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In wheat crop the leaf rust is an infectious disease, threatening wheat production annually. Identification
of resistance genes or markers traits associations for effective field resistance could greatly enhance our
ability to breed durably resistant varieties. Herein 105 bread wheat genotypes were evaluated against the
leaf rust susceptible and resistance during the two seasons 2018–19 and 2019–20 under field conditions
using CI, AUDPC and FDS parameters. Based on the performance of genotypes against leaf rust pathogen,
34 genotypes categorised as resistance (R), followed by 30, 32 and 9 genotypes classified as moderately
resistance (MR), moderately susceptible (MS) and susceptible (S) genotypes. respectively. We also
applied a genome wide association study (GWAS) approach to identify markers trait associations
(MTAs) resistance against leaf rust using 90 K SNP Array. Marker–trait association results indicated that
total 56 MTAs were significantly associated at P � 10�3 using Bonferroni adjustment after crossed
FDR � 0.05 with studied parameters under field conditions. Among them, total numbers of associated
MTAs 17, 23 and 16 were identified for CI, AUDPC and FDS parameters, respectively. Maximum signifi-
cant MTAs were identified on chromosomes 2A (7), 3B (7), 5A (7) followed by 4A (5), 7B (5), 1A (4)
and 7A (4) in the studied genotypes. The locus (Kukri_c55051_414) showed pleotropic effects for leaf rust
identified parameters on chromosome 5A at position of 68.2 cM under field conditions. This study
demonstrated the use of genome-wide association mapping for the identification of potentially new
genomic regions associated with studied parameters. Leaf rust resistant genotypes identified in this study
proved to be more productive under preliminary field conditions against leaf rust pathogen. Thus, these
resistant accessions could be used as parental genotypes in breeding programs for leaf rust resistance.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wheat leaf rust, caused by the fungus Puccinia triticina Eriks, is a
threat to world wheat production. Reduced yield imposes food
security challenges as a result of increasing demands for wheat
consumption from the same land or even decreasing area to feed
the ever increasing population of the world (Anwaar et al., 2019).
Genetic resistance is the most effective, economic, and environ-
mentally safe method to control and reduce losses caused by this
disease (Zegeye et al., 2014). Identification of resistance genes
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using molecular markers is an important step toward marker
assisted selection and resistance breeding. To date, there have been
several leaf rust resistance genes identified, the majority of which
confer leaf rust resistance in the seedling stage and are race-
specific. However, continuous evolution of new leaf rust races
requires constant search for new sources of resistance with novel
QTL/genes (Juliana et al., 2018). Earlier, (Pathan and Park 2006)
assessed a kind of partial resistance called adult plant resistance
(APR) to brown rust in European lines and reported various levels
of APR among the investigated wheat lines by means of average
coefficient of infection (ACI) by estimating average coefficient of
infection (CI) across different locations.

Based on the final disease severity (FDS) and area under disease
progress curve (AUDPC), (Macharia and Wanyera 2012) reported
infection responses of the wheat cultivars and classified them into
four discrete categories as 1 susceptible (S), 2 moderately suscep-
tible (MS), 3 moderately resistant (MR) and 4 resistant (R). Wheat
scientists (Taye et al., 2015; Anwaar et al., 2019) reported that area
under disease progress curve (AUDPC) and the final disease sever-
ity (FDS) were negatively correlated with final grain yield as well
as yield contributing components, and very positively correlated
with grain yield loss. Thus, it demonstrated a negative relation
when there is an increase in these disease parameters there will
be a decline in yield related parameters and vice versa.

(Macharia and Wanyera 2012) investigated fifteen wheat culti-
vars including six advanced lines from CIMMYT germplasm and
others were commercially grown cultivars in Kenya and depicted
that disease severity and area under disease progress curve were
highly positively correlated with yield losses thus, were negatively
correlated with grain yield and yield contributing components.
(Hasan et al., 2012) assessed grain yield losses due to brown rust
disease on the five-local commercial susceptible wheat cultivars
under field conditions during 2011–2012 growing seasons and
was depicted a relationship between rust severity and yield com-
ponents which resultantly converted to financial losses. These
results endorsed by (El-Shamy et al., 2011) who found a significant
relation among percentage losses of 1000 grain weight, grain yield
and final rust severity.

(Ochoa and Parlevliet 2007) described that yield losses were
strongly correlated with area under disease progress curve in cer-
eal crops. (Singh et al., 2011) reported highly significant (P < 0.01)
negative correlation of rust severity and AUDPC with grain weight
and yield while evaluating 5107 advanced breeding lines in field
trials at Mexico in 2001, only 2.4% lines were highly resistant,
28% were moderately resistant and the rest of the lines were mod-
erately susceptible to susceptible. Association mapping (AM) using
phenotypic and genotypic data of association panels has become
an important approach in identifying molecular markers (QTLs)
linked to traits of interest for potential use in marker assisted
selection for the fact that it enables to use diverse set of germplasm
(landraces, cultivars, elite breeding lines, etc), and provides
broader genomic region/allelic coverage with high resolution
(Gao et al., 2016; Leonova et al., 2020).

Genome-wide association studies (GWAS) offer complementary
approaches to understanding natural variation. GWAS generally
combine phenotype and genotype data from 100 or more acces-
sions to identify loci with allele frequency correlations to pheno-
typic variation or environment (Juliana et al., 2018). This
approach can thus incorporate a relatively large portion of natural
variation in a species and localize associations to much smaller
genomic regions, because the sampled diversity incorporates many
more recombination events than traditional recombinant inbred
lines and/or doubled haploid populations (Zegeye et al., 2014).
Information on the level of resistance of modern wheat varieties
and genetic basis of resistance is needed to expand the pool of
resistant cultivars available for breeding. GWAS allows us to deter-
2

mine the presence of both known resistance genes and previously
unidentified loci (Leonova et al., 2020). For example, using this
approach, a collection of 338 cultivated varieties of spring soft
wheat was studied, and 46 QTLs responsible for resistance to leaf
rust at seedling and adult plant stages were detected (Gao et al.,
2016).

The main feature of this mapping panel is that a large amount of
the germplasm possesses resistance to leaf rust and in some cases
specific genes providing the resistance are known. It is possible
that such a panel will allow us to identify resistance alleles that
are normally not detected due to low allele frequency. This study
aims to validate known genomic loci effective to leaf rust resis-
tance and to identify novel genes or QTLs that are effective against
the leaf rust pathogen in the seedling and (or) adult plant stages.
Meanwhile, this study also explores the genetic architecture and
phenotypic correlations for seedling and adult plant resistance
and discusses ways to implement our research results in plant
breeding and genetics efforts.

2. Materials and methods

2.1. Germplasm collection

The total 105 bread wheat genotypes were studied in this
experiment. According to the maintaining sources, the germplasm
divided into three groups as mentioned in Supplementary Table 1
(Ahmed et al., 2019). In first group the genotypes G-1 to G-20
developed in the Department of Plant Breeding and Genetics,
University of Agriculture Faisalabad (PBG-UAF), Pakistan, while
second group genotypes G-21 to G-55 were from exotic source
and third group genotypes G-56 to G-105 were from indigenous
sources.

2.2. Experimental site and sowing conditions

Studied germplasm were sown by hand drill for screening
against leaf rust in research area of Department of Plant Breeding
and Genetics, The Islamia University of Bahawalpur (29⁰ 240N lat-
itude, 71⁰ 410E longitude and 214 m above sea level) Pakistan
under randomized complete block design (RCBD) in field with
three replications to evaluate the leaf rust susceptible and resis-
tance genotypes during the two seasons 2018–19 and 2019–20.
For analysis purpose averaged data based on over years were used.
Each genotype was planted in plot size of 1.2 m � 2.5 m and the
experimental plots were surrounded by planting three rows of
highly susceptible genotype Morocco. Inoculation was done artifi-
cially by means of various methods like dusting with talcum pow-
der, rubbing, spraying with distilled water and needle injection
methods on Morocco twice in a week at tillering and heading stage
for the development of a heavy rust infection pressure (Hussain
et al., 2015).

2.3. Data recording of leaf rust under field conditions

Disease severity of leaf rust in percentage and host response
were observed by modified Cobb’s scale described by (Peterson
et al., 1948). Disease severity was recorded four time with 10 days
interval when Morocco showed 40–50% rust severity. Rating of the
final disease severity (FDS) was recorded when Morocco variety
showed 90–100% disease severity. The values of coefficient of
infection (CI) were calculated by the equation described by
(Pathan and Park 2006). Area under disease progress curve
(AUDPC) was estimated for each genotype by using the following
equation (Anwaar et al., 2019).

AUDPC ¼ d 1=2 y1 þ ykð Þ þ y2 þ y3 þ�����þ yk�1ð Þ½ �
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where d = days between two consecutive records (time intervals)

y1 + yk = Sum of the 1st and last disease scores
y2 + y3 +�� ��� + yk-1 = Sum of all in between disease scores.

2.4. Statistical analysis

Recorded data were subjected to analysis of variance (ANOVA)
(Steel et al., 1997) using the GenStat (v10) software (Payne et al.,
2008). The significance level = 0.01 was used for highly significant
effects and = 0.05 was used for significant effects. RADAR-graph
were developed for mean value using Excel-Stat in which display
values relative to a centre point for examined traits under both
environments (Ahmed et al., 2020).

2.5. DNA extraction and genotyping

In green-house, wheat seeds were sown in small plastic trays
for healthy seedlings. After three weeks, fresh leaves were col-
lected for DNA according to the CIMMYT Molecular Genetics Man-
ual procedure in 96 well-plates. The concentration and quality of
isolated DNA was assessed by Nano-drop (ND1000, Thermo Scien-
tific, USA). The DNA of each genotype (70–100 ng/ll) preserved in
96-well plate and prepared for genotyping with high-density illu-
mina 90 K Infinium SNP array (Dreisigacker et al., 2013). After
genotyping, the genome-wide positions of SNPs in terms of genetic
distance (cM) situated on chromosomes founded on consensus
genetic map of bread wheat (Wang et al., 2014). For further analy-
sis SNPs were filtered and excluded the monomorphic SNPs, more
than 20% missing SNPs, minor alleles and allelic frequency < 5% for
GWAS in the present study.

2.6. Population STRUCTURE and GWAS analysis

Bayesian clustering technique was used to classify the group of
genetically similar population via statistical software STRUCTURE
v.2.3 (Pritchard et al., 2000). Burn-in iterations of 104 cycles, fol-
lowed by a simulation run of 106 cycles and the admixture model
selection were used. Web-based analysis ‘‘Structure Harvester
v0.6.93” was applied to obtain maximum value or peak of ‘‘K’’ for
validation to understand the STRUCTURE results which were based
on ad-hoc techniques. We selected the K values ranged 1–10 and 6
independent runs to attain reliable effects.

GAPIT (genome association and prediction integrated tool) was
also applied with the model selection preference to test the relia-
bility of the results. It was advanced in R package which offer max-
imum likelihood precision and run in a computationally effective
method. GAPIT implements unconventional statistical approaches
containing the compressed mixed linear model (CMLM) and
CMLM-based genomic prediction and selection. P-values, R2 and
marker effects were extracted from GWAS results (Lipka et al.,
2012). The threshold level for significant marker-trait associations
(MTA) was 10�3 (log10p) or above (Rahimi et al., 2019) after apply-
ing the false discovery rate (FDR) < 0.05 correction using Bonfer-
roni adjustment (P = 1/n, n = total number of SNPs) (Benjamini
Table 1
Mean Squares of ANOVA for FDS, AUDPC and CI of leaf rust under field conditions based o

Mean squares

Source of variation Df Coefficient of Infection (CI) Ar

Replications 2 9177.88 2,4
Genotypes 104 940.66** 25
Error 208 209.31 16

* = Significant (P < 0.05) ** = Highly Significant (P < 0.01) NS = Non-significant.
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and Hochberg 1995). Mixed linear model (MLM) estimated from
newly developed GWAS. To define the spurious associations
derived from population structure, covariates from either STRUC-
TURE or principal components (PCs) were considered as fixed
effects. The relationships among individuals were calculated using
a kinship matrix and incorporated MLM. Overall 18,500 SNPs from
functional iSelect bead chip analyses visually showed polymor-
phism; to locate them on the published genetic map in the studied
genotypes.
3. Results and discussions

3.1. Field evaluation of disease severity parameters against leaf rust

A field evaluation was conducted of 105 wheat varieties over
two growing seasons 2018–19 and 2019–20 against leaf rust dis-
ease using disease severity Coefficient of infection (CI), Area under
disease progress curve (AUDPC) and Final Disease Severity (FDS)
parameters. Mean squares results from analysis of variances
(ANOVA) showed highly significant (P � 0.001) effects among
investigated wheat genotypes for coefficient of infection under
field conditions (Table 1). The mean responses of studied wheat
genotypes to leaf rust under field conditions are shown in Fig. 1.
In 2014–15 growing season, all investigated wheat genotypes
showed the significant values of coefficient of infection. Data anal-
ysis and mean comparison indicated that wheat cultivars were
considerably different based on the coefficient of infection values.
The values 10–20, 21–30, 31–45 and 46–80 were categorized as
high, moderate, low and very low levels of resistant, respectively.
During this study, an effort was also done to elucidate the associ-
ation between described parameters. Among the studied germ-
plasm, G-36 and G-27 and G-102 showed highest values of
coefficient of infection 77.6, 77.6 and 76.0 followed by G-6 and
G-42 having values of 63.6 and 63.0 respectively, thus, these were
classified as susceptible wheat genotypes. However, G-28 showed
the minimum value of coefficient of infection 12.0 and followed by
G-30, G-35, G-38, G-2, G-11, G-23, G-16 and G-48 having values of
14.6, so were ranked as resistant genotypes against leaf rust patho-
gen (Fig. 1). The described results are in harmony with the results
of (Anwaar et al., 2019). (Ali et al., 2009) investigated 20 wheat
genotypes and ‘Morocco’ as susceptible check at NIFA for describ-
ing variability for field based partial resistance to rust and lines
with coefficient of infection values of 0–20, 21–40 and 41–60 were
considered as possessing better, moderate and low levels of partial
resistance, respectively. Only Morocco (a susceptible check) was
possessing 100 CI value.

Analysis of variances results showed highly significant
(P � 0.001) effects among studied wheat genotypes for area under
disease progress curve under field conditions (Table 1). Data anal-
ysis and mean comparison indicated that leaf rust infection was
well established apparently in all the tested wheat cultivars
screened for the disease. The results of the mean values of area
under disease progress curve of different wheat varieties to leaf
rust is shown in Fig. 1. The genotypes G-102, G-36, G-27 and G-6
were ranked as susceptible to area under disease progress curve
n data averaged over two seasons 2016–17 and 2017–18.

ea under disease progress curve (AUDPC) Final Disease severity (FDS)

21,550 6845.00
6423** 602.66**
,752 150.10



Fig. 1. Performance of 105 wheat genotypes against leaf rust pathogen using Final
Disease severity (FDS), Area under disease progress curve (AUDPC) and Coefficient
of Infection (CI) parameters based on data averaged over two seasons 2018–19 and
2019–20 under field conditions.
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(AUDPC) with the values of 1600, 1550, 1350 and 1300 respec-
tively, whereas G-42, G-11 and G-2 were ranked as resistant hav-
ing the minimum value 300 of area under disease progress curve.
The rest of the cultivars had the range of value from 450 to 850
were classified as moderately resistant (MR) to moderately suscep-
tible (MS) genotypes. Results of current study showed that AUDPC
run in a parallel manner to rust severity. It is obvious from the pre-
vious findings by Safavi (2015), Taye et al. (2015), Anwaar et al.
(2019) that a very strong positive relation found between AUDPC
and final rust severity that means severely infected cultivar
showed higher AUDPC values. And the second thing was disease
progress rates and AUDPC values were positively correlated and
highly significant.

Disease damage or lesions covered on host tissues or organ
described in percentage is called disease severity. Severity results
from the number and size of the lesions. Data analysis and mean
comparison indicated that 105 wheat genotypes were significantly
different based on the final disease severity (FDS) parameter.
ANOVA Results showed highly significant (P � 0.001) effects
among investigated wheat genotypes for disease severity under
field conditions (Table 1). Mean results of the response of different
studied wheat genotypes against leaf rust disease under field con-
ditions are shown in Fig. 1. All the studied wheat genotypes exhib-
ited different disease severity ranged from 30 to 80%. The
genotypes of G-102, G-27 and G-36 showed the highest final rust
severity of 80% followed by G-6 and G-42 which had the value of
70% rust severity and classified as leaf rust susceptible genotypes.
While the minimum final disease severity value was 30 % showed
by the genotypes G-30, G-37, G-25 and some other cultivars, thus,
were more resistant to the pathogen of the leaf rust as indicated in
Fig. 1. Current results are in a harmony with results reported by
Macharia and Wanyera (2012), Taye et al. (2015). A study by
Hasan et al. (2012) was aimed to estimate of losses of grain yield
because of brown rust disease on the five local commercial suscep-
tible wheat cultivars in field conditions during 2011–2012 growing
4

seasons at Gemmeiza Agriculture Research Station, Egypt. The
investigated cultivars exhibited 5–80% disease severity. And was
depicted a relationship between rust severity and yield compo-
nents which resultantly converted to financial losses.

3.2. Population STRUCTURE

Bayesian method execute in statistical software package
STRUCTURE used to estimate the genetic structure of 105 bread
wheat genotypes. The results from this technique showed that
highest (peak) number of K = 4 which demonstrating the germ-
plasm distributed into four sub-population (Fig. 2A). Different
types of coloured in Fig. 2B exhibits the distinct group and overall
germplasm allocated into four sub-groups. This technique has been
applied in wheat breeding scheme by many scientists and were
obtained the explanatory outcomes (Wang et al., 2021). In current
experiment, existence of different groups clearly showed the
genetic variations between 105 bread wheat genotypes and genet-
ically diverse to one another. Fundamentally, this is the indication
of genetic divergence between the clusters or groups and resul-
tantly the presence of more genetic diversity in studied germ-
plasm. Several wheat breeders evaluated the genetic diversity
(Rahimi et al., 2019; Leonova et al., 2020) using the similar tech-
niques which were applied in current study and some extent they
got the similar results. Development of novel bread wheat geno-
types should be attaining the significance level of genetic diversity.
Presence of more variation in 105 bread wheat genotypes which
indicate the maximum genetic diversity, fearlessly, that the stud-
ied germplasm introduced from different sources or assumable
mechanical mixing.

According to the provided pedigree record there are three
groups of 105 bread wheat genotypes as shown in Supplementary
Table 1. In first group, genotypes G-1 to G-20 which was developed
in PBG-UAF, while in second group the genotypes G21 to G-55
were from exotic source, and in third group, genotypes G-56 to
G-105 was from indigenous sources. But according to molecular
analysis these genotypes divided into four populations. The maxi-
mum genetic distance between groups exhibited indicating genetic
similarity within groups and genetic dissimilarity between the
groups (Lipka et al., 2012; Zegeye et al., 2014). Particularly, results
were useable conferring to the previously known pedigree record
and origin of wheat genotypes. Genetic diversity evaluation could
be helpful to identify the different genotypes for the advancement
and improve the future wheat breeding scheme. The genotypes
with different genetic makeup can be selected for desirable combi-
nations to develop complex and significant attributes to obtaining
maximum yield. Discrimination of wheat genotypes based on their
genetic basis would be useful for effective and early selection of
desired genotypes in wheat breeding scheme for developing
promising wheat genotypes (Juliana et al., 2018; Leonova et al.,
2020).

3.3. Genome-wide markers–traits associations for disease severity
parameters

Marker-trait association (MTA) study recognized the connec-
tion between particular morphological and genetic variation
within a genome, which ultimately perceived locus underpinning
related characters at the end. In this study, 18,500 high density
SNP markers from the 90 K Illumina iSelect SNP array were evalu-
ated to perceive SNPs associated with disease severity for leaf rust
related indices. Before analyses of GWAS and genomic prediction,
scientists should validate and maintain genotype quality. The
GAPIT provides a series of diagnostic tools to help users perform
quality control on genotypes (Lipka et al., 2012). Total 56 signifi-
cant SNPs were correlated with observed characters at or above



Fig. 2. (A) This result achieved of 105 wheat genotypes using 90 k SNP Array from Structure Harvester analysis. It’s based on the second order derivation on the variance of
the maximum likelihood estimation of model given a specific K. Delta K shows only the uppermost clustering level and number of subpopulations in main population. (B)
Population structure of 105 wheat genotypes based on Bayesian method analysed with 90 k SNP Array detecting 4 groups. The dissimilar colours in this figure demonstrating
the different group.

Fig. 3. Manhattan plots showing the location of significant SNPs and �log10(p) associated with Coefficient of Infection (CI) in 105 wheat genotypes against leaf rust pathogen
under field conditions. The red horizontal line on Manhattan plot entitles the threshold level at P � 10�3 of significance for SNPs with specific traits.
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–log 10 (P < 0.0001) threshold level using MLM (mixed linear
model) for studied traits as mentioned in Table 3. The significance
level for p values were measured using Bonferroni adjustment at
P � 10�3 after crossed FDR < 0.05 threshold, some scientists previ-
ously used this criteria with small population size as in current
study (Qaseem et al., 2018; Rahimi et al., 2019). Manhattan plots
(Figs. 3–5) presentation the site of significant SNPs at
(P < 0.0001) �log10(p) which significantly linked with the desired
characters under studied conditions. The red horizontal line on
Manhattan plot entitles the threshold level (P < 0.0001) of signifi-
cance for SNPs with specific traits. Current results were supported
5

with the findings of (Rahimi et al., 2019; Leonova et al., 2020). In
this study, 18,500 high density, polymorphic SNP markers from
90 K Illumina iSelect SNPs array (Wang et al., 2014) were examined
to notice SNPs associated with disease severity for leaf rust related
associated indices.

A total of 17 significantly marker trait associations were found
with coefficient of infection, Including 5 markers located on
chromosomes 4A, 4 on chromosome 2A, 3 on 7B and the other
on 1A, 2B, 3A, 5A and 7A (Fig. 3). In GWAS analysis, wsnp_Ex_
c5412_9564046 on chromosome 2A at position 261.05 cM and
Kukri_c4709_53 on chromosome 4A were significantly correlated



Fig. 4. Manhattan plots showing the location of significant SNPs and �log10(p) associated with Area under disease progress curve (AUDPC) in 105 wheat genotypes against
leaf rust pathogen under field conditions. The red horizontal line on Manhattan plot entitles the threshold level at P � 10�3 of significance for SNPs with specific traits.

Fig. 5. Manhattan plots showing the location of significant SNPs and �log10(p) associated with Final Disease severity (FDS) in 105 wheat genotypes against leaf rust
pathogen under field conditions. The red horizontal line on Manhattan plot entitles the threshold level at P � 10�3 of significance for SNPs with specific traits.
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with this trait covering 20.49% and 16.60% of the phenotypic vari-
ation respectively. Reliable MTAs were detected for disease sever-
ity parameters which located on the 5A, 6D, 6A and 6A
chromosomes by wheat scientists (Singh et al., 2009). Associations
with SNPs of chromosome 5A were also established a link with cur-
rent study. In addition, association mapping revealed a Genomic
region on chromosome 5A, which determines the presence of resis-
tance loci against leaf rust. Based on the location of QTLs, as well as
their origin, the locus on 5A found in this study cannot be attribu-
ted to any of the known genes (Singh et al., 2009; Maccaferri et al.,
2010; Leonova et al., 2020). This suggests the presence of a previ-
ously unknown QTL for resistance to leaf rust in the genomes of
studied germplasm.

Total 23 significant SNP markers were strongly linked with Area
under disease progress curve (AUDPC) including 6 markers located
on chromosomes 3B, 2 on each chromosome 2B, 5A, 6B, 7B, 7D and
the other on 1B, 6A, 6D and 7A (Fig. 4). These markers explained
6

11.64% to 23.03% of the phenotypic variation in AUDPC under field
conditions. The marker (D_contig29746_525) on chromosome 7D at
436.21 cM explained maximum variation 23.03% while the marker
(BS00037898_51) on 3B at 274.8 cM explained (Table 3) minimum
variation (11.64%) in this parameter. In the study of (Wang et al.,
2021) 32 markers located on seven chromosomes were identified
which similar to current study results, as significantly associated
(P < 0.00o1) with FDS and AUDPC. The identified resistant acces-
sions and resistance loci will be useful in the ongoing effort to
develop new wheat cultivars with strong resistance to leaf rust
(Yao et al., 2019; Wang et al., 2021).

Final Disease Severity (%) was highly associated with sixteen
QTL regions. Four QTLs associated regions were located on chromo-
somes 5A, three on 1A, two on each 1B, 2A and 7A, one on each 3B
and 3 D (Fig. 5). These MTAs explained 12.97 % to 19.39 % of the
variation in FDS (Table 3). The marker (Ku_c10756_1197) explained
maximum phenotypic trait variability (19.39%) on chromosome 5A



Table 2
Response of 105 wheat genotypes against leaf rust pathogen under field conditions using studied parameters based on data averaged over two seasons 2016–17 and 2017–18.

Resistant (R) genotypes Moderately Resistant (MR) genotypes Moderately Susceptible (MS) genotypes Susceptible
(S) genotypes

Total 34 genotypes Total 30 genotypes Total 32 genotypes Total 9
genotypes

32.39% 28.59% 30.49% 8.60%
G2, G4, G5, G9, G11, G13, G14, G16, G20, G22, G23,
G25, G28, G30, G31, G35, G37, G38, G43 G45, G46,
G48, G53, G56, G66, G67, G75, G79, G82, G84, G86,
G90, G94, G96.

G1, G3, G8, G18, G19, G24, G26, G29, G32,
G40, G47, G50, G52, G55, G58, G60, G63,
G69, G72, G74, G77, G78, G81, G89, G92,
G93, G98, G100, G101, G105.

G7, G10, G17, G21, G33, G39, G41, G44, G49,
G51, G54, G57, G59, G61, G62, G64, G65, G68,
G70, G71, G73, G76, G80, G83, G87, G88, G91,
G95, G97, G99, G103, G104.

G6, G12, G15,
G27, G34,
G36, G42,
G85, G102.

Table 3
Significant marker trait associations MTAs at FDR < 0.05 threshold for leaf rust pathogen under field conditions.

SNP Chromosome Position P.value PV

CI wsnp_Ex_c5412_9564046 4 261.05 0.0001157 20.49
Ra_c58279_684 4 261.05 0.0001357 20.16
RAC875_c45591_79 20 246.47 0.0001444 19.96
GENE-4367_562 10 575.49 0.0001738 19.66
wsnp_Ex_c27666_36847022 20 213.28 0.0001823 19.36
BS00109911_51 10 603.44 0.0003316 18.35
Kukri_c55051_414 13 68.20 0.0003347 18.32
BS00038787_51 19 369.49 0.0003378 18.31
wsnp_Ra_c3176_5975986 20 246.93 0.0004007 17.97
wsnp_Ex_c15475_23757972 7 419.04 0.0004056 17.37
wsnp_Ex_c5412_9564346 4 257.26 0.0006717 16.95
Excalibur_c26971_1730 10 598.31 0.0007480 16.74
Tdurum_contig46583_2203 10 575.49 0.0007507 16.73
wsnp_RFL_Contig2744_2471775 5 277.23 0.0007613 16.69
wsnp_Ex_c5412_9564550 4 261.05 0.0007791 16.66
wsnp_Ku_c10292_17066821 1 261.32 0.0007838 16.62
Kukri_c4709_53 10 598.31 0.0008009 16.60

AUDPC D_contig29746_525 21 436.21 0.0000053 23.03
Kukri_c43200_235 18 58.30 0.0000552 17.69
Ex_c54098_174 13 78.01 0.0000577 17.59
Excalibur_c33112_226 19 683.43 0.0000577 17.59
RAC875_c4876_2096 20 522.37 0.0001431 15.61
RAC875_c19425_903 17 134.00 0.0002610 14.31
Excalibur_c58468_162 20 418.37 0.0002655 14.28
BS00100117_51 5 504.16 0.0003548 13.66
TA004110-0731 8 262.18 0.0003758 13.54
RAC875_c31280_122 17 146.01 0.0003820 13.51
D_GA8KES401D0K1W_269 21 294.97 0.0004101 13.36
RFL_Contig4549_196 5 583.38 0.0004468 13.18
BobWhite_c35249_110 8 275.44 0.0004843 13.01
RAC875_rep_c75915_103 14 461.74 0.0005085 12.91
Excalibur_c10307_254 4 86.88 0.0005443 12.76
RFL_Contig2949_500 15 194.19 0.0007172 12.19
GENE-4918_283 8 228.92 0.0007274 12.16
GENE-1756_564 16 15.48 0.0007440 12.11
wsnp_Ex_c7172_12318529 8 275.44 0.0007492 12.10
Excalibur_c10528_347 2 195.12 0.0008269 11.90
wsnp_Ex_c5378_9505533 8 274.80 0.0009118 11.70
RAC875_c28449_88 13 78.13 0.0009120 11.69
BS00037898_51 8 274.80 0.0009350 11.64

FSD Ku_c10756_1197 13 690.36 0.0001310 19.39
Excalibur_c65152_572 2 344.72 0.0001330 19.05
RAC875_s117925_244 13 77.77 0.0001409 18.49
Excalibur_c111818_435 13 249.32 0.0001420 18.33
RAC875_c16333_340 4 427.05 0.0002290 17.93
BobWhite_rep_c66990_294 8 320.47 0.0002350 17.88
Kukri_c55051_414 13 68.20 0.0002460 17.66
RAC875_c33823_279 9 245.89 0.0002770 17.20
Excalibur_c34115_271 19 103.70 0.0002840 17.15
BobWhite_c26570_282 4 410.90 0.0008310 16.78
Tdurum_contig62445_667 19 98.21 0.0008410 16.67
BS00110877_51 1 333.28 0.0008510 15.38
BS00037976_51 1 337.41 0.0008510 15.25
Tdurum_contig30517_310 2 269.73 0.0008520 15.21
wsnp_Ex_c3831_6965890 1 260.38 0.0008530 15.11
BobWhite_c15453_678 6 208.94 0.0008840 12.97
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at 690.36 cMwhile the marker (BobWhite_c15453_678) on chromo-
some 2D at 208.94 cM explained minimum value (12.97 %) of
phenotypic variability. MTA for FDS were distributed across 16
chromosomes, including, 11 SNPs at A-genome, 3 at B-genome
and 2 at B-genome. Leaf rust resistance genes designated Lr1 to
Lr60 have been have been characterized in common (Bolton
et al., 2008). These resistance genes are widely distributed across
all the chromosomes of the wheat genome. In present study, signif-
icant SNPs were observed and matched with previously identified
location of genes by several scientists. Genes Lr2a, Lr2b and Lr2c
were mapped to a locus on chromosome 2D, Chromosomes 6B
exhibited the Lr3a, Lr3ka and Lr3g genes against leaf rust (Li
et al., 2016) The other genes Lr17a and Lr17b are at a locus on chro-
mosome 2A and Lr22a and Lr22b at a locus on chromosome 2D.
Genes Lr14a and Lr14b are extremely tightly linked on chromo-
some 7B and are considered as alleles for all practical purposes
(Bolton et al., 2008; McIntosh et al., 2014).

Based on the disease severity parameters of FDS and AUDPC
(Macharia and Wanyera 2012), reported infection responses of
the wheat cultivars and classified them into four discrete cate-
gories: a) S-susceptible) MS-moderately susceptible c) MR-
moderately resistant d) R-resistant which was previously reported
by several scientists. Resistant wheat varieties are compromised by
the continuously evolving races of rust pathogens, which causes
leaf rust of wheat and appears to be the most damaging pathogen
that threatens global food security by inducing yield reductions in
wheat (Li et al., 2016). Diseased symptoms are prevalent on leaf
blades, leaf sheaths and glumes. Pathogenic attack in the early crop
stages may result in increased yield losses up to 30% (Anwaar et al.,
2019).

In the current study total 105 genotypes were investigated,
among them 34 genotypes showed resistant results against leaf
rust pathogen. Moderately resistance showed by 30 genotypes
against this disease in studied germplasm. Total 32 genotypes
exhibited moderately susceptible performance to leaf rust patho-
gen while 9 genotypes showed susceptible behaviour against this
pathogen (Table 2). Leaf rust resistant accessions recognised in this
experiment verified to be additional fruitful in preliminary field
environments against leaf rust pathogen. Thus, these resistant
genotypes could be helpful as parental genotypes in breeding
schemes for leaf rust resistance. The locus (Kukri_c55051_414)
showed pleotropic effects for leaf rust identified parameters on
chromosome 5A at position of 68.2 cM under field conditions\.
The main objectives of this study were to identify sources of resis-
tance, and to map genomic loci associated with leaf rust resistance
using genome wide association study (GWAS) approach. The new
identified sources of resistance and MTAs/QTL could be used in
wheat breeding programs to improve leaf rust resistance for sus-
tainable food security.
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