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1. Introduction

The sample survey literature mainly comprised of estimating
the population characteristics of the study variable using associ-
ated auxiliary information, the characteristics are closely related
to the study variable and enhances our estimators for better effi-
ciency. In this regard ratio, product and regression methods are
good examples. This theory based on auxiliary information is fur-
ther extended by using two or more than two auxiliary variables
such as chain-type ratio cum regression, a linear combination of
two auxiliary variables, etc. to estimate and enhance the estimator
for better efficiency. These estimation procedures based on auxil-
iary information or merely on study variable presumed that all
the data is free from error (without measurement errors). In the
actual scenario, we never meet such ideality, that is the data is con-
taminated with or have hidden measurements error due to various
kind of reasons, (see Cochran (1968) and Murthy (1967)). Measure-
ment error is nothing, but a difference between the actual value
and observed value. This can be revealed only when the measure-
ment process is repeated or responses are compared to a gold stan-
dard (true value). There are many authors like Biemer and Stokes
(1991), Shalabh (1997), Manisha and Singh (2001), Maneesha
and Singh (2002), Carroll et al. (2006), Fuller (1987), Gregoire
and Salas (2009) and Kumar et al. (2011) have given the estimation
procedures for the population characteristics under the measure-
ment errors. There is a different concern that measurement errors
have presented in both the study and auxiliary variable are uncor-
related. When the same surveyor or researchers are collecting
information on both study and auxiliary variable with the mea-
surement errors then there may be a correlation betweenmeasure-
ment errors on both study and auxiliary variable. This correlated
measurement errors may arise due to hidden biased tendencies
of the surveyor or researchers and can affect the estimators in
many ways (see Shalabh and Tsai, 2017). While dealing with sam-
ple surveys, you may face a heterogeneous population then it is
convenient to use stratified sampling than to simple random sam-
pling. In stratified sampling, we divide the heterogeneous popula-
tion into homogeneous strata that enhances our estimator for
better efficacy than to simple random sampling. Here, the auxiliary
information is used at the estimation stages in stratified sampling
to estimating the population means. As an illustration of stratified
sampling, you may see Vishwakarma and Singh (2012), and Tailor
et al. (2014) of estimation procedure for the means in stratified
sampling.

The statisticians are always keen to find out or employ some
new technique for better precision of their proposed estimators.
Calibration approach is one of them for the stratified random sam-
pling which provides better precision for the estimators using cal-
ibration weight. It is the technique of adjusting weights for
estimating population characteristics associated with characteris-
tics based on auxiliary information as constraints. The calibration
technique firstly was proffered by Deville and Sarndal (1992)
which minimize the distance function (chi-square) associated with
constraints. The calibration approach for the combined generalized
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linear regression estimator (GREG) also was made known by Singh
et al. (1998). Similarly, in the reference of this, many authors like
Singh (2001), Tracy et al. (2003), Kim et al. (2007), Singh and
Arnab (2011), Singh (2012), Singh (2013), Clement and Enang
(2015), Sinha et al. (2017), Rao et al. (2017), Singh et al. (2019),
Alka et al. (2019) and, Garg and Pachori (2019) have proposed dif-
ferent calibration approach for estimating the population charac-
teristics associated to different calibration constraints based on
auxiliary information.

Consider a finite population U� ¼ 1; :::::;Nð Þ, for estimating the
population characteristics of the variable of matter y (known to
sample only) associated with auxiliary variable x, which is known
to the whole population. Let u* be the set of samples of size n
drawnwithout replacement from a population set with some prob-
abilistic sampling having inclusion probability pi ¼ p i 2 u�ð Þ. In the
support of the estimators and for the efficient estimation of the

population characteristics Y ¼PN
i yi, Deville and Sarndal (1992)

firstly have proposed calibration estimator of the population char-

acteristics Y , which is established as Ŷc ¼
P

i2u�piyi, where pi’s are
the calibration weights chosen to minimize their average distance
from the basic design weights di utilized in Horvitz-Thompson esti-
mator and equal to 1=pi. The Horvitz-Thompson estimator is as

ŶHT ¼
X

i2u�diyi ð1Þ

associated with the constraint
P

i2u�pixi ¼ X, where X is the popula-
tion characteristics of the auxiliary variables. The distance measure
is mostly in the chi-square form which is as

u ¼
X

i2u�
di � yið Þ2
diqi

ð2Þ

where qi’s is the positive value could be chosen suitably to estima-
tors and also unrelated to di. Hence the resulting calibration estima-
tor can be given as

Ŷc ¼
X

i2u�piyi ¼ ŶHT þ B̂ X � X̂HT

� �
ð3Þ

where B̂ ¼ P
i2u�diqix

�2

i

h i�1P
i2u�diqix

�
iy
�
i, ŶHT and X̂HT are the Horvitz-

Thompson estimators. The calibrated estimator Ŷc is generalized by
chosen different form ofu associated with the different type of con-
straints (See Singh et al. (1998), Singh (2003) and Tracy et al
(2003)).

Further, the impact of measurement errors ridden data on the
statistical properties of the estimators of parameters like popula-
tion mean and population variance, cannot be avoided in the esti-
mation until proper care is not taken. For example, in a satellite
launching, the let study variable be the path reading of the satellite
and speed of the satellite be the auxiliary characteristics. Second, in
a vaccine testing, let study variable be the efficacy of the vaccine
and time given to preparing a vaccine be the auxiliary characteris-
tics. If there are any measurement errors then in a satellite launch-
ing mission, mission may fail or in a vaccine testing, vaccine could
be pestilent. Similarly, in a making or testing of destructive bombs,
in a dog fight of fighter plane or in any others exterminatory ele-
ments, measurements errors can’t be ignored, because ‘‘a miss is
as good as a mile”.

We have used some existing basic calibration estimation and
the major disadvantages of this existing research is that it doesn’t
count seriousness of the measurement errors. To tackle this seri-
ousness or problems along with the variation of measurement
errors. In this manuscript, we have explained the calibration tech-
nique under both correlated and uncorrelated measurement errors
in stratified random sampling to examine the effect of measure-
ment errors on the proposed estimators under different calibration
weights. Here, we have described proposed estimators under two
different calibration weights, in the first case, it reduced to ratio
form and while in the second case it reduced to regression form.
A simulation study is conducted to examine the properties of pro-
posed estimators under both cases in measurement errors (corre-
lated and uncorrelated) and without measurements errors in
stratified sampling. Also, the efficiency comparisons have been
given to examine the precision of the proposed estimators under
measurements errors in stratified sampling using different calibra-
tion weights over unbiased estimator in stratified sampling. The
effect of the measurement errors has given as percentage contribu-
tion of measurement errors (PCME). Further, this manuscript fol-
lowed by as: proposed calibration estimators are given in
Section 2, Section 3 consists of efficiency comparisons, Section 4
describes the compilation of simulation study, Section 5 describes
the discussion and Section 6 mention the conclusions and further
study.

2. Proposed ratio and regression type calibrated estimators
under measurement errors

Let us consider a finite heterogeneous population of size N, par-
titioned into L non-overlapping strata of sizes Nh, h = 1,2, . . ., L,
where

PL
h¼1Nh ¼ N: Let ywehj; xwehj

� �
be the pair of observed values

instead of true pair values ythj; xthj
� �

of the study character y and the
auxiliary character x respectively of the jth unit j ¼ 1; 2; :::; Nhð Þ in
the hth stratum. Also, let ywehj; xwehj

� �
be the pair of values on y; xð Þ

drawn from the hth stratum j ¼ 1; 2; :::; nh; h ¼ 1; 2; :::; Lð Þ. It is
familiar that in stratified random sampling an unbiased estimator

of the population means lweY ¼ PL
h¼1

WhlweYh
;lweX ¼

PL
h¼1

WhlweXh
;ltY ¼ PL

h¼1
WhltYh

; ltX ¼ PL
h¼1

WhltXh
; Wh ¼ Nh

N of the vari-

able y and x are given by y
�
west ¼

PL
h¼1

Why
�
weh,x

�
west ¼

PL
h¼1

Whx
�
weh and

y
�
tst ¼

PL
h¼1

Why
�
th, x

�
tst ¼

PL
h¼1

Whx
�
th, where y

�
weh ¼ 1

nh

Pnh
j¼1

ywehj, x
�
weh ¼

1
nh

Pnh
j¼1

xwehj, and y
�
weh ¼ 1

nh

Pnh
j¼1

ywehj, x
�
weh ¼ 1

nh

Pnh
j¼1

xwehj are the sample

mean of hth stratum of observed value and true value, and

lweYh
¼ 1

Nh

PNh

j¼1
Ywehj,lweXh

¼ 1
Nh

PNh

j¼1
Xwehj and ltYh

¼ 1
Nh

PNh

j¼1
Ythj,ltXh

¼

1
Nh

PNh

j¼1
Xthj are the population mean of hthstratum of the observed

and true value. Let the observational errors be
uhj ¼ xwehj � xthj

� �
; vhj ¼ ywehj � ythj

� �
, which are normally dis-

tributed with mean zero and variances r2
uh and r2

vh respectively.
Also let qtXhYh

be the population correlation coefficient between
Yt and Xt in hth stratum. For simplicity in exposition, assume that
the variables uhj and vhj are correlated with correlation coefficient
qUhVh as (ythj, xthj) are correlated. The usual mean estimator and
its variance under measurement error are given by

by�west ¼
XL
h¼1

Why
�
weh ð4Þ

V by�west

� �
¼
XL
h¼1

W2
h
r2

weYh

nh
¼ r2

west sayð Þ; ð5Þ

where r2
weYh ¼ 1

Nh�1

PNh

j¼1
Ywehj � l

�
weYh

� �2
¼ r2

tYh
þ r2

Vh
¼ 1

Nh�1

PNh

j¼1
Ythj � l

�
tYh

� �2
þ 1

Nh�1

PNh

j¼1
Vhj � V

�
h

� �2
is the hth stratum population
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variance. the unbiased estimate of this variance r2
west can be written

as

V̂ by�west

� �
¼
XL
h¼1

W2
h
r̂2

weYh

nh
¼ r̂2

west ð6Þ

where r̂2
weyh¼ 1

nh�1

Pnh
j¼1

ywehj�y
�
weh

� �2
¼r2

tyhþr2
vh¼ 1

nh�1

Pnh
j¼1

ythj�y
�
th

� �2
þ

1
nh�1

Pnh
j¼1

vhj�v
�
h

� �2
is the hth stratum sample variance, V

�
h�0�U

�
h,

l
�
tYh, y

�
th, u

�
h and v

�
h are population stratum mean, sample stratum

mean and sample mean of the errors.
To obtaining the expression up to first degree of approximation,

we have defined some error terms are given by as:

eh0 ¼
y
�
weh�ltYh

� �
ltYh

; eh1 ¼
x
�
weh�ltXh

� �
ltXh

are such that E eh0ð Þ ¼ 0 ¼

E eh1ð Þ with E e2h0
� � ¼ 1

nh
C2
tYh

þ C2
Vh

� �
,

E e2h1
� � ¼ 1

nh
C2
tXh

þ C2
Uh

� �
and E eh0eh1ð Þ ¼ 1

nh
qtXYh

CtXh
CtYh

þ
�

qUVh
CUh

CVh
Þ. Where CtYh

¼ rtYh
ltYh

;CtXh
¼ rtXh

ltXh
and CVh

¼ rVh
ltYh

;CUh
¼ rUh

ltXh
.

Thus, variance of the estimator up to first order of approxima-
tion is given by:

V by�west

� �
¼
XL
h¼1

W2
hl

2
tYh

C2
tYh

þ C2
Vh

� �
nh

ð7Þ

which is same as in Eq. (5). Now, we are going to define new pro-

posed calibration estimators instead of by�west

� �
under measurement

errors, here calibration estimators are as

Case 1: Ratio form

The estimator based on Kim et al. (2007) for the population
mean in stratified random sampling under measurement errors
with new calibration weight W 0

h is given as

by�0
west ¼

XL
h¼1

W 0
hy
�
weh ð8Þ

where W 0
h are chosen such that the chi-square-type distance

function

XL
h¼1

W 0
h �Wh

� �2
QhWh

ð9Þ

is minimized associated to constraintXL
h¼1

W 0
hx
�
weh ¼

XL
h¼1

WhlweXh
¼ lweX ð10Þ

where Qh provide form of calibration estimator and can be arbitrary
chosen.

Then we have the following theorem

Theorem 1. A calibrated estimator for the population mean under
measurement errors along with calibrated weight W 0

h is given by:

by�0
west ¼

XL
h¼1

Why
�
h þ b̂

0
we

XL
h¼1

Wh lweXh
� x

�
h

� �
ð11Þ

where b̂
0
we ¼

PL
h¼1

QhWhx
�
wehy

�
weh=

PL
h¼1

QhWhx
�2

weh and
PL
h¼1

W 0
hx
�
h ¼PL

h¼1WhlweXh
with
x
�
weh ¼ x

�
th þ u

�
h; y

�
weh ¼ y

�
th þ v

�
h; lweXh

¼ ltXh
;lweYh

¼ ltYh
Proof. By defining ka as Lagrange multiplier, and from
Eqs. (8)–(10), we have Lagrange function as

/1 ¼
XL
h¼1

W 0
h �Wh

� �2
QhWh

� 2ka
XL
h¼1

W 0
hx
�
weh �

XL
h¼1

Whx
�
weh

 !
ð12Þ

Differentiating /1 in Eq. (12) with respect to calibration weight
W 0

h and equating to equal to 0, we have

W 0
h ¼ Wh þ kaQhWhx

�
weh ð13Þ

Multiplying above Eq. (13) by x
�
weh on both side and taking sum-

mation we haveXL
h¼1

W 0
hx
�
weh ¼

XL
h¼1

Whx
�
weh þ ka

XL
h¼1

QhWhx
�2

weh ð14Þ

solving above Eq. (14), we have Lagrange multiplier as

ka ¼

PL
h¼1

W 0
hx
�
weh �

PL
h¼1

Whx
�
weh

� �
PL
h¼1

QhWhx
�2

weh

ð15Þ

and by putting the value of ka in Eq. (13), we have calibrated weight
as

W 0
h ¼ Wh þ QhWhx

�
wehPL

h¼1
QhWhx

�2

weh

XL
h¼1

W 0
hx
�
weh �

XL
h¼1

Whx
�
weh

" #
ð16Þ

and hence from Eqs. (8) and (16), we have calibrated estimator as

by�0
west ¼

XL
h¼1

Why
�
weh

þ

PL
h¼1

QhWhx
�
wehy

�
wehPL

h¼1
QhWhx

�2

weh

XL
h¼1

WhlweXh
�
XL
h¼1

Whx
�
weh

" #
ð17Þ

finally, new estimator under calibration weight W 0
h can be written

as

by�0
west ¼

XL
h¼1

Why
�
h þ b̂

0
we

XL
h¼1

Wh lweXh
� x

�
h

� �
ð18Þ

Also, setting Qh ¼ x
�
weh

� ��1
, we get combined ratio estimator in

stratified random sampling under measurement errors asb
y
�0

west ¼
PL
h¼1

Why
�
weh=

PL
h¼1

Whx
�
weh

 !
lweX , hence ratio form.
Theorem 2. The variance of the estimator by�0
west under measurement

errors, to the first order approximation is given by:

V by�0
west

� �
¼ ltXh

x
�
tst

 !2XL
h¼1

W2
hl

2
tYh

C2
tYh

þ C2
Vh

� �
nh

ð19Þ
Proof. From the Eq. (8), we have

by�0
west ¼

PL
h¼1

W 0
hy
�
weh and
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V by�0
west

� �
¼ V

PL
h¼1

W 0
hy
�
weh

� �
¼ PL

h¼1
W 02

h V y
�
weh

� �
¼ PL

h¼1
W 02

h V 1þ eh0ð Þ ¼ PL
h¼1

W 02
h E e2h0
� �

¼ PL
h¼1

W 02
h l2

tYh

C2
tYh

þC2
Vh

� �
nh

ð20Þ

From Eq. (16) we have

W 0
h ¼ Wh þ QhWhx

�
wehPL

h¼1
QhWhx

�2

weh

XL
h¼1

W 0
hx
�
weh �

XL
h¼1

Whx
�
weh

" #
ð21Þ

and also, from Eq. (10) we havePL
h¼1

W 0
hx
�
weh ¼ PL

h¼1
WhlweXh

¼ lweX ¼ ltX ; so, we have Eq. (21) as

following

W 0
h ¼ Wh þ QhWhx

�
wehPL

h¼1
QhWhx

�2

weh

ltX �
XL
h¼1

Whx
�
weh

" #
ð22Þ

On setting Qh ¼ x
�
weh

� ��1
in Eq. (22), we have new weight as

W 0
h ¼ WhltXPL

h¼1

Whx
�
weh

¼ WhltX

x
�
west

¼ WhltX

x
�
tst

; since, now substituting this W 0

in Eq. (20),

We have variance of the calibrated estimator by�0
west as following

V by�0
west

� �
¼ ltXh

x
�
tst

� �2 PL
h¼1

W2
hl2

tYh

C2
tYh

þC2
Vh

� �
nh

; which proves the the-

orem 2.
Lemma 1. The variance of the estimator by�0
west without measure-

ment errors, to the first order approximation is given by:

V by�0
west

� �
¼ V by�0

west

� �
¼ ltXh

x
�
tst

 !2XL
h¼1

W2
hl

2
tYh

C2
tYh

� �
nh

ð23Þ
Proof. From the theorem 2, we have variance of the estimatorby�0
west under measurement errors as following

V by�0
west

� �
¼ ltXh

x
�
tst

 !2XL
h¼1

W2
hl

2
tYh

C2
tYh

þ C2
Vh

� �
nh

If there are no measurement errors then in the expression of the

variance of the estimator by�0
west , the coefficient of variation CVh

will

be zero and the variance of the estimator by�0
west will be now as

following

V by�0
west

� �
¼ V by�0

west

� �
¼ ltXh

x
�
tst

� �2 PL
h¼1

W2
hl2

tYh

C2
tYh

� �
nh

this proves

lemma1.
Lemma 2. The variance of the estimator by�0
west under measurement

errors, to the first order approximation has greater variance than to

variance of the estimator by�0
west without measurement errors:

V by�0
west

� �
> V by�0

tst1

� �
ð24Þ
Proof. From the theorem 2 and lemma 1, the variance of the esti-

mator by�0
west under measurement errors in Eq. (19) can be expressed

as following

V by�0
west

� �
¼ V by�0

tst

� �
þ ltXh

x
�
tst

 !2XL
h¼1

W2
hl

2
tYh

C2
Vh

� �
nh

ð25Þ

That is V by�0
west

� �
> V by�0

tst

� �
, hence the proof of the lemma 2.

Case 2: Regression form

Again, we are considering here new estimator, and this estima-
tor based on Sinha et al. (2017) for the population mean in strati-
fied random sampling under measurement errors along with
weight Wh

00 and is given by:

by�00
west ¼

XL
h¼1

W 00
hy
�
weh ð26Þ

where Wh
00 are chosen such that the chi-square-type distance

XL
h¼1

Wh
00 �Wh

� �2
QhWh

ð27Þ

is minimized s. to c.XL
h¼1

W 00
hx
�
weh ¼

XL
h¼1

WhlweXh
¼ lweX and

XL
h¼1

W 00
h ¼

XL
h¼1

Wh ¼ 1

ð28Þ

Theorem 3. A calibrated estimator for the population mean under
measurement errors along with calibrated weight W 00

h is given by:

by�00
west ¼

XL
h¼1

Why
�
weh þ b̂

00
we

XL
h¼1

Wh ltXh
� x

�
weh

� �
ð29Þ

where b̂
00
we ¼

PL
h¼1

QhWhx
�
wehy

�
weh

� � PL
h¼1

QhWh

� �
�
PL
h¼1

QhWhy
�
weh

� � PL
h¼1

QhWhx
�
weh

� �� 	
PL
h¼1

QhWh

� � PL
h¼1

QhWhx
�2
weh

� �
�
PL
h¼1

QhWhx
�
weh

� �2
" #
Proof. By defining kb and kc as Lagrange multiplier, and from Eqs.
(26) to (28), we have Lagrange function as

/2 ¼
XL
h¼1

Wh
00 �Wh

� �2
QhWh

� 2kb
XL
h¼1

W 00
hx
�
weh �

XL
h¼1

Whx
�
weh

 !

� 2kc
XL
h¼1

W 00
h �

XL
h¼1

Wh

 !
ð30Þ

Differentiating /2 in Eq. (30) with respect to calibration weight
W 00

h and equating to equal to 0, we have

W 00
h ¼ Wh 1þ kbQhx

�
h þ kcQh

h i
ð31Þ

the following equations are obtained solving above Eq. (31) by mul-

tiplying x
�
weh and over summationXL

h¼1

W 00
h ¼

XL
h¼1

Wh þ kb
XL
h¼1

QhWhx
�
weh þ kc

XL
h¼1

QhWh ð32Þ
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XL
h¼1

W 00
hx
�
weh ¼

XL
h¼1

Whx
�
weh þ kb

XL
h¼1

QhWhx
�2

weh þ kc

�
XL
h¼1

QhWhx
�
weh ð33Þ

by substituting the
PL
h¼1

W 00
hx
�
weh ¼

PL
h¼1

WhlweXh
,
PL
h¼1

W 00
h ¼

PL
h¼1

Wh ¼ 1

and solving Eqs. (32) and (33), we have

kb ¼
XL
h¼1

QhWh

XL
h¼1

WhlweXh
�
XL
h¼1

Whx
�
weh

" #
=

XL
h¼1

QhWh

 ! XL
h¼1

QhWhx
�2

weh

 !
�

XL
h¼1

QhWhx
�
weh

 !2
24 35

kc ¼ �
XL
h¼1

QhWhx
�
weh

XL
h¼1

WhlweXh
�
XL
h¼1

Whx
�
weh

 !" #
=

XL
h¼1

QhWh

 ! XL
h¼1

QhWhx
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putting both the value of kb and kc in Eq. (31), we have new calibra-
tion weight as

W 00
h ¼Wh

þ
QhWhx

�
weh

PL
h¼1

QhWh

� �
�QhWh

PL
h¼1

QhWhx
�
weh

� �
 � PL
h¼1

Wh lweXh
�x

�
weh

� �
 �� 	
PL
h¼1

QhWh

� � PL
h¼1

QhWhx
�2

weh

� �
� PL

h¼1
QhWhx

�
weh

� �2
" #

ð34Þ

and the new estimator under calibration weightWh
00 can be written

as

by�00
west ¼

XL
h¼1

Why
�
weh þ b̂

00
we

XL
h¼1

Wh lweXh
� x

�
weh

� �
ð35Þ

b̂
00
we ¼

PL
h¼1

QhWhx
�
wehy

�
weh

� � PL
h¼1

QhWh

� �
� PL

h¼1
QhWhy

�
weh

� � PL
h¼1

QhWhx
�
weh

� �� 	
PL
h¼1

QhWh

� � PL
h¼1

QhWhx
�2

weh

� �
� PL

h¼1
QhWhx

�
weh

� �2
" #

hence, proves the theorem 3. Also, when we put the value Qh ¼ 1 in
Eq. (35) then we have calibrated estimator in the regression form as

by�00
west ¼

XL
h¼1

Why
�
weh

þ

PL
h¼1

Whx
�
wehy

�
weh

� �
� PL

h¼1
Why

�
weh

� � PL
h¼1

Whx
�
weh

� �� 	
PL
h¼1

Whx
�2

weh

� �
� PL

h¼1
Whx

�
weh

� �2
" #

�
XL
h¼1

Wh lweXh
� x

�
weh

� �
ð36Þ

The estimator in Eq. (35) has another form is given by:

by�00
west1 ¼

XL
h¼1

Why
�
weh þ b00

we

XL
h¼1

Wh lweXh
� x

�
weh

� �
ð37Þ

where is a constant to be determined such that the variance of the

estimator by�00
west is minimum. The regression coefficient b̂

00
we is con-

sidered as consistent estimator of b00
we. Therefore, the variance of
the calibrated estimator by�00
west under measurement errors, up to first

order approximation, is asymptotically equivalent to the variance of

the estimator by�00
west (see Salinas et al., 2019).
Theorem 4. The variance of the calibrated estimator by�00
west under cor-

related measurement errors, to the first order approximation is given
by:

V by�00
west1

� �
min

¼
XL
h¼1

� W2
hl2

tYh

nh
C2
tYh

þ C2
Vh

� �
�

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>;
ð38Þ
Proof. From the Eq. (37) and following the approach of Koyuncu
and Kadilar (2014), and Salinas et al. (2019), we have variance of

the estimator by�00
west as

V by�00
west1

� �
¼ V

PL
h¼1

Why
�
weh þ b00

we

PL
h¼1

Wh lweXh
� x

�
weh

� �� 	
¼ PL

h¼1
W2

h l2
tYh

E e2h0
� �þ b00

we2l2
tXh

E e2h1
� �� 2b00

weltYh
ltXh

E eh0eh1ð Þ
n o� 	

¼ PL
h¼1

W2
h

nh
l2

tYh
C2
tYh

þ C2
Vh

� �
þ b00

we2l2
tXh

C2
tXh

þ C2
Uh

� �n�
�2b00

weltYh
ltXh

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �oi
ð39Þ

To obtaining the optimum value of for the minimum variance of

the estimator by�00
west , we are differentiating Vby�00

west along with Eq.
(39) with respect to equating it equal to zero, that is

@ V
b
y
�00

west

� �� �
@b00we

¼ 0, we have

b00
we ¼

ltYh

ltXh

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �
C2
tXh

þ C2
Uh

� � ð40Þ

Putting the value of from the Eq. (40) in V by�00
west

� �
along with

Eq. (39), we have minimum variance of the calibrated estimatorby�00
west1 as

V by�00
west1

� �
min

¼
XL
h¼1

� W2
hl2

tYh

nh
C2
tYh

þ C2
Vh

� �
�

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>;
hence the proof of the theorem 4.
Lemma 3. The variance of the estimator by�0
west1 under uncorrelated

measurement errors, to the first order approximation is given by:

V by�00
west1

� �
min

¼
XL
h¼1

� W2
hl2

tYh

nh
C2
tYh

þ C2
Vh

� �
�

qtXYh
CtXh

CtYh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>;
ð41Þ
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Proof. From the theorem 4, we have variance of the estimatorby�00
west1 under correlated measurement errors as following

V by�00
west

� �
min

¼
XL
h¼1

W2
hl2

tYh

nh
C2
tYh

þ C2
Vh

� �
�

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>;
If there are uncorrelated measurement errors then in the

expression of the variance of the estimator by�00
west1, the correlation

coefficient qUVh
will be zero and the variance of the estimatorby�00

west1 will be now as following

V by�00
west1

� �
min

¼ PL
h¼1

W2
hl

2
tYh

nh
C2
tYh

þ C2
Vh

� �
�

qtXYh
CtXh

CtYh

� �2

C2
tXh

þC2
Uh

� �
8<:

9=; this

proves lemma3.

Lemma 4. The variance of the estimator by�0
west1 without measure-

ment errors, to the first order approximation is given by:

V by�00
west1

� �
min

¼ V by�00
tst1

� �
min

¼
XL
h¼1

W2
hl2

tYh
C2
tYh

nh
1� q2

tXYh

� �
ð42Þ

Proof. From the theorem 4, we have variance of the estimatorby�00
west1 under correlated measurement errors as following

V by�00
west1

� �
min

¼
XL
h¼1

W2
hl2

tYh

nh
C2
tYh

þ C2
Vh

� �
�

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>;
If there are no measurement errors then in the expression of the

variance of the estimator by�00
west1, the correlation coefficient qUVh

and coefficient of variations CUh
; CVh

will be zero, and the variance

of the estimator by�00
west1 will be now as following

V by�00
west1

� �
min

¼ V by�00
tst1

� �
min

¼ PL
h¼1

W2
hl

2
tYh

C2
tYh

nh
1� q2

tXYh

� �
this

proves lemma3.
The expression for variance in lemma 4 of Eq. (42), is a variance

of the classical linear regression under stratified sampling when
there are no measurement errors. Similarly, the calibrated estima-

tor by�00
west1 from the Eq. (36) under measurement errors will be clas-

sical linear regression estimator under stratified sampling if there
are no measurement errors. Therefore, this also shows that the

variance of the estimator by�00
west1 from the Eq. (37) will be equiva-

lent to the variance of the estimator by�00
west1 from the Eq. (36) under

both correlated and uncorrelated measurements errors. That is

V by�00
west1

� �
min

� V by�00
west

� �
min
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XL
h¼1

W2
hl2

tYh

nh
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tYh

þ C2
Vh

� �
�
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CtYh
þ qUVh

CUh
CVh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>; ð43Þ
Lemma 5. The variance of the estimator by�00
west1 under measure-

ment errors, to the first order approximation has greater variance

than to variance of the estimator by�00
west1 without measurement

errors

V by�00
west1

� �
> V by�00

tst1

� �
ð44Þ
Proof. From the lemma 3 and lemma 4, the variance of the

estimator by�00
west1 under measurement errors in Eq. (41) can be

expressed as following

V by�00
west1

� �
¼ V by�00

tst1

� �
þ
XL
h¼1

W2
hl2

tYh

nh
C2
Vh

� q2
tXYh

C2
tYh

� �
ð45Þ

That is V by�00
west1

� �
> V by�00

tst1

� �
, hence the proof of the lemma 5.
3. Efficiency comparisons

In this section, we are giving efficiency comparisons of the cal-

ibrated estimators by�0
west and

by�00
west1 over unbiased estimator by�west

under measurement errors.

(i) V by�0
west

� �
< V by�west

� �
iff

V by�west

� �
� V by�0

west

� �
 �
> 0 ð46Þ

from the Eqs. (19) and (7), the variance of the estimator by�0
west can

also be expressed as following

V by�0
west

� �
¼ ltXh

x
�
tst

� �2
V by�0

west

� �
i.e.

V by�0
west

� �
¼ V by�west

� �
� V by�west
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2l�1

tXh
x
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tst � ltXh

� �
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tXh
x
�
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� �� �2
� OP n�3=2

h

� �
 � ð47Þ

Since
ltXh

x
�
tst

� �2
¼ 1� 2l�1

tXh
x
�
tst � ltXh

� �
� 3 l�1

tXh

�n
x
�
tst � ltXh

� �
Þ2 � OP n�3=2

h

� �
g see Kim et al. (2007). It is clear from

Eq. (46) V by�0
west

� �
< V by�west

� �
.

(ii) V by�00
west

� �
min

< V by�west

� �
iff

V by�0
west

� �
� V by�0

west

� �
min


 �
> 0 ð48Þ

from the Eqs. (38), (7) and (48), we have following expression

V by�west

� �
� by�00

west1

� �
min


 �
¼

XL
h¼1

W2
hl2

tYh

nh

qtXYh
CtXh

CtYh
þ qUVh

CUh
CVh

� �2
C2
tXh

þ C2
Uh

� �
8><>:

9>=>; > 0
ð49Þ

which is always true.

Hence, the calibrated estimators by�0
west
by�0

west1 and by�00
west1 theoret-

ically have shown supremacy over unbiased estimator by�west under
measurement errors.

4. Simulation study

To examine the merit of the proposed calibrated estimators
under measurement errors, we have conducted Monte-Carlo simu-
lation study (see Shalabh and Tsai 2017, ). The simulation study is
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conducted through using R studio. We have drawn heterogeneous
strata of the sizes N1 ¼ 150;N2 ¼ 90 and N3 ¼ 120 with the total
population N ¼ 450. The different sizes of strata are drawn from
a 4-variate multivariate normal distribution with means

ltXh
; ltYh

; 0; 0
� �

and covariance matrix

r2
tXh

qtXYh
rtXh

rtYh
0 0

qtXYh
rtXh

rtYh
r2

tYh
0 0

0 0 r2
Uh

qUVh
rUh

rVh

0 0 qUVh
rUh

rVh
r2

Vh

0BBBBB@

1CCCCCA
where h = 1, 2, and 3 for the different strata with the details of the
combination of the parameters. Which are given below as:

ltX1
;ltX2

;ltX3
¼ 94; 88; 91

� �
;

ltY1
;ltY2

;ltY3
¼ 99; 92; 97

� �
; ltY1

;
�

ltY2
;ltY3

¼ 99; 92; 97Þ; r2
tX1

;r2
tX2

;r2
tX3

¼ 37:07; 35:76; 31:23
� �

;

r2
tY1

;r2
tY2

;r2
tY3

¼ 33:59; 36:47; 34:90
� �

;

qtXY1
;qtXY2

;qtXY3
¼ 0:9; 0:5; 0:7

� �
; for all possible combination we

have

r2
U1

¼ r2
U2

¼ r2
U3

¼ 0; 1; 2; 3ð Þ;r2
V1

¼ r2
V2

¼ r2
V3

¼ 0; 1; 2; 3ð Þ
n o
and the correlation coefficient for the correlated and uncorrelated
measurement errors are as given following

qUV1
¼ qUV2

¼ qUV3
¼ 0:9; 0:7; 0:5; 0:0; �0:5;�0:7;�0:9ð Þ

n o
. Sim-

ilarly, for heterogeneous case are given by as

qUV1
; qUV2

; qUV3
¼ 0:5; 0:7; 0:9 & � 0:5;�0:7;�0:9

n o
.

Further, we have drawn samples n1 ¼ 50, n2 ¼ 30 and n3 ¼ 40
from each stratum with the total sample n ¼ 120. The values of
the means, estimated variances, relative efficiencies and percent-
age contribution of the measurement error are computed based
on 5000 replications and are represented in the Tables 1–3 or by
graphs in Figs. 1 and 2, see Appendix A. The relative efficiencies
(RE) and percentage contribution of the measurement error (PCME)
are defined respectively as

RE �ð Þ ¼
V by�west

� �
V �ð Þ ; ð50Þ

PCME ¼ V �ð Þm � V �ð Þo
V �ð Þo

� 100; ð51Þ

where V �ð Þ0 are the variances when there are no measurement
errors, V �ð Þm are the variances when there are measurement errors

and * = by�west ,
by�0

west and
by�00

west .
Note: For the convenient of the graphical representation, the

estimators by�west ,
by�0

west and
by�00

west are represented by y, y1 and y2
respectively in all Figs. 1 and 2.
5. Discussion

To analyze the contribution of measurement errors, we have

obtained two proposed calibration estimators by�0
west and

by�00
west with

their respective variances to the first order approximation under

measurement errors. The two calibrated estimators by�0
west andby�00

west are stated in theorem 1 and 3, and their respective variances
are stated in theorem 3 and 4. Lemma 1 and lemma 4 state the
variances of the calibrated estimators by�0
west and by�00

west without
measurement errors and in lemma 3, the variance of the calibrated

estimator by�00
west under uncorrelated measurement errors have

shown. Lemma 2 and lemma 5 have shown that the variances of

the calibrated estimators by�0
west and by�00

west have greater variances
than to the respective same estimators under without measure-
ment errors. Theoretically, lemma 2 and 5 have shown that there
is contribution of measurement errors (correlated and uncorre-
lated). Also, in section 3, we have shown the supremacy of the cal-

ibrated estimators by�0
west and by�00

west over mean per unit estimatorby�west under measurement errors through the efficiency
comparisons.

Thus, theoretically we have shown the aim of the study but for
more analytical study, we have conducted a simulation study in
Section 4. The results are shown in Tables 1–3 as a numerical
and as a graphical in Figs. 1 and 2. We can see in the Tables 1–3,

the relative efficiency of the proposed calibrated estimators by�0
west

and by�00
west are greater than mean per unit estimator by�west under

measurement errors. Also, we have represented combination of
data in Figs. 1 and 2 along with data level. The Figs. 1 and 2 repre-
sent the results with changing values of the correlation coefficient
of the measurement errors. We can see from Figs. 1 and 2, the rel-
ative efficiency of the proposed calibrated estimators over mean
per unit estimator have increased with the increasing values of
the positive homogeneous correlation coefficient and have
decreased with the increasing values of the negative homogeneous
correlation coefficient of the measurement errors. Alike homoge-
neous correlation coefficient of the measurement errors, heteroge-
neous case has also shown the same pattern for the relative
efficiency of the proposed calibrated estimators.

Theoretically, lemma 2 and 5 have shown that there is contribu-
tion of measurement errors (correlated and uncorrelated) and
numerically, we have calculated as percentage contribution of
measurement errors (PCME) through simulation study. We can
see from the Tables 1 and 3 or from the Figs. 1 and 2, the PCME
of the proposed calibrated estimators under measurement errors
are increasing or decreasing with same pattern. In all the Tables
1–3 or in Figs. 1 and 2, we can see the PCME of the calibrated esti-
mators are increasing with the increased variability of the mea-
surement errors. In Tables 1, the proposed calibrated estimators
have high values of PCME for all the cases of the uncorrelated mea-
surement errors, that is the proposed estimators are highly
affected by the measurement errors. Also, in heterogeneous corre-
lated measurement errors case, the proposed estimators are highly
affected by the measurement errors for all the variability cases of
the measurement errors, But, for the positive correlated measure-
ment errors cases not much affected. In Table 2, the proposed esti-
mators are not much highly affected by measurement errors
except in the case r2

Uh
¼ 2; r2

Vh
¼ 2 and r2

Uh
¼ 3; r2

Vh
¼ 3 for which

the calibrated estimators have high values of PCME. While, in
Table 3, the proposed estimators are highly affected by measure-
ment errors for all possible correlation coefficient and variability
of the measurement errors due to high values of the PCME.

In Figs. 1 and 2, the effect of measurement errors is represented
with the changing values of the correlation coefficient of the mea-
surement errors. We can see from Figs. 1 and 2, the PCME of the
proposed estimators are decreasing with increased values of the
positive correlation coefficient of the measurement errors and
are increasing with increased values of the negative correlation
coefficient of the measurement errors. Even, the PCME of the pro-
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posed estimators are high in the case of negative correlation coef-
ficient of the measurement errors. This shows the proposed cali-
brated estimators are highly affected by the measurement errors
than to all cases when the negative correlation coefficient of the
measurement errors is observed.
6. Conclusions and further study

In this manuscript, we have proposed calibrated estimators in
stratified sampling under both the correlated and uncorrelated
measurement errors. The proposed calibrated estimators have
shown superiority over usual mean estimator under all the cases
of measurement errors and also when there are no measurement
errors by theoretically as well as numerically. To examine the
effect of measurement errors, we have calculated percentage con-
tribution of measurement error (PCME) and we found that the
PCME of the calibrated estimators are increasing with increased
variability of the measurement errors presented in both the study
and auxiliary variables. Also, the PCME of the calibrated estimators
decreases with the positive increment of correlation coefficient of
the measurement errors concerning to when there is no correlation
in the measurement errors of the both variables. While, the PCME
of the calibrated estimators increases with the negative increment
of the correlation coefficient of the measurement errors concerning
to when there is no correlation in both the variables of the mea-
surement errors. The calibrated estimators are highly affected by
the measurement errors when the correlation coefficient in the
measurement errors of the both variables are negative. A proper
care should be taken in those cases where proposed estimators
Table 1
Shows variances, PCME and relative efficiencies of the calibrated estimators over usual me

Estimators quv1 ¼ quv2 ¼ quv3 ¼ 0:0, r2
Uh

¼ 2; r2
Vh

¼

by�west
Vð

y
�
west

79.3 0.2

79.2 0.1

y
�00
west

79.2 0.1

quv1 ¼ quv2 ¼ quv3 ¼ 0:0

r2
Uh

¼ 1; r2
Vh

¼ 1 r2
Uh

¼ 2; r2
Vh

¼ 2

b
y
�
west

V �ð Þ RE PCME b
y
�
west

V �ð Þ

y
�
west

79.3 0.209 1.00 4.125 79.4 0.217

y
�0
west

79.4 0.123 1.71 10.90 79.5 0.135

y
�00
west

79.4 0.122 1.72 10.75 79.5 0.133

quv1 ¼ 0:5;quv2 ¼ 0:7;quv3 ¼ 0:9

y
�
west

79.3 0.209 1.00 4.183 79.4 0.216

y
�0
west

79.3 0.116 1.81 4.558 79.3 0.120

y
�00
west

79.3 0.115 1.82 4.514 79.3 0.119

quv1 ¼ �0:5;quv2 ¼ �0:7;quv3 ¼ �0:9,

y
�
west

79.3 0.205 1.00 1.983 79.3 0.221

y
�0
west

79.2 0.130 1.58 17.55 79.3 0.164

y
�00
west

79.2 0.129 1.59 17.48 79.3 0.162
are highly affected by the measurement errors and specially for
negative correlation coefficient of the measurement errors.

A further study can be done by applying different estimators on
a calibration estimator having a calibration weight subject to fix
single constraint (mean or variance), as in Eqs. (9) and (10) (see
Kim et al. (2007), Clement (2017)). Second, by applying a calibra-
tion weight subject to many constraints (see Koyuncu and
Kadilar (2014), Clement (2018) and Salinas et al. (2019)).
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Appendix A
an estimator for uncorrelated and heterogeneous correlations cases.

2

�Þ RE PCME

01 1.00 0

11 1.82 0
10 1.83 0

r2
Uh

¼ 3; r2
Vh

¼ 3

RE PCME b
y
�
west

V �ð Þ RE PCME

1.00 7.826 79.4 0.224 1.00 11.46

1.61 21.60 79.6 0.146 1.53 32.29

1.63 21.39 79.6 0.145 1.54 32.02

1.00 7.502 79.3 0.236 1.00 17.30

1.81 8.173 79.2 0.131 1.80 18.19

1.82 8.100 79.2 0.130 1.81 18.38

1.00 9.909 79.2 0.216 1.00 7.586

1.35 48.11 79.3 0.173 1.25 56.09

1.36 48.04 79.3 0.171 1.26 55.95



Table 2
Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator for positive correlations.

Estimators quv1 ¼ quv2 ¼ quv3 ¼ 0:5,

r2
Uh

¼ 1; r2
Vh

¼ 1 r2
Uh

¼ 2; r2
Vh

¼ 2 r2
Uh

¼ 3; r2
Vh

¼ 3

by�west
V �ð Þ RE PCME by�west

V �ð Þ RE PCME by�west
V �ð Þ RE PCME

y
�
west

79.3 0.205 1.00 2.174 79.3 0.211 1.00 4.872 79.4 0.216 1.00 7.757

y
�0
west

79.3 0.116 1.76 5.312 79.3 0.122 1.73 10.35 79.4 0.131 1.65 18.37

y
�00
west

79.3 0.116 1.78 5.216 79.3 0.121 1.74 10.20 79.4 0.130 1.67 18.15

quv1 ¼ quv2 ¼ quv3 ¼ 0:7,

y
�
west

79.3 0.206 1.00 2.659 79.4 0.212 1.00 5.617 79.4 0.228 1.00 13.49

y
�0
west

79.3 0.114 1.81 3.224 79.3 0.118 1.81 6.262 79.2 0.126 1.81 13.88

y
�00
west

79.3 0.113 1.82 3.161 79.3 0.117 1.82 6.166 79.2 0.125 1.82 14.04

quv1 ¼ quv2 ¼ quv3 ¼ 0:9,

y
�
west

79.3 0.208 1.00 3.317 79.3 0.216 1.00 7.351 79.5 0.227 1.00 13.24

y
�0
west

79.3 0.112 1.86 1.075 79.2 0.117 1.85 5.408 79.4 0.121 1.88 9.213

y
�00
west

79.3 0.111 1.87 1.055 79.2 0.116 1.86 5.465 79.4 0.120 1.90 9.177

Table 3
Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator for negative correlations.

Estimators quv1 ¼ quv2 ¼ quv3 ¼ �0:5,

r2
Uh

¼ 1; r2
Vh

¼ 1 r2
Uh

¼ 2; r2
Vh

¼ 2 r2
Uh

¼ 3; r2
Vh

¼ 3

by�west
V �ð Þ RE PCME by�west

V �ð Þ RE PCME by�west
V �ð Þ RE PCME

y
�
west

79.3 0.213 1.00 6.061 79.3 0.224 1.00 11.61 79.3 0.220 1.00 9.366

y
�0
west

79.4 0.132 1.61 19.32 79.3 0.159 1.41 43.66 79.3 0.166 1.32 50.47

y
�00
west

79.4 0.131 1.63 19.27 79.3 0.158 1.42 43.62 79.3 0.165 1.33 50.35

quv1 ¼ quv2 ¼ quv3 ¼ �0:7,

y
�
west

79.3 0.206 1.00 2.788 79.2 0.215 1.00 7.265 79.3 0.219 1.00 8.984

y
�0
west

79.2 0.131 1.57 18.81 79.1 0.160 1.35 44.52 79.3 0.174 1.26 56.88

y
�00
west

79.2 0.130 1.58 18.75 79.1 0.159 1.36 44.50 79.3 0.172 1.27 56.77

quv1 ¼ quv2 ¼ quv3 ¼ �0:9,

y
�
west

79.2 0.208 1.00 3.452 79.3 0.211 1.00 5.273 79.3 0.222 1.00 10.60

y
�0
west

79.1 0.139 1.50 25.60 79.2 0.158 1.34 43.07 79.4 0.198 1.12 78.95

y
�00
west

79.1 0.138 1.51 25.61 79.2 0.157 1.35 43.00 79.4 0.196 1.13 78.86
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Fig. 1. Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator when r2
Uh

¼ 1; r2
Vh

¼ 1.
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Fig. 2. Shows variances, PCME and relative efficiencies of the calibrated estimators over usual mean estimator when r2
Uh

¼ 3; r2
Vh

¼ 3.
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