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Abstract Based on a one-dimensional mode, the characteristics of the head on collision between

two dust ion acoustic solitons (DIASs), propagating in opposite directions in adiabatic dusty plas-

mas composed of adiabatic non-inertial electrons, adiabatic inertial ions and immersed (negatively/

positively) charged dust grains have been investigated. The extended Poincaré–Lighthill–Kuo

(PLK) method has been used to obtain two side Korteweg-de Vries (KdV) equations for DIASs.

The analytical phase shifts and trajectories after collision of two solitons are given. The effects of

adiabaticity of electron and ion fluids, concentration of negatively/positively charged static dust

particles and ion temperature to electron temperature ratio on the phase shift are studied. It is

found that these factors significantly affect the phase shifts.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Study of various types of nonlinear phenomena in dusty plas-

mas is one of the most important topics in the modern plasma
physics researches because of their relevance in astrophysical
and space environments such as comettails, planetary ring,

asteroid zones, interstellar medium, lower part of Earth’s ion-
osphere and magnetosphere radio frequency plasma discharge
(Horányi and Mendis, 1985; Northrop, 1992; Mendis, and

Rosenberg, 1994; Verheest, 2000; Shukla and Mamun, 2002).
In dusty plasmas, due to the presence of a high density of dust
grains, different types of collective processes exist and new
wave modes can be exciting. One of these modes is the low-fre-
quency dust ion acoustic waves (DIAWs), theoretically pre-

dicted by Shukla and Silin (1992) in an unmagnetized dusty
plasma and then these waves have been observed in the labo-
ratory experiments (Barkan et al., 1996). In most space and
laboratory dusty plasma environments, dust grains, immersed

in the plasma would be essentially charged by the capture of
the more mobile electrons; hence, they become negatively
charged (Shukla and Mamun, 2002). On the other hand, the

existence of positively charged dust in different regions of
space (Viz., upper part of ionosphere, lower part of magneto-
sphere, in the Earth’s mesosphere and cometary tail etc. as well

as laboratory environments) was also observed (Horányi et al.,
1993; Rosenberg and Mendis, 1995; Rosenberg et al., 1999;
Samarian et al., 2001). Generally, there are a number of prin-

ciple mechanisms by which a dust grain becomes positively
charged. These include secondary emission of electrons from
the surface of the dust grains, photo electron emission by
UV radiation, thermionic emission, field emission, impact ion-

ization, etc., (Rosenberg and Mendis, 1995; Rosenberg et al.,
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1999). There is also direct evidence for the existence of both
positively and negatively charged dust particles in space and
laboratory plasmas (Zhao et al., 2002; Mamun, 2008a). It is

expected that the presence of such negative (positive) dust
grain can modify or introduce new features in the propagation
of the dust associated waves, particularly, the electrostatic

waves of Shukla and Silin (1992). Different plasma modes arise
due to a delicate balance between nonlinearity and dispersion,
which leads to the generation of solitons. Currently, in the pro-

cess of soliton propagation in dusty plasmas interaction repre-
sents one of the most interesting and important nonlinear
phenomenon in modern plasma researches. A soliton [which
was first remarked by Zabusky and Kruskal (1965)] is usually

defined as a type of solitary waves which maintains its identity
after its colliding with another soliton of the same kind. In
fact, the solitons and their interactions have received a special

attention due to the realization of their occurrence in most of
different dusty plasma models. In a one dimensional model,
there are two different methods to soliton interactions. One

is overtaking collision which is studied by inverse scattering
transformation method (Gardner et al., 1967) and the other
is a head-on collision of two solitons traveling in the opposite

directions (i.e., the angle between two propagation directions
of two solitons is p) (Su and Mirie, 1980). Generally, for the
problem of the head-on collision between two solitons, it is
necessary to use or employ a suitable asymptotic expansion

to solve original fluid dynamic equations in order to give the
interesting features of the trajectories of solitons after collision
and the corresponding phase shift. Many authors investigated

the head-on collision of two solitary waves in many plasma
models (Han et al., 2008; El-Shamy et al., 2009; El-Labany
et al., 2010; El-Shamy, 2010; Chatterjee, 2010; Chatterjee

and Ghosh, 2011; Ghosh et al., 2012; El-Shamy and Awad,
2012; Ghorui et al., 2013) by using extended Poincaré–Light-
hill–Kuo (PLK) method (Jeffrey and Kawahara, 1982). For

example, Han et al. (2008) studied the combined effects of elec-
tron to positron temperature ratio and the ratio of the number
density of positrons to that of electrons on the phase shifts
during the head-on collision between two IASWs. They found

out that the ratio of electron temperature to positron temper-
ature, and the ratio of the number density of positrons to that
of electrons have significant influence on the phase shift. El

Shamy (2010) studied the head-on collisions of ion thermal sol-
itary waves in pair-ion plasma containing positive ions, nega-
tive ions and stationary (positively/negatively) charged dust

grains. They found out that the phase shift is significantly
affected by the presence of the positive-to-negative ion temper-
ature ratio and positively/negatively charged dust grains.
Chatterjee et al. (2010) investigated the head-on collision of

ion acoustic solitary waves in electron-positron-ion plasma
with superthermal electrons and Maxwell distribution of posi-
trons. Chatterjee and Ghosh (2011) studied the head-on colli-

sion of IASWs in electron-positron-ion plasma. They took the
non-Maxell’ distribution (superthermal) of both electrons and
positrons. They illustrated that the ratio of electron tempera-

ture to positron temperature and the ratio of the number den-
sity of positrons to that of electrons had significant influence
on the phase shift of the soliton. Ghosh et al. (2012) studied

the head-on collision of IASWs in two component unmagne-
tized plasma with cold ions and nonextensive distributed elec-
trons. They found that the presence of nonextensive
distributed electrons played a significant role in the nature of
collision of IASWs. Recently, Ghorui et al. (2013) investigated
the head on collision between two DIASWs in magnetized
quantum dusty plasma with positively/negatively charged dust

grains. They observed that the phase shifts were significantly
affected by the quantum diffraction parameter, the ion cyclo-
tron frequency and the ratio of the densities of electrons to

ions. Very recently, Khaled (2014) studied the head on colli-
sion between two IASWs in a weakly relativistic plasma con-
taining nonextensive electrons and positrons. He found that

the effects of the nonextensive parameter, positron-to-electron
density ratio, ion-to-electron temperature ratio, electron-to-
positron temperature ratio and relativistic factor had signifi-
cant influence on the phase shift.

To the best of our knowledge, the head-on collision of two
solitons in dusty plasma containing non-inertial adiabatic elec-
tron fluid, inertial adiabatic ion fluid and negatively/positively

charged static dust particles have not yet been studied. There-
fore, this paper aims to study the same topic mentioned above
by using the extended PLK method. It also attempts to study

the effects of the adiabaticity of electrons and ions, ion-to-elec-
tron temperature ratio and the concentration of negatively/
positively charged dust particles on the characteristics of

head-on collisions of solitons.
The manuscript is organized as follows. The governing

equations of one-dimensional DIASs are shown in Section 2.
In Section 3, the KdV equations are derived. Also the analyt-

ical phase shifts and trajectories from the original basic equa-
tions are obtained in Section 3. Results and discussion are
given in Section 4. The conclusions are finally provided in

Section 5.

2. Basic equations

We consider an unmagnetized adiabatic dusty plasma system
composed of hot adiabatic inertial ion fluid, hot adiabatic
non-inertial electrons fluid and stationary positively/negatively

charged dust grains. Thus, at equilibrium, we have
ni0 ¼ ne0 � aZdnd0 where ni0 (ne0), is the equilibriumnumber den-
sity of ions (electrons), nd0 is the number density of static dust

grain and Zd is the equilibrium number of charges residing on
the dust grain surface. a ¼ �1ð1Þ for negative (positive) dust
grains. Also, we consider the time scale of DIASs is much faster
than the dust plasma period, so that the dust grains can be con-

sidered as stationary. Accordingly, the nonlinear dynamics of
DIASs is described by (Mamun, 2008b).
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Here Eq. (1) represents the normalized continuity equation

for particle species j (with j ¼ e for electron and j ¼ i for ion),
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Eq. (2) represents the normalized momentum equation for adi-
abatic inertial ion fluid and Eq. (3) represents the normalized
pressure equation for adiabatic particle species j where

j ¼ i; e. Eq. (4) represents the normalized momentum equation
for non-inertial electron and Eq. (5) is normalized Poisson
equation. In the above equations, nj is the particle number den-

sity of the particle specie j (where j = e,i) normalized by its
equilibrium value nj0. pj is the fluid thermal pressure of particle
specie j, normalized by nj0Tj0 where Tj0 is the equilibrium tem-

perature of the species j in the energy unit. uj is the fluid velocity
of particle species j normalized by dust ion acoustic speed
ci ¼ ðTe0=miÞ1=2, withmi being the mass of ion. c is the adiabatic
index (i.e. heat capacity ratio) and u is the electrostatic poten-

tial normalized by Te0=e with e being the magnitude of the elec-
tron charge. The time (t) and space (x) variables are normalized
by the inverse of plasma frequency x�1pi ¼ ð�0mi=ni0e

2Þ1=2 and

the Debye length kDi ¼ ð�0Te0=ni0e
2Þ1=2, respectively. We have

defined r ¼ Ti0=Te0, and d ¼ Zdnd0=ni0.

3. Derivation of KdV equations and phase shifts

We assume that there are two solitons SA and SB in our adia-
batic dusty plasma system, which are asymptotically far apart

in the initial states and travel toward each other. After some
time they interact and collide with each other and then depart.
We also assume that, the solitons have small amplitudes � �
(where � is a smallness formal perturbation parameter charac-
terizing the strength of nonlinearity). The interactions between
two solitons are assumed to be weak. Hence, we expect that the
collision will be quasielastic. In order to analyze the effects of

collision, we employ an extended PLK perturbation method.
According to this method, we introduce the stretched coordi-
nates as

n ¼ �ðx� ttÞ þ �2P0ðg; sÞ þ �3P1ðn; g; sÞþ; � � � ð6Þ

g ¼ �ðxþ ttÞ þ �2Q0ðn; sÞ þ �3Q1ðn; g; sÞþ; � � � ð7Þ

s ¼ �3t; ð8Þ

where n and g denote the trajectories of two solitons traveling
toward each other (i.e., to the right and left, respectively),
P0ðg; sÞ, Q0ðn; sÞ are some unknown functions to be deter-

mined later, and t is the phase velocity of DIASs. Now, we
can expand the dependent variables about the unperturbed
states in a power series of � as

F ¼ Fð0Þ þ �2Fð1Þ þ �3Fð2Þ þ �4Fð3Þ þ � � � ; ð9Þ

where F ¼ nj, uj, pj, u and Fð0Þ ¼ 1 for nj; pj, and zero for uj, u
where j ¼ i; e.

Introducing expansions (6–9) into Eqs. (1)–(5) and by
equating the powers of �, we finally obtain the lowest order dif-

ferential equations:
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and the lowest order Poisson equation led to

ð1þ adÞnð1Þe ¼ n
ð1Þ
i : ð16Þ

Solving the system of Eqs. (10)–(15), we finally obtain the
following relations among different physical quantities:

n
ð1Þ
i ðn; g; sÞ ¼

1
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ð1Þðn; sÞ þ wð1Þðg; sÞ�; ð17Þ

u
ð1Þ
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t
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ð1Þðn; sÞ � wð1Þðg; sÞ�; ð18Þ

p
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c
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1
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t
c
½/ð1Þðn; sÞ � wð1Þðg; sÞ�; ð21Þ

pð1Þe ðn; g; sÞ ¼ uð1Þðn; g; sÞ ¼ /ð1Þðn; sÞ þ wð1Þðg; sÞ; ð22Þ

From the condition that a unique solution of Eqs. (10)–(16)

can be obtained when uð1Þ is given by Eq. (22), the wave veloc-

ity t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c½rð1þ adÞ þ 1�=ð1þ adÞ

p
is also obtained. The

unknown functions /ð1Þðn; sÞ and wð1Þðg; sÞ will be determined
from the next orders. Eqs. (17)–(22) imply that at the leading

order, we have two waves, one of which, /ð1Þðn; sÞ, is traveling
to right and the other one, wð1Þðg; sÞ is traveling to left. At the
next order, we have a system of equations whose solutions are
given by
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To the next higher order, we can deduce
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Integrating Eq. (29) with respect to the variables n and g,
we have
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where A ¼ 1
2t ½

3t2�rcð2�cÞ
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2t , C ¼ 2t and
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1þadÞ�. The first term in the right hand side

of Eq. (30) will be proportional to g because the integrated
function is independent of g while the second term will be pro-
portional to n because the integrated function is independent

of n. Thus, the two terms of Eq. (30) are all secular terms,
which must be eliminated in order to avoid spurious reso-
nances. Hence, we have:
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The third and fourth terms in Eq. (30) are not secular terms

in this order, but they will become secular in the next order.
Hence, we have:
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Eqs. (31) and (32) represent the two side traveling wave
KdV equations in the reference frames of n and g, respectively.
The KdV equations given by Eqs. (31) and (32) have the fol-
lowing soliton solutions:
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where /A and wB are the amplitudes of the two solitons in their
initial position. The functions P0ðg; sÞ and Q0ðn; sÞ can be cal-
culated from Eqs. (33) and (34) and are given by
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Therefore, up to ð�2Þ; the trajectories of the two solitons for
weak head-on interactions are
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Now, to obtain the phase shifts after the interaction
between two solitons, we shall assume that, the solitons char-
acterized by SA and SB are asymptotically far from each other

at the initial time ðt ¼ �1Þ, soliton SA is at n ¼ 0, g ¼ �1
and the soliton SB is at g ¼ 0, n ¼ þ1, respectively. After
the collision ðt ¼ þ1Þ, the soliton SB is far to the right of sol-

iton SA, i.e., the soliton SB is at n ¼ 0, g ¼ þ1 and the soliton
SA is at g ¼ 0, n ¼ �1. Using Eqs. (39) and (40) we obtain the
corresponding phase shift DP0 and DQ0 as follows

DP0 ¼ �2�2
D

C

12BwB

A
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; ð41Þ

DQ0 ¼ 2�2
D

C

12B/A

A
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: ð42Þ
4. Results and discussion

In this paper, we have studied the head-on collision of two
DIASs in collisionless unmagnetized adiabatic dusty plasma

comprising inertialless adiabatic electrons fluid, inertial adia-
batic ions fluid, and (positively/negatively) charged stationary
dust grains by using the extended PLK perturbation method.

We have derived the KdV equations and analytical phase shifts
of the head-on collision between two DIASs. Before going into
details, it should be mentioned here that in a nonlinear disper-

sive media, solitary waves are formed due to the balance
between the nonlinearity and dispersion. The coefficient of
nonlinearity A and the coefficient of dispersion B, which
appear in the soliton like solutions represented by Eqs. (31)

and (32), may create two possibilities namely AB > 0 and
AB < 0. When AB > 0, Eqs. (35) and (36) give the compressive
solutions with /A > 0 and wB > 0. On the other hand, when

AB < 0, Eqs. (35) and (36) give the rarefactive solutions with
/A < 0 and wB < 0. Also, it is worth to notice that each DIAS
has a positive (negative) phase shift in its traveling direction.

The positive or negative phase shift does not depend on the
type of mode (i.e., ion-acoustic, dust-ion-acoustic, dust-acous-
tic, and electrostatic waves). It is well known that whether the
phase shift is positive or negative it depends on the coefficient



Figure 1 Variation of phase shift DQ0 with the concentration of

negatively charged dust impurities d for different values of r and

for c ¼ 3:

Figure 2 Variation of phase shift DQ0 with the concentration of

positively charged dust impurities d for different values of r and

for c ¼ 3:

Figure 3 Variation of phase shift DQ0 with the concentration of

negatively charged dust impurities for r ¼ 0 and c ¼ 1:

Figure 4 Variation of phase shift DQ0 with the concentration of

positively charged dust impurities for r ¼ 0 and c ¼ 1.

234 M.A.H. Khaled
D, which appears in Eqs. (33) and (34). The positive (negative)
phase shift after interaction between two solitons means that
the velocities of the propagated solitons are averagely slower

(faster) than the solitons without interactions. Eqs. (41) and
(42) show that the magnitude of the phase shifts is directly
related to the physical parameters i.e., �; r; c; d;/A and wB.

The effects of adiabaticity electrons and ions (c), the con-
centration of positively/negatively charged dust grains (d)
and the ion-to-electron temperature ratio (r) on the phase
shifts after collision between two solitons are studied as

follows.
Since soliton SA is traveling to the right and soliton SB is

traveling to the left, Eqs. (41) and (42) show that, due to the

collision, each soliton has a phase shift in its traveling direc-
tion. Here, all physical quantities are normalized and � ¼ 0:1
and /A ¼ wB ¼ 1 (El-Shamy, 2010; Han et al 2008) are used.

In order to know how these parameters affect on the phase
shift, the results are given in Figs. 1–4. Fig. 1 (Fig. 2) shows
the variation of the phase shift DQ0 with the concentration
of negatively (positively) charged dust grains d for different
values of ion-to-electron temperature ratio rð¼ Ti0=Te0Þ in

the adiabatic dusty plasma (i.e. when c ¼ 3). It is obvious from
Fig. 1 that the phase shift DQ0 is always negative for any pos-
sible value of concentration of negatively charged dust grains

d, and the negative value of phase shift DQ0 increases as d
increases, but decreases as r increases. Fig. 2 indicates that,
due to the presence of concentration of the positively charged

dust grains in our adiabatic dusty plasma system, the value of
phase shift DQ0 is always positive and increases as the posi-
tively charged dust grains d increases, but decreases as r
increases. Moreover, From Fig. 2, it is found that, for small

values of d (i.e., when d < 0:25), the ion-to-electron tempera-
ture ratio r has a weak effect on the phase shift DQ0, and
for large values of d (i.e., when d > 0:25) r has a strong effect

on DQ0. In addition, Fig. 2 shows that the phase shift does not
change in the case of large values of r and d (i.e., when r ¼ 0:6
and d > 0:4).

To compare, it is very important to mention here that for
an isothermal dusty plasma i.e, when c ¼ 1 and pj ¼ njTj,
where Tj is constant (i.e., Tj ¼ Tj0), Eqs. (1) and (3) are
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identical. It is also important to note that for isothermal elec-
trons, Eq. (4) reduces to ne ¼ eu. Thus, the phase velocity of
soliton is assumed to be much slower than the electron thermal

velocity (i.e., isothermal electron) but much faster than the ion
thermal velocity (i.e., cold ion). The case of cold ion and iso-
thermal (Maxwellian) electrons is not valid for adiabatic iner-

tial ions and adiabatic inertialless electrons. Fig. 3
demonstrates the variation in the phase shift DQ0 with concen-
tration of the negatively charged dust grains d for cold ions

(i.e. r ¼ 0) and isothermal electron (i.e. c ¼ 1). It is obvious
from Fig. 3 that the magnitude of phase shift DQ0 is always
positive which is not found to be in adiabatic dusty plasma
(Fig. 1) for any possible value of d. Fig. 3 also indicates that

the phase shift increases as d increases. In addition, Fig. 3 illus-
trates that for d < 0:4 the phase shift increases slowly and then
it increases rapidly when d > 0:4. Fig. 4 represents the varia-

tion of DQ0 with concentration of the positively charged dust
grains d for cold ions (i.e. r ¼ 0) and isothermal electron (i.e.
c ¼ 1). It is clear that the magnitude of phase shift is decreas-

ing with increase in the concentration of the positively charged
dust grains which cannot be obtained in adiabatic dusty
plasma (Fig. 2). Moreover, in the presence of positive dust

component the magnitude of phase shift is larger compared
to that of adiabatic dust plasma (Fig. 2). Therefore, we can
conclude that the phase shift is modified significantly due to
the effects of adiabaticity of electrons and ions.

5. Conclusions

In summary, the adiabatic electrons and ions, ion-to-electron

temperature ratio and negatively/positively charged dust
grains significantly modify the phase shift during interactions
between two solitons. It has also been observed that, in the adi-

abatic dusty plasma containing negatively charged dust grains,
there is no a positive phase shift DQ0 (Fig. 1) [which are found
to exist in dusty plasma containing isothermal electrons, cold

ions for any possible value of negatively charged static dust
grains d (Fig. 3)]. On the other hand, in an adiabatic dusty
plasma containing positively charged dust impurities, there is

a positive phase shift DQ0 (Fig. 2) [which are also found to
exist in a dusty plasma containing isothermal electrons, cold
ions and positively charged dust grains (Fig. 4)] for any possi-
ble set of dusty plasma parameters. Thus, the adiabatic index c
and negatively/positively charged static dust impurities d are
found to play an important role in the magnitude of phase
shift of the DIASs. The ranges of different dusty plasma

parameters used in this investigation are very wide
(0:1 6 d < 0:7 and 0 6 r < 0:6), and are relevant to both space
and laboratory dusty plasmas (Shukla and Mamun, 2002;

Mamun, 2008; Mendis and Rosenberg, 1994; Barkan et al.,
1996). Thus, the present investigation might be helpful to
understand the collective phenomena related to DIASs colli-
sions that are of vital importance in laboratory plasmas, space

plasma as well as in plasma applications.
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