.164 1.35 48.11 79.3 0.173 1.25 56.09
wesl
3 79.2 0.129 1.59 17.48 79.3 0.162 1.36 48.04 79.3 0.171 1.26 55.95
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Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator for positive correlations.

Estimators Puvt = Puvz = Pupz = 0.5,
of, =1, 0y, =1 0f, =2, 05, =2 of, =3, oy, =3
- V(x) RE PCME - V(x) RE PCME - V(*) RE PCME
.VWest -VWESf -VWQS[
Vovest 79.3 0.205 1.00 2.174 79.3 0211 1.00 4.872 79.4 0.216 1.00 7.757
5,’ . 79.3 0.116 1.76 5312 79.3 0.122 1.73 10.35 79.4 0.131 1.65 18.37
wesi
5,” it 79.3 0.116 1.78 5216 79.3 0.121 1.74 10.20 79.4 0.130 1.67 18.15
We
Puvt = Puv2 = Pupz = 0.7,
Vuwest 79.3 0.206 1.00 2.659 79.4 0.212 1.00 5.617 79.4 0.228 1.00 13.49
5,’ . 79.3 0.114 1.81 3.224 79.3 0.118 1.81 6.262 79.2 0.126 1.81 13.88
wesi
;,” . 79.3 0.113 1.82 3.161 79.3 0.117 1.82 6.166 79.2 0.125 1.82 14.04
wesi
Puvt = Purz = Pupz = 0.9,
Vuwest 79.3 0.208 1.00 3.317 79.3 0.216 1.00 7.351 79.5 0.227 1.00 13.24
J*,imt 79.3 0.112 1.86 1.075 79.2 0.117 1.85 5.408 79.4 0.121 1.88 9.213
J*,” . 79.3 0.111 1.87 1.055 79.2 0.116 1.86 5.465 79.4 0.120 1.90 9.177
wesi
Table 3
Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator for negative correlations.
Estimators Puvt = Puvz = Puyz = -0.5,
of, =1, 0y =1 0}, =2, 05 =2 0f, =3, 0y, =3
- V() RE PCME - V(x) RE PCME - V(*) RE PCME
yWL’St -VWES[ yWéSf
Vuwest 79.3 0.213 1.00 6.061 79.3 0.224 1.00 11.61 79.3 0.220 1.00 9.366
5,’ . 79.4 0.132 1.61 19.32 79.3 0.159 1.41 43.66 79.3 0.166 1.32 50.47
wesi
5,” . 79.4 0.131 1.63 19.27 79.3 0.158 1.42 43.62 79.3 0.165 1.33 50.35
wesi
Put = Purz = Pupz = —0.7,
Vuwest 79.3 0.206 1.00 2.788 79.2 0.215 1.00 7.265 79.3 0.219 1.00 8.984
5,’ . 79.2 0.131 1.57 18.81 79.1 0.160 1.35 44,52 79.3 0.174 1.26 56.88
wesi
5,” . 79.2 0.130 1.58 18.75 79.1 0.159 1.36 44,50 79.3 0.172 1.27 56.77
wesi
Puvt = Purz = Pupz = —0.9,
Vuwest 79.2 0.208 1.00 3.452 79.3 0.211 1.00 5273 79.3 0.222 1.00 10.60
5,’ . 79.1 0.139 1.50 25.60 79.2 0.158 1.34 43.07 79.4 0.198 1.12 78.95
wesi
vl 79.1 0.138 1.51 25.61 79.2 0.157 1.35 43.00 79.4 0.196 1.13 78.86
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Fig. 1. Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator when g§, =1, oj, = 1.
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Fig. 2. Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator when ¢, =3, ¢}, =3.
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