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A B S T R A C T   

The synthesis of a new class of effective antibiotics and antimicrobial agents with less toxicity is highly desirable 
due to bacterial resistance to antibiotics has increased dramatically. In this context, molecules that embedding a 
spiro moiety are attractive from a medicinal chemistry point of view as these spiro heterocycles show a vital part 
in the development of delivery systems for antimicrobial therapies. In the present study, the synthesis and 
antimicrobial evaluation of structurally attractive complex hybrid heterocycles comprising sprioox-
indolopyrrolidine and indole heterocycles was attained in quantitative yields by cycloaddition strategy. The new 
class of spirocompouds were unequivocally assigned through spectroscopic analysis and the antimicrobial effi-
cacy were assessed against six microbial pathogens. Among them, compound 4a, bearing chlorine substituted 
derivative showed significant activity against tested ESKAPE pathogens. The maximum zone of inhibition 
observed against ESKAPE microbial pathogens causing infectious disease ranged from 6.75 ± 0.40 to 19.75 ±
1.15 mm, with MIC values ranging between 16.00 to  > 256.00 µg/ml .   

1. Introduction 

One of the biggest societal and public health problems is the resis-
tance of harmful bacteria to antibiotics, since bacteria and fungi account 
for 80–87 % of all cases of health-related infections (HAIs) in the human 
population (Haque et al., 2018). The pathogenic potential of these 
bacteria is based on a number of virulence mechanisms, such as the 
enzymes, expression of adhesins, toxins and chemicals affecting the 
immune system, all of which are essential for annexation or intensifi-
cation of infections (Waglechner et al., 2017; Palma et al., 2020). Cur-
rent drug development process is not sufficient to support the complete 
eradication of antimicrobial infections (Reddy et al., 2019). Several 
pathogens are resistant to antibiotics and need to be treated with 

potentially detrimental drugs. As a result, drug discovery researchers 
and pharmaceutical companies have focused their efforts on finding new 
ways to target resistant microorganisms with lower toxicity profile (Sass 
et al., 2013). The preparation of novel small molecules with new 
mechanism of action to curing infectious disease is urgently needed. 

In this context, oxygen and nitrogen containing heterocycles are very 
attractive in antimicrobial research as they present in substantial num-
ber of medicines as an active moiety (Stephen et al., 2015). Among 
them, heterocycles comprising spirooxindolopyrrolidine motif are 
crucial in the field of pharmaceutical chemistry since this motif are 
predominant in biologically potent natural products and synthetic 
compounds. These spirooxindole hybrids displayed diverse pharma-
ceutical properties viz. anticancer (Yang et al., 2016, Lotfy et al., 2017, 
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Barakat et al., 2018), anti-bacterial (Chande et al., 2005), analgesic 
(Rajanarendar et al., 2013), local anesthetic (Kornet, et. al., 1976), anti- 
mycobacterial (Rajesh et al., 2011, Arumugam et al., 2021, Arumugam 
et al., 2021), and AChE inhibition activities (Arumugam et al., 2018, 
Kumar et al., 2018, Almansour et al., 2020). Owing to their unique 
structural profile such as inherent complex structure and three dimen-
sionality natures, they exhibit high rigidity and the capability to expose 
functionality that provides a higher affinity to biological target. Finally, 
spiro core structures have the potential to improve solubility, a crucial 
attribute during the drug development process, by metabolic stability, 
modulating log P and having sp3 hybridization. 

Recently, our research team designed and synthesized structurally 
diverse fused spirooxindolopyrrolidines employing multicomponent 
cycloaddition methodology (Arumugam et al., 2015, Arumugam et al., 
2018, Arumugam et al., 2018) and these synthesized spiro compounds 
exhibited diverse biological profiles including antimicrobial activities. It 
is important to note that some of the synthesized spiropyrrolidine het-
erocycles exhibited excellent activities. Remarkably, a few of hybrid 
with spiro unit showed higher activity than the standard drug (Aru-
mugam et al., 2020, Arumugam et al., 2021). The biological precedents 
mentioned above has led to further study on the synthesis of hybrid 
heterocycles that embedding spiro-oxindolopyrroldines and indole into 
a single compound which would be of great importance for medicinal 
value, since the indole moiety has a significant biological profile, 
anticipating spiro-pyrroldine with the indole motif will enhanced bio-
logical activity (Alaqeel et al., 2022). The present study described a one- 
pot, synthesis of complex dispirooxindolopyrrolidines integrated indole 
hybrids via an intermolecular [3 + 2] cycloaddition cascade reaction 
methodology. These synthesized complex molecules were tested for 
their antibacterial properties against Enterococcus faecium, Staphylo-
coccus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudo-
monas aeruginosa, and Enterobacter spp. (ESKAPE) microbial pathogens. 

2. Materials and methods 

2.1. Synthesis of spirooxindolopyrrolidine fused indole, 4a-d 

An equimolar ration of acrylate 3, and L-tryptophan 2 and indoline- 
2,3-dione 1 (1 mmol) was dissolved in 20 ml of MeOH and then the 
reaction mixture was refluxed for 2 h. Completion of the reaction was 
observed by TLC and the solvent was reduced under low temperature. 
The product was washed with Et2O to give the compound in quantitative 
yield. 

Spirocompound 4a: Yield (89 %); Pale yellow solid; 1H NMR (500 
MHz, CDCl3): δH 2.15 (t, J = 13.2 Hz, 1H), 2.85 (d, J = 13.2 Hz, 1H), 
3.28 (d, J = 13.2 Hz, 1H), 3.45 (s, 3H), 3.69 (d, J = 13.2 Hz, 1H), 
4.78–4.82 (m, 1H), 6.21 (s, 1H), 6.75–6.83 (m, 3H, ArH), 6.95 (t, J = 9.0 
Hz, 1H), 7.03 (t, J = 9.0 Hz, 1H), 7.08 (s, 1H), 7.16–7.29 (m, 4H, ArH), 
7.50 (s, 1H), 8.00 (d, J = 9.0 Hz, 1H), 10.26 (s, 1H), 10.33 (s, 1H), 10.67 
(s, 1H); 13C NMR δC: 29.3, 41.4, 51.3, 62.3, 64.4, 64.7, 75.2, 109.2, 
110.6, 110.9, 113.2, 117.8, 119.6, 120.5, 121.1. 123.2, 124.7, 125.6, 
127.5, 128.2, 129.1, 131.1, 136.1, 142.7, 143.3, 172.3, 177.8, 182.3; 
Mass: m/z = 556 (M+); Anal. Calcd for C30H25ClN4O5: C, 64.69; H, 4.52; 
N, 10.06; Found C, 64.80; H, 4.64; N, 10.17. 

Spirocompound 4b: Yield (87 %); Pale yellow solid; 1H NMR (500 
MHz, CDCl3): δH 2.63–2.71 (m, 2H), 3.10 (s, 3H), 3.19 (d, J = 12.4 Hz, 
1H), 4.6 (d, J = 1.4 Hz, 1H), 5.53–5.54 (m, 1H), 6.38 (m, 3H, ArH), 
6.61–6.63 (m, 1H, ArH), 6.69–6.82 (m, 5H, ArH), 6.93–6.96 (m, 3H, 
ArH), 9.1 (s, 1H), 9.80 (s, 1H); 13C NMR δC: 28.4, 39.6, 50.7, 61.8, 62.6, 
64.4, 74.7, 108.8, 109.6, 117.0, 120.7, 123.2, 127.3, 127.8, 127.9, 
128.3, 128.6, 129.3, 132.6, 139.6, 141.9, 143.4, 171.5, 177.4, 179.2, 
182.2; Mass:m/z = 606 (M+); Anal. Calcd for C31H25F3N4O6: C, 61.39; 
H, 4.15; N, 9.24; Found: C, 61.50; H, 4.27; N, 9.37. 

2.2. Antibacterial activity of compound 4a-d 

The well diffusion method established by CLSI (CLSI, 2012) was used 
to test four (4a-d) synthetic compounds for their antibacterial activity 
against ESKAPE pathogens. These bacterial pathogens were grown in 
nutrient broth and allowed to thrive for 24 h at 37 ◦C. Before, being kept 
on the MHA plates, the dissolved compounds were impregnated on a 
6.00 mm blank sterile disc and dried under sterile conditions. McFarland 
standards (1.00 x108 CFU/mL) of each ESKAPE pathogen were swabbed 
on to MHA plates as microbial inoculum. The positive and negative 
control was amoxicillin (30 mcg) and DMSO, respectively. After that, an 
impregnated dry disc was placed on surface of the culture plates and 
incubated twenty four hour at 37 ◦C. The preliminary antibiotic test was 
performed in triplicate. 

After preliminary screening, the significant compound 4a selected 
for it antibacterial activity evaluation by agar well diffusion method 
(Bauer et al., 1996, Bonev et al., 2008). 0.1 ml of the respective ESKAPE 
pathogens were streaked onto the plates containg MHA plates. 6 mm 
diameter wells were made in MHA plates using a sterilized steel drill that 
filled with 25.00, 50.00, 75.00 and 100.00 µl of the compound (4a). 
Amoxicillin and DMSO and were used as a positive and negative con-
trols. The diameter of inhibition zone was calculated after 24 h of 
incubation. 

2.3. MIC determination by broth microdilution assay 

MIC values of compound 4a was evaluated using broth micro dilu-
tion method (Winn et al., 2006). MIC assay evaluations were completed 
by three times with potential lead compound 4a. The compound 4a was 
assayed for their growth control activity against ESKAPE pathogens and 
amoxicillin. The compound 4a was dissolved in DMSO for MIC assay. 
After 24 h of incubation at 37 ◦C, the ESKAPE pathogens were attained 
from Mueller Hinton broth (MHB). The inoculum of test ESKAPE path-
ogens were fixed to attain the MacFarland standard (0.5) turbidity of an 
inoculum size was 1.0x108 CFU/mL for MIC assays. The MIC test was 
performed with MHB at pH 7 using the doubling dilution technique. 
Microtiter well (last well) containing only inoculation broth was ear-
marked as a control, and no growth of ESKAPE pathogen was stated as 
the MIC value in µg/mL. The compound 4a and amoxicillin were diluted 
with MHB and arranged at concentrations of 2.00, 4.00, 8.00, 16.00, 
32.00, 64.00, 128.00, 256.00 and 512.00 µg/mL, respectively (Abusetta 
et al., 2020). The experiment was repeated three times to find mean MIC 
value. 

3. Results 

3.1. Synthesis of spirooxindolopyrrolidine fused indole 

The Baylis-Hillman adduct (BHA) such as methyl 2-(3-hydroxy-2- 
oxoindolin-3-yl) acrylate 3 was synthesized from isatin and acrylate, 
DABCO was used as catalyst through Baylis-Hillman reaction (Mi Chung 
et al., 2002). With the BHA in hand and it has been utilized as dipo-
larophile under optimized reaction conditions, we carried out the three- 
component cycloaddition of 3 with ylide generated from indoline-2,3- 
dione 1 and L-tryptophan under reflux condition. An equimolar 
mixture of 1, 2 and 3 in refluxing methanol (10 ml, 60 min) afforded the 
spirooxindolopyrrolidine tethered indole hybrids 4 as single product in 
good yield (86 %). The reaction was performed initially with different 
solvents system such as MeOH, EtOH, CH3CN, 1,4-Dioxane, toluene and 
reaction furnished the cycloadduct in 86, 79, 75, 74, 46 % yields 
respectively and found that methanol is appropriate solvent for this 
three-component reaction (Scheme 1). Consequently, the entire subse-
quent reaction was carried out under these similar optimized conditions. 

The structure of mono-spirooxindolopyrrolidine integrated indole 
hybrids 4 was elucidated by spectroscopic analysis as illustrated for a 
representative compound 4a. In the 1H NMR spectrum of 4a, a multiplet 
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at δ 4.78–4.82 ppm is ascribable to H-5 hydrogen and two doublets at δ 
3.28 ppm and δ 2.85 ppm were attributed to H-3 hydrogens of pyrroli-
dine rings. The triplet and doublet at δ 2.15 and δ 3.69 ppm were belong 
to indole adjacent hydrogens (H-6). A signal at δ 3.46 as singlet was 
assigned to ester methyl hydrogens. The aromatic signals as multiple in 
the region δ 6.75 to 8.00 ppm. The signals at δ 10.27 and 10.33 ppm 
were assigned to oxindole NH hydrogens and a signal at δ 10.67 ppm 
was assignable to indole hydrogen. The carbon signal at δ 75.2 ppm due 
to the OH group attached oxindole quaternary carbon (C-7). The signals 
at δ 64.7 and 41.4 ppm were assignable to spiro carbon (C-2) and 
methylene carbon (C-3) respectively. The carbon signals at 62.3 and 
64.4 ppm were attributed to methylene (C-5) and quaternary carbons 
(C-4) respectively. The methylene carbon (C-6) resonated at δ 41.4 ppm. 
The ester methyl carbon exhibited at δ 51.3 ppm. The two oxindole 
carbonyl carbons resonated at δ 177.8 and182.3 ppm, respectively and 
the signal at 172.3 was assignable to ester carbonyl carbon. 

A rational mechanism for the construction of spiroox-
indolopyrrolidines tethered indole 4 is depicted in Scheme 2. Firstly, the 
ylide created in situ by the reaction of isatin 1 and L-tryptophan 2 
through iminium ion 5 and 6 via spontaneous dehydration and decar-
boxylation. Subsequently, ylide 7 adds to exocyclic double bond of 3 
regioselectively to form compound 4 in good yields. Other possible 
regioiomer could not observed even in trace due to the polarization of 
the dipolarophile 3 that preferentially trap with the electron-rich carbon 
of the 7 furnishing 4 in good yields. The cycloaddition reaction gener-
ated up to four adjoined stereocenter out of four, one is spiro carbon and 
two quaternary carbons via two C–C and one C-N bonds in one-pot 
synthetic method. 

Scheme 1. Preparation spirooxindolopyrrolidine incorporated indoles, 4a-d.  

Scheme 2. The formation of spirooxindolopyrrolidine engrafted indoles.  
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4. Discussion 

4.1. Antibacterial activity 

The above synthesized spirooxindolopyrrolidine integrated indole 
hybrids 4a-d were assayed for their antimicrobial potency against 
multidrug resistant microbial pathogens such as S. aureus, K. pneumo-
niae, E. faecium, A. baumannii, P. aeruginosa, and Enterobacter (ESKAPE) 
species using agar well diffusion method. Antibiotics sensitivity profile 
(ASP) of tested ESKAPE pathogens outcomes were presented in Table S1 
(vide supplementary data). The overall ASP results indicated that the 
maximum resistant was observed in seven antibiotics and minimum of 
four antibiotics against tested microbial pathogens. Among the tested 
ESKAPE pathogens A. baumannii was resistant to seven tested antibiotics 
whereas, Enterobacter sp., showed only four antibiotics. But the 
E. faecium and K. pneumoniae displayed maximum of five antibiotics. The 
two antibiotics such as ampicillin and gentamycin were showed resistant 
to maximum numbers tested pathogens. 

Compounds 4a-d showed efficient anti-bacterial activity against 
ESKAPE bacterial pathogens and amoxicillin was used as drug of stan-
dard. The results of the preliminary antimicrobial testing of the com-
pounds (4a-d) are shown in Table 1. The overall, the inhibitory potency 
of synthesized compounds 4a-d showed efficient antibacterial activity 
against ESKAPE pathogens. Amongst, compound 4a which carrying 
chlorine atom on the phenyl ring showed significant inhibitory activities 
against tested ESKAPE pathogens (Table 2). The maximum and mini-
mum inhibition zone was observed towards Enterobacter sp. (18.50 ±
1.05 mm) and A. baumannii (6.50 ± 0.25 mm), and results was 
compared with standard amoxicillin drug (19.75 ± 0.50 mm). 

4.2. MIC determination 

The lowermost concentration of the compound 4a at which no 
growth of ESKAPE pathogens were detected upon manual examination 
after incubation at 37 ◦C for 24 h is deliberated the MIC value (Table 3). 
Even if the wells were clear of turbidity, pellets formed on the bottom of 
the wells were considered bacterial growth. The bottom most MIC value 
of 4a was observed at 16.00 µg/mL and the uppermost MIC value of >
256.00 µg/mL were detected against Enterobacter sp., and A. baumannii 
respectively (Table 3). 

However, the most anti-microbial agents in therapeutic usage exert 
their antimicrobial activities by interfering with biosynthetic pathways 
such as protein, DNA and RNA synthesis and also disturb the cyto-
plasmic membrane (O’Neill et al., 2004). In this study, compound 4a 
exert its antimicrobial efficiency by disturbance cell membrane integrity 
(Oliva et al., 2004, Randall et al., 2013) thereby inhibiting the bacterial 
pathogens. 

4.2.1. Molecular docking and characterization 
Molecular docking studies of the selective antimicrobial target pro-

tein of RNA polymerase (6VJS) involved through biological transcrip-
tion mechanism were executed to extend the observation and 
understanding the lead (chemical compound) interaction (Dhanaraj 
et al., 2021). The best resolution X-RD target protein structure of 
Escherichia coli RNA polymerase were downloaded and verified to 
confirm the structural characterization of primary and secondary and 
tertiary features. To recognize the atomic interaction and stearic binding 
site on the active biomolecule’s backbone and amino acid functional 
groups (Dhanaraj et al., 2018). The proposed ligand important biolog-
ical medicinal properties can be predicted by using the docking results 
parameters viz. energy score, Emodel, hydrogen bonding, and G-score. 
The identified ligand and compound structure were optimized and 
minimized before it uses for the flexible glide docking. The structural 
ligand binding site were selected based on the existed pdb molecular 
properties and by literature reference active site were confirmed. The 
preprocessed macromolecule and optimized ligand were processed pri-
mary SP Glide docking followed by XP glide flexible docking was 
excecated. The G score values of the ligand protein were predicted as 
− 7.804 with interacting energy of − 37.492, glide evdw − 29.702, glide 
ecoul − 10.796, glide emodel score − 44.655, XP hydrogen bonding score 
of − 0.9 (Table 4). The protein active binding site amino acid molecule of 
PHE 1270, GLY 1271, LEU 1291, GLU 1272 were interacted with ligand 
by hydrogen bonding with the chemical bonding phenomenon of elec-
tron donating and acceptance. Interaction of molecules was revealed 
through gscore and other docking parameters with strong hydrogen 
bonding interaction (Fig.1). 

5. Conclusions 

A new class of dispirooxindolopyrrolidine integrated indole hybrids 
was obtained in good to excellent yields by the [3 + 2] cycloaddition 
cascade methodology. The rare class of non-stabilized ylide azomethine 
derived from L-tryptophan and isatin via decarboxylative/dehydration 

Table 1 
Antibacterial activity of spiroxoindopyrroles 4a-d against ESKAPE pathogens by 
Kirby Bauer (disc diffusion) method.  

ESKAPE 
pathogens 

Compounds concentration (mg/mL)/ Zone of inhibition (mm) 

4a 4b 4c 4d AMC$ 

E. faecium 14.30 ±
0.50 

13.75 ±
0.30 

11.20 ±
0.18 

9.15 ±
0.30 

17.00 ±
0.35 

S. aureus 17.85 ±
1.00 

14.60 ±
0.35 

12.45 ±
0.70 

11.00 ±
0.15 

20.50 ±
0.75 

K. pneumoniae 14.60 ±
0.18 

13.05 ±
0.20 

11.00 ±
0.50 

8.50 ±
0.55 

19.20 ±
0.30 

A. baumannii 12.55 ±
0.08 

10.75 ±
1.10 

8.10 ±
0.40 

6.50 ±
0.25 

15.00 ±
1.25 

P. aeruginosa 16.85 ±
0.25 

13.00 ±
1.00 

10.60 ±
0.35 

9.00 ±
0.45 

21.00 ±
1.85 

Enterobacter sp. 18.50 ±
1.05 

13.30 ±
0.15 

12.65 ±
0.40 

11.00 ±
1.25 

19.75 ±
0.50  

$ Amoxicillin (AMC)- (positive control), DMSO - negative control. 

Table 2 
Antibacterial efficacy of spirooxindopyrrolidine 4a against ESKAPE pathogens 
by agar well diffusion method.  

ESKAPE 
pathogens 

Compound 4a concentrations (µg/mL)/ Zone of inhibition (mm) 

25.00 50.00 75.00 100.00 AMC* 

E. faecium 9.25 ±
0.25 

10.15 ±
0.05 

12.00 ±
0.15 

14.70 ±
0.45 

15.00 ±
0.15 

S. aureus 6.75 ±
0.40 

7.50 ±
0.30 

14.05 ±
0.65 

17.05 ±
0.20 

17.00 ±
0.20 

K. pneumoniae 0.00 7.85 ±
1.05 

12.10 ±
0.10 

13.80 ±
0.30 

16.50 ±
0.35 

A. baumannii 0.00 6.50 ±
0.35 

11.25 ±
0.20 

12.00 ±
0.40 

14.15 ±
0.50 

P. aeruginosa 7.05 ±
1.00 

7.05 ±
1.00 

15.35 ±
0.75 

15.85 ±
0.65 

18.00 ±
0.80 

Enterobacter sp. 8.10 ±
0.25 

8.10 ±
0.25 

17.60 ±
0.55 

19.50 ±
1.15 

20.15 ±
0.45  

* AMC - Amoxicillin 

Table 3 
Compound 4a MIC values against ESKAPE pathogens.  

ESKAPE pathogens MIC value (µg/mL) 

4a AMC 

E. faecium  32.00  5.00 
S. aureus  64.00  5.00 
K. pneumoniae  128.00  10.00 
A. baumannii  >256.00  15.00 
P. aeruginosa  64.00  10.00 
Enterobacter sp.  16.00  5.00  
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cycloaddition process and it is pertinent to note that the azomethine 
ylide are relatively meagre in literature. The synthesized spiroox-
indolopyrrolidines were displayed potent antibacterial efficacy against 
ESKAPE bacterial pathogens. Among them compound that bearing 
chlorine atom on the oxindole moiety had most effective activity against 
ESKAPE pathogens. The maximum inhibition zone against designated 
infectious disease-causing ESKAPE pathogens has been determined to 
range from 6.75 ± 0.40 to 19.75 ± 1.15 mm, with MIC values from 
16.00 to>256.00 µg/ml. 
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