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Abstract In this article, we investigate the accuracy of the homotopy analysis method (HAM) for

solving the fractional order problem of the spread of a non-fatal disease in a population. The HAM

provides us with a simple way to adjust and control the convergence region of the series solution by

introducing an auxiliary parameter. Mathematical modeling of the problem leads to a system of

nonlinear fractional differential equations. Graphical results are presented and discussed quantita-

tively to illustrate the solution.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Epidemiology is concerned with the spread of disease and its
effect on people. This in itself encompasses a range of disci-

plines, from biology to sociology and philosophy, all of which
are utilized to a better understanding and containing of the
spread of infection.

One common epidemiological model is the SIR model for
the spread of disease, which consists of a system of three differ-
ential equations that describe the changes in the number of
. Box: Al-Salt 19117, Jordan.
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susceptible, infected, and recovered individuals in a given pop-
ulation. This was introduced as far back as 1927 by Kermack
and McKendrick (1927), and despite its simplicity, it is a good

model for many infectious diseases. The SIR model is
described by the following nonlinear differential system

S0ðtÞ ¼ �bSðtÞIðtÞ;

I0ðtÞ ¼ bSðtÞIðtÞ � cIðtÞ;

R0ðtÞ ¼ cIðtÞ;

ð1Þ

subject to the initial conditions

Sð0Þ ¼ NS; Ið0Þ ¼ NI; Rð0Þ ¼ NR; ð2Þ

where b,c and NS,NI,NR are positive real numbers.
The SIR model (1) consists of three variables: S(t) is the

number of individuals in the susceptible compartment S at
time t, in which all individuals are susceptible to the disease;
I(t) is the number of individuals in the infected compartment

I at time t, in which all individuals are infected by the disease
and have infectivity; and R(t) is the number of individuals in
the removed (recovered) compartment R at time t, in which
all individuals are removed from the infected compartment.

This model was made under the following three assumptions:
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1. The disease spreads in a closed environment (no emi-

gration and immigration), and there is no birth and
death in the population, so the total population
remains constant, N, i.e., S(t) + I(t) + R(t) = N.

2. An infected individual is introduced into the suscepti-
ble compartment, and contacts sufficient susceptibles
at time t, so the number of new infected individuals
per unit time is bS(t), where b is the transmission coef-

ficient. The total number of newly infected is bS(t)I(t)
at time t.

3. The number removed (recovered) from the infected

compartment per unit time is cI(t) at time t, where c
is the rate constant for recovery, corresponding to a
mean infection period of c�1. The recovered have per-

manent immunity.

In the SIR model considered here, we assume that there is a
steady constant rate between susceptible and infectives and

that a constant proportion of these constant results in trans-
mission. Also, we ignore any subdivisions of the population
by age, sex, mobility, or other factors, although such distinc-

tions are obviously of importance. The reader is asked to refer
to (Anderson and May, 1998; Bailey, 1975; Kelleci and
Yıldırım, 2011; Murray, 1993; Yildirim and Cherruault,

2009; Yildirim and Koçak, 2011) in order to know more details
about mathematical epidemiology, including its history and
kinds, basics of SIR epidemic models, method of solutions, etc.

The differential equations with fractional order have re-
cently proved to be valuable tools to the modeling of many real
problems in different areas (Luchko and Gorenflo, 1998; Mai-
nardi, 1997; Miller and Ross, 1993; Oldham and Spanier, 1974;

Podlubny, 1999). This is because of the fact that the realistic
modeling of a physical phenomenon does not depend only
on the instant time, but also on the history of the previous time

which can also be successfully achieved by using fractional cal-
culus. For example, half-order derivatives and integrals proved
to be more useful for the formulation of certain electrochemi-

cal problems than the classical models (Luchko and Gorenflo,
1998; Mainardi, 1997; Miller and Ross, 1993; Oldham and
Spanier, 1974; Podlubny, 1999). Lately, a large amount of
studies developed concerning the application of fractional dif-

ferential equations in various applications in fluid mechanics,
viscoelasticity, biology, physics, and engineering. An excellent
account in the study of fractional differential equations can be

found in (Kilbas et al., 2006; Lakshmikantham et al., 2009;
Podlubny, 1999).

In this work, we study the mathematical behavior of the

solution of a fractional SIR model as the order of the frac-
tional derivative changes by extending the classical SIR model
(1) to the following fractional SIR model

Dl1
� SðtÞ ¼ �bSðtÞIðtÞ;

Dl2
� IðtÞ ¼ bSðtÞIðtÞ � cIðtÞ;

Dl3
� RðtÞ ¼ cIðtÞ;

ð3Þ

where Dl1
� S; D

l2
� I, and Dl3

� R are the derivative of S(t), I(t), and
R(t), respectively, of order li in the sense of Caputo and
0 < li 6 1, i= 1,2,3.

The reason for considering a fractional order system
instead of its integer order counterpart is that the integer order
system can be viewed as a special case from the fractional or-
der system by putting the time-fractional order of the
derivative equal to unity. Also, using fractional order differen-
tial equations can help us to reduce the errors arising from the
neglected parameters in modeling real life phenomena (Luchko

and Gorenflo, 1998; Miller and Ross, 1993; Podlubny, 1999).
Furthermore, the fractional differential equations are innately
reference to systems with memory, which stands in most bio-

logical systems. Since, the study found that fractional derivative
was very suitable to describe long memory and hereditary prop-
erties of various materials and processes (Miller and Ross, 1993;

Podlubny, 1999).
The HAM, which is proposed by Liao (1992), is effectively

and easily used to solve some classes of nonlinear problems
without linearization, perturbation, or discretization. In the

last years, extensive work has been done using HAM, which
provides analytical approximations for nonlinear equations.
This method has been implemented in many branches of math-

ematics and engineering, such as nonlinear water waves (Liao
and Cheung, 2003), unsteady boundary-layer flows (Liao,
2006), solitary waves with discontinuity (Wu and Liao,

2005), Klein–Gordon equation (Sun, 2005), fractional KdV-
Burgers–Kuramoto equation (Song and Zhang, 2007), frac-
tional nonlinear Riccati equation (Cang et al., 2009), coupled

nonlinear diffusion reaction equations and the (2+1)-dimen-
sional Nizhnik–Novikov Veselov system (El-Wakil and Ab-
dou, 2010), Whitham–Broer–Kaup, coupled Korteweg–de
Vries, and coupled Burger’s equations (El-Wakil and Abdou,

2008), nonlinear differential difference equations (Abdou,
2010), and others.

The objective of the present paper is to extend the applica-

tions of the HAM to provide symbolic approximate solutions
for the fractional SIR model (3). As we will see later, choosing
suitable values of the auxiliary parameter �h will help us to ad-

just and control the convergence region of the series solution.
The organization of this paper is as follows: in the next sec-

tion, we present some necessary definitions and preliminary re-

sults that will be used in our work. In Section 3, the basic idea
of the HAM is introduced. In Section 4, we utilize the state-
ment of the method for solving a fractional order SIR model
by HAM. In Section 5, numerical results are given to illustrate

the capability of HAM. In Section 6, the convergence of the
HAM series solution is analyzed. The conclusion is given in
the final part, Section 7.
2. Preliminaries

The material in this section is basic in some sense. For the

reader’s convenience, we present some necessary definitions
from fractional calculus theory and preliminary results. For
the concept of fractional derivative, we will adopt Caputo’s

definition, which is a modification of the Riemann–Liouville
definition and has the advantage of dealing properly with ini-
tial value problems in which the initial conditions are given in
terms of the field variables and their integer order, which is the

case in most physical processes (Caputo, 1967; Luchko and
Gorenflo, 1998; Mainardi, 1997; Miller and Ross, 1993;
Oldham and Spanier, 1974; Podlubny, 1999).

Definition 1. A real function f(x),x > 0 is said to be in the
space Cl; l 2 R if there exists a real number p > l, such that
f(x) = xpf1(x), where f1(x) 2 C[0,1) and it is said to be in the

space Cn
l iff f(n)(x) 2 Cl,n 2 N.
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Definition 2. The Riemann–Liouville fractional integral opera-

tor of order a P 0, of a function f(x) 2 Cl,l P �1 is defined as

JafðxÞ ¼ 1

CðaÞ

Z x

0

ðx� tÞa�1fðtÞdt; x > 0;

J0fðxÞ ¼ fðxÞ;

where a > 0 and C is the well-known Gamma function.

Properties of the operator Ja can be found in (Caputo,
1967; Luchko and Gorenflo, 1998; Mainardi, 1997; Miller
and Ross, 1993; Oldham and Spanier, 1974; Podlubny,

1999), we mention only the following: for f 2 Cl,l P �1,a,
b P 0, and c P �1, we have

JaJbfðxÞ ¼ JaþbfðxÞ ¼ JbJafðxÞ;

Jaxc ¼ Cðcþ 1Þ
Cðaþ cþ 1Þ x

aþc:

The Riemann–Liouville derivative has certain disadvan-
tages when trying to model real-world phenomena with frac-

tional differential equations. Therefore, we shall introduce a
modified fractional differential operator Da

� proposed by Cap-
uto in his work on the theory of viscoelasticity (Caputo, 1967).

Definition 3. The fractional derivative of f 2 Cn
�1 in the

Caputo sense is defined as:

Da
�fðxÞ ¼

Jn�aDnfðxÞ; n� 1 < a < n; x > 0;
dnfðxÞ
dxn

; a ¼ n;

(

where n 2 N and a is the order of the derivative.

Lemma 1. If n � 1 < a 6 n,n 2 N, and f 2 Cn
l; l P �1, then

JaDa
�fðxÞ ¼ fðxÞ �

Xn�1
k¼0

fðkÞð0þÞ x
k!
; x > 0;

Da
�J

afðxÞ ¼ fðxÞ:

For mathematical properties of fractional derivatives and
integrals, one can consult the mentioned references.
3. Basic idea of the HAM

The principles of the HAM and its applicability for various
kinds of differential equations are given in (Cang et al.,
2009; Liao, 1992, 1998, 2003, 2004, 2006; Liao and Cheung,
2003; Song and Zhang, 2007; Sun, 2005; Wu and Liao,

2005). For convenience of the reader, we will present a review
of the HAM (Liao, 1992, 1998, 2003, 2004, 2006; Liao and
Cheung, 2003; Wu and Liao, 2005) then we will implement

the HAM to construct a symbolic approximate solution for
the fractional SIR model (3) and (2). To achieve our goal,
we consider the nonlinear differential equation

N½yðtÞ� ¼ 0; t P 0; ð4Þ

where N is a nonlinear differential operator and y(t) is un-
known function of the independent variable t.

Liao (1992) constructs the so-called zeroth-order deforma-

tion equation

ð1� qÞL½/ðt; qÞ � y0ðtÞ� ¼ q�hHðtÞN½/ðt; qÞ�; ð5Þ
where q 2 [0,1] is an embedding parameter, �h „ 0 is an auxil-

iary parameter, H(t) „ 0 is an auxiliary function, L is an auxil-
iary linear operator, N is a nonlinear differential operator, /
(t;q) is an unknown function, and y0(t) is an initial guess of

y(t), which satisfies the initial conditions. It should be empha-
sized that one has great freedom to choose the initial guess
y0(t), the auxiliary linear operator L, the auxiliary parameter
�h, and the auxiliary function H(t). According to the auxiliary

linear operator and the suitable initial conditions, when
q= 0, we have

/ðt; 0Þ ¼ y0ðtÞ; ð6Þ

and when q = 1, since �h „ 0 and H(t) „ 0, the zeroth-order

deformation Eq. (5) is equivalent to Eq. (4), hence

/ðt; 1Þ ¼ yðtÞ: ð7Þ

Thus, according to Eqs. (6) and (7), as q increasing from 0
to 1, the solution /(t;q) varies continuously from the initial

approximation y0(t) to the exact solution y(t).
Define the so-called mth-order deformation derivatives

ymðtÞ ¼
1

m!

@m/ðt; qÞ
@qm

����
q¼0
; ð8Þ

expanding /(t;q) in a Taylor series with respect to the embed-
ding parameter q, by using Eqs. (6) and (8), we have

/ðt; qÞ ¼ y0ðtÞ þ
X1
m¼1

ymðtÞqm: ð9Þ

Assume that the auxiliary parameter �h, the auxiliary func-
tion H(t), the initial approximation y0(t), and the auxiliary lin-

ear operator L are properly chosen so that the series (9) of /
(t;q) converges at q= 1. Then, we have under these assump-
tions the series solution

yðtÞ ¼ y0ðtÞ þ
X1
m¼1

ymðtÞ:

According to Eq. (8), the governing equation can be de-
duced from the zeroth-order deformation Eq. (5). Define the

vector

~yn ¼ fy0ðtÞ; y1ðtÞ; y2ðtÞ; . . . ; ynðtÞg:

Differentiating Eq. (5) m-times with respect to embedding
parameter q, and then setting q = 0 and finally dividing them

by m!, we have, using Eq. (8), the so-called mth-order deforma-
tion equation

L½ymðtÞ � vmym�1ðtÞ� ¼ �hHðtÞRymð~ym�1ðtÞÞ; m ¼ 1; 2; . . . ; n; ð10Þ

where

Rymð~ym�1Þ ¼
1

ðm� 1Þ!
@m�1N½/ðt; qÞ�

@qm�1

����
q¼0
; ð11Þ

and

vm ¼
0; m 6 1;

1; m > 1:

�

For any given nonlinear operator N, the term Rymð~ym�1Þ
can be easily expressed by Eq. (11). Thus, we can gain y0(t),
y1(t),y2(t), . . .,yn(t) by means of solving the linear high-order

deformation Eq. (10) one after the other in order. The mth-
order approximation of y(t) is given by
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yðtÞ ¼
Xm�1
k¼0

ykðtÞ:

It should be emphasized that the so-called mth-order defor-

mation Eq. (10) is linear, which can be easily solved by sym-
bolic computation softwares such as Maple or Mathematica.

4. Solution of the fractional order SIR model by HAM

In this section, we employ our algorithm of the HAM to find
out series solutions for the fractional SIR model of epidemics.

Let q 2 [0,1] be the so-called embedding parameter. The

HAM is based on a kind of continuous mappings

SðtÞ ! u1ðt; qÞ; IðtÞ ! u2ðt; qÞ; RðtÞ ! u3ðt; qÞ

such that, as the embedding parameter q increases from 0 to 1,
ui(t; q), i = 1,2,3 varies from the initial approximation to the

exact solution. To ensure this, choose such auxiliary linear
operators Li to be Dli

� , where 0 < li 6 1, i = 1,2,3.
We define the nonlinear operators

N1½u1ðt; qÞ� ¼ Dl1
� ½u1ðt; qÞ� þ bu1ðt; qÞu2ðt; qÞ;

N2½u2ðt; qÞ� ¼ Dl2
� ½u2ðt; qÞ� � bu1ðt; qÞu2ðt; qÞ þ cu2ðt; qÞ;

N3½u3ðt; qÞ� ¼ Dl3
� ½u3ðt; qÞ� � cu2ðt; qÞ:

Let hi „ 0 and Hi(t) „ 0, i = 1,2,3, denote the so-called auxil-
iary parameter and auxiliary function, respectively. Using the
embedding parameter q, we construct a family of equations

ð1� qÞL1½u1ðt; qÞ � S0ðtÞ� ¼ q�h1H1ðtÞN1½u1ðt; qÞ�;
ð1� qÞL2½u2ðt; qÞ � I0ðtÞ� ¼ q�h2H2ðtÞN2½u2ðt; qÞ�;
ð1� qÞL3½u3ðt; qÞ � R0ðtÞ� ¼ q�h3H3ðtÞN3½u3ðt; qÞ�;

subject to the initial conditions

u1ð0; qÞ ¼ S0ð0Þ; u2ð0; qÞ ¼ I0ð0Þ; u3ð0; qÞ ¼ R0ð0Þ:

By Taylor’s theorem, we expand ui(t;q), i = 1,2,3 by a
power series of the embedding parameter q as follows

u1ðt; qÞ ¼ S0ðtÞ þ
X1
m¼1

SmðtÞqm;

u2ðt; qÞ ¼ I0ðtÞ þ
X1
m¼1

ImðtÞqm;

u3ðt; qÞ ¼ R0ðtÞ þ
X1
m¼1

RmðtÞqm;

where

SmðtÞ ¼
1

m!

@mu1ðt; qÞ
@qm

����
q¼0
;

ImðtÞ ¼
1

m!

@mu2ðt; qÞ
@qm

����
q¼0
;

RmðtÞ ¼
1

m!

@mu3ðt; qÞ
@qm

����
q¼0
:

Then at q = 1, the series becomes

SðtÞ ¼ S0ðtÞ þ
P1
m¼1

SmðtÞ;

IðtÞ ¼ I0ðtÞ þ
P1
m¼1

ImðtÞ;

RðtÞ ¼ R0ðtÞ þ
P1
m¼1

RmðtÞ:

ð12Þ
From the so-called mth-order deformation Eqs. (10) and (11),

we have

L1½SmðtÞ � vmSm�1ðtÞ� ¼ �h1H1ðtÞRSmð S
!

m�1ðtÞÞ; m ¼ 1; 2; . . . ; n;

L2½ImðtÞ � vmIm�1ðtÞ� ¼ �h2H2ðtÞRImð I
!

m�1ðtÞÞ; m ¼ 1; 2; . . . ; n;

L3½RmðtÞ � vmRm�1ðtÞ� ¼ �h3H3ðtÞRRmðR
!

m�1ðtÞÞ; m ¼ 1; 2; . . . ; n;

ð13Þ

with initial conditions

Smð0Þ ¼ 0; Imð0Þ ¼ 0; Rmð0Þ ¼ 0;

where

RSmðS
!

m�1ðtÞÞ ¼ Dl1
� Sm�1ðtÞ þ b

Xm�1
i¼1

SiðtÞIm�1�iðtÞ;

RImð I
!

m�1ðtÞÞ ¼ Dl2
� Im�1ðtÞ � b

Xm�1
i¼1

SiðtÞIm�1�iðtÞ þ cIm�1ðtÞ;

RSmðS
!

m�1ðtÞÞ ¼ Dl3
� Rm�1ðtÞ � cIm�1ðtÞ:

For simplicity, we can choose the auxiliary functions as
Hi(t) = 1, i = 1,2,3 and take Li ¼ Dli

� ; i ¼ 1; 2; 3, then the
right inverse of Dli

� will be Jli ; the Riemann–Liouville frac-

tional integral operator. Hence, the mth-order deformation
Eq. (13) for m P 1 becomes

SmðtÞ ¼ vmSm�1ðtÞ þ �h1J
l1 ½RSmðS

!
m�1ðtÞÞ�;

ImðtÞ ¼ vmIm�1ðtÞ þ �h2J
l2 ½RImð I

!
m�1ðtÞÞ�;

RmðtÞ ¼ vmRm�1ðtÞ þ �h3J
l3 ½RRmðR

!
m�1ðtÞÞ�:

If we choose S0(t) = S(0) = NS, I0(t) = I(0) = NI, and
R0(t) = R(0) = NR as initial guess approximations of S(t),
I(t), and R(t), respectively, then two terms approximations

for S(t), I(t), and R(t) are calculated and presented below

S1¼ tb�h1NINS;

S2¼ tb�h1NINSþ
t2b�h1NINSð2t�l1�h1þðb�h1NIþ�h2ðc�bNSÞÞC½3�l1�Þ

2C½3�l1�
;

I1¼ t�h2ðcNI�bNINSÞ;

I2¼ t�h2ðcNI�bNINSÞ�
t2�l2�h2NI

2C½3�l2�
�tl2b2�h2N

2
SC½3�l2�

�
�c�h2ð2þ tl2cC½3�l2�ÞþbNSðtl2b�h1NIC½3�l2�
þ2�h2ð1þ tl2cC½3�l2�ÞÞg;

R1¼�tc�h3NI;

R2¼�tc�h3NIþ
1

2
t2c�h3NI �c�h2þb�h2NS�

2t�l3�h3
C½3�l3�

� �
:

Finally, we approximate the solution S(t), I(t), and R(t) of
the model (3) and (2) by the kth-truncated series

wS;kðtÞ ¼
Pk�1
m¼0

SmðtÞ;

wI;kðtÞ ¼
Pk�1
m¼0

ImðtÞ;

wR;kðtÞ ¼
Pk�1
m¼0

RmðtÞ:

ð14Þ

We mention here that, if we set the auxiliary parameters

�h1 = �h2 = �h3 = �1 and l1 = l2 = l3 = 1, then the HAM
solution is the same as the Adomian decomposition solution
obtained in (Biazar, 2006) and the homotopy perturbation

solution obtained in (Rafei et al., 2007). Through this paper,
we fixed the auxiliary parameters �h2 = �h3 = �1.
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5. Numerical results

The HAM provides an analytical approximate solution in
terms of an infinite power series. However, there is a practical

need to evaluate this solution, and to obtain numerical values
from the infinite power series. The consequent series trunca-
tion and the practical procedure are conducted to accomplish

this task.
For numerical results, the following values, for parameters,

are considered (Biazar, 2006):
Parameter Description

NS = 20 initial population of NS, who are susceptible

NI = 15 initial population of NI, who are infective

NR = 10 initial population of NR, who are immune

b = 0.01 rate of change of susceptibles to infective population

c = 0.02 rate of change of infectives to immune population
To consider the behavior of solution for different values of
li, i= 1,2,3, we will take advantage of the explicit formula

(14) available for 0 < li 6 1, i = 1,2,3, and consider the fol-
lowing two special cases:

Case 1. We will examine the classical SIR model (1) and (2) by
setting l1 = l2 = l3 = 1 in Eq. (3). The partial sums (14) are

determined, and in particular seventh approximations are
calculated for S(t), I(t), and R(t), respectively.

wS;7ðtÞ ¼
X6
m¼0

SmðtÞ ¼ 20þ 18t�h1 þ 45t�h21 þ 60:t�h31

þ 45:000000000000014t�h41 þ 18t�h51

þ 2:9999999999999996t�h61 þ 1:35t2�h1

þ 6:075000000000001t2�h21 þ 11:7t2�h31

þ 11:474999999999998t2�h41 þ 5:67t2�h51

þ 1:125t2�h61 þ � � � þ 7:873199999999999� 10�7t6�h1

þ 0:0000392931t6�h21 þ 0:00018029250000000004t6�h31

þ 0:00015235312500000003t6�h41 þ 0:0000234140625t6�h51

þ 3:164062499999999� 10�7t6�h61;
Figure 1 The �h1-curve of S0(0) obtained by the seventh order app

l1 = l2 = l3 = 0.75.
wI;7ðtÞ ¼
X6
m¼0

ImðtÞ ¼ 15þ 2:7tþ 0:24300000000000002t2

þ 1:125t2�h1 þ 2:25t2�h21 þ 2:25t2�h31

þ 1:1250000000000004t2�h41 þ 0:225t2�h51 þ � � �

þ 7:085879999999998� 10�7t6

þ 0:00003739769999999999t6�h1

þ 0:00017605350000000002t6�h21

þ 0:00015095250000000002t6�h31

þ 0:000023371875000000004t6�h41

þ 3:164062499999999� 10�7t6�h51;

wR;7ðtÞ ¼
X6
m¼0

RmðtÞ ¼ 10þ 0:3tþ 0:027000000000000003t2

þ � � � þ 7:873200000000002� 10�8t6

þ 0:0000018954t6�h1 þ 0:000004239t6�h21

þ 0:000001400625t6�h31 þ 4:218749999999999� 10�8t6�h41:

Case 2. In this case we will examine the fractional SIR model
(3) and (2) when l1 = l2 = l3 = 0.75. The partial sums (14)
are determined, and in particular seventh approximations are
calculated for S(t), I(t), and R(t), respectively.

wS;7ðtÞ ¼
X6
m¼0

SmðtÞ ¼ 20þ 18:t�h1 þ 39:71745544755014t5=4�h21

þ 45:13516668382049t3=2�h31 þ � � �

þ 7:873199999999998� 10�7t6�h1

þ 0:000039293099999999985t6�h21

þ 0:00018029249999999998t6�h31

þ 0:00015235312500000003t6�h41

þ 0:0000234140625t6�h51

þ 3:164062499999999� 10�7t6�h61;
roximation of the HAM: (a) when l1 = l2 = l3 = 1; (b) when



Figure 2 The �h1-curve of I0(0) obtained by the seventh order approximation of the HAM: (a) when l1 = l2 = l3 = 1; (b) when

l1 = l2 = l3 = 0.75.

Figure 3 The �h1-curve of R0(0) obtained by the seventh order approximation of the HAM: (a) when l1 = l2 = l3 = 1; (b) when

l1 = l2 = l3 = 0.75.

Table 1 The valid region of �h1 derived from Figs. 1–3.

Component l1 = l2 = l3 = 1 l1 = l2 = l3 = 0.75

S(t) �1.4 < �h1 < �0.6 �2.7 < �h1 < �0.8
I(t) �1.4 < �h1 < �0.5 �3.2 < �h1 < �1.2
R(t) �1.2 < �h1 < �0.7 �5 < �h1 < 0
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wI;7ðtÞ ¼
X6
m¼0

ImðtÞ ¼ 15þ 16:2t� 35:74570990279513t5=4

þ 40:621650015438455t3=2 þ � � �
þ 7:085879999999998� 10�7t6

þ 0:00003739769999999997t6�h1

þ 0:00017605349999999997t6�h21 þ 0:0001509525t6�h31

þþ0:000023371874999999997t6�h41
þ 3:164062499999999� 10�7t6�h51;

wR;7ðtÞ ¼
X6
m¼0

RmðtÞ ¼ 10þ 1:8t� 3:971745544755014t5=4

þ 4:513516668382048t3=2 þ � � � þ 7:8732� 10�8t6

þ 0:0000018954t6�h1 þ 0:000004239t6�h21

þ 0:000001400624999999999t6�h31

þ 4:218749999999999� 10�8t6�h41:

6. Convergence of the series solution

The HAM yields rapidly convergent series solution by using a
few iterations. For the convergence of the HAM, the reader is
referred to Liao (2003).
According to Rashidi et al. (2011), it is to be noted that the
series solution contains the auxiliary parameter �h1 which pro-
vides a simple way to adjust and control the convergence of the

series solution. In fact, it is very important to ensure that the
series Eq. (12) are convergent. To this end, we have plotted
�h1-curves of S

0(0), I0(0), and R0(0) by seventh order approxima-

tion of the HAM in Figs. 1–3, respectively, for l1 = l2 =
l3 = 1 and l1 = l2 = l3 = 0.75.

Again, according to these �h1-curves, it is easy to discover

the valid region of �h1 which corresponds to the line segment
nearly parallel to the horizontal axis. These valid regions have
been listed in Table 1. Furthermore, these valid regions ensure

us the convergence of the obtained series.
These results are plotted in Figs. 4–6, respectively, at the

end points of the valid region given in Table 1 together
with �h1 = �1 for the three components S(t), I(t), and R(t),



Figure 4 The HAM solution of S(t): (a) when l1 = l2 = l3 = 1; dash-dotted line: �h1 = �1.4, dotted line: �h1 = �1, solid

line: �h1 = �0.6. (b) when l1 = l2 = l3 = 0.75; dash-dotted line: �h1 = �2.7, dotted line: �h1 = �1, solid line: �h1 = �0.8.

Figure 5 The HAM solution of I(t): (a) when l1 = l2 = l3 = 1; dash-dotted line: �h1 = �1.4, dotted line: �h1 = �1, solid line:

�h1 = �0.5. (b) when l1 = l2 = l3 = 0.75; dash-dotted line: �h1 = �3.2, dotted line: �h1 = �1, solid line: �h1 = �1.2.

Figure 6 The HAM solution of R(t): (a) when l1 = l2 = l3 = 1; dash-dotted line: �h1 = �1.2, dotted line: �h1 = �1, solid line:

�h1 = �0.7 (b) when l1 = l2 = l3 = 0.75; dash-dotted line: �h1 = �5, dotted line: �h1 = �1, solid line: �h1 = �0.2.

Table 2 The optimal values of �h1 when l1 = l2 = l3 = 1.

[t0, t1] S(t) I(t) R(t)

[0,0.25] �1.01789 �1.04129 �1.004
[0.25,0.5] �1.05265 �1.04316 �1.00822
[0.5,0.75] �0.96554 �1.05003 �1.01202
[0.75,1] �0.95369 �1.06521 �1.01569

Table 3 The optimal values of �h1 when l1 = l2 = l3 = 0.75.

[t0, t1] S(t) I(t) R(t)

[0,0.25] �1.93974 �3.07891 �2.97013
[0.25,0.5] �1.30787 �1.33014 �2.54972
[0.5,0.75] �1.42404 �1.39255 �2.48637
[0.75,1] �1.12257 �1.30473 �2.24208
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Table 4 The values of S(t), I(t), and R(t) and the residual errors ERS, ERI, and ERR when l1 = l2 = l3 = 1.

t S(t) ERS I(t) ERI R(t) ERR

0.1 19.6996 7.98250 · 10�12 15.2702 3.32062 · 10�9 10.0303 1.25455 · 10�13

0.2 19.3984 9.18963 · 10�11 15.5405 1.99729 · 10�9 10.0611 9.63674 · 10�13

0.3 19.0967 2.35365 · 10�9 15.8109 9.10588 · 10�9 10.0924 5.50334 · 10�11

0.4 18.7946 9.69843 · 10�8 16.0811 1.86647 · 10�9 10.1243 1.01351 · 10�10

0.5 18.4923 8.25949 · 10�8 16.3509 3.06883 · 10�8 10.1568 2.05350 · 10�10

0.6 18.1899 4.56302 · 10�7 16.6203 8.87419 · 10�8 10.1897 1.16338 · 10�9

0.7 17.8877 1.79803 · 10�7 16.8891 2.08745 · 10�8 10.2232 1.63544 · 10�10

0.8 17.5858 2.72956 · 10�6 17.1569 5.39619 · 10�6 10.2573 6.73192 · 10�9

0.9 17.2843 7.26424 · 10�7 17.4238 3.88959 · 10�7 10.2919 2.94770 · 10�9

1.0 16.9835 4.97771 · 10�6 17.6895 9.25596 · 10�6 10.3270 1.17248 · 10�8

Table 5 The values of S(t), I(t), and R(t) and the residual errors ERS, ERI, and ERR when l1 = l2 = l3 = 0.75.

t S(t) ERS I(t) ERI R(t) ERR

0.1 19.4184 8.58906 · 10�4 15.5211 3.24403 · 10�2 10.0591 3.49976 · 10�3

0.2 19.0190 2.21032 · 10�3 15.8814 1.01885 · 10�2 10.1014 1.81610 · 10�3

0.3 18.6701 4.10320 · 10�3 16.1926 5.04414 · 10�3 10.1393 7.42771 · 10�4

0.4 18.3486 2.21434 · 10�4 16.4694 1.66542 · 10�4 10.1748 1.85557 · 10�4

0.5 18.0466 3.19900 · 10�3 16.7118 2.43165 · 10�3 10.2087 5.13441 · 10�5

0.6 17.7588 3.52253 · 10�3 16.9999 2.85768 · 10�3 10.2416 1.16874 · 10�4

0.7 17.4849 9.25863 · 10�4 17.2410 3.12027 · 10�3 10.2737 3.91056 · 10�5

0.8 17.2241 8.75244 · 10�4 17.4723 3.14582 · 10�3 10.3052 1.86796 · 10�4

0.9 16.9694 4.14473 · 10�4 17.6953 2.74835 · 10�3 10.3363 3.70990 · 10�5

1.0 16.7225 1.45279 · 10�3 17.9109 2.37497 · 10�3 10.3669 2.21411 · 10�4
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respectively. As the plots show, while the number of suscepti-
bles increases, the population of who are infective decreases in

the period of the epidemic. Meanwhile, the number of immune
population increases, but the size of the population over the
period of the epidemic is constant.

To determine the optimal values of �h1 in an interval [t0 , t1],
an error analysis is performed. We substitute the approxima-
tions wS,7(t), wI,7(t), and wR,7(t) in Case 1 and Case 2 into

Eq. (3) and obtain the residual functions; ERS, ERI, and
ERR as follows

ERSðt; �h1Þ ¼ Dl1
� ½wS;kðtÞ� þ bwS;kðtÞwI;kðtÞ;

ERIðt; �h1Þ ¼ Dl2
� ½wI;kðtÞ� � bwS;kðtÞwI;kðtÞ þ cwI;kðtÞ;

ERRðt; �h1Þ ¼ Dl3
� ½wR;kðtÞ� � cwI;kðtÞ:

Following Liao (2010), we define the square residual error for
approximation solutions on the interval [t0, t1] as

SERSð�h1Þ ¼
Z t1

t0

½ERSðt; �h1Þ�2dt;

SERIð�h1Þ ¼
Z t1

t0

½ERIðt; �h1Þ�2dt;

SERRð�h1Þ ¼
Z t1

t0

½ERRðt; �h1Þ�2dt:

By using the first derivative test, we can easily determine the

values of �h1 for which the SERS, SERI, and SERR are
minimum.

In Niu and Wang (2010), several methods have been intro-

duced to find the optimal value of �h1. In Tables 2 and 3, the
optimal values of �h1 for the two previous cases are tabulated.

In Tables 4 and 5, the absolute errors ERS, ERI, and ERR

have been calculated for the various t in ]0,1]. From the
tables, it can be seen that the HAM provides us with the
accurate approximate solution for the fractional SIR model

(3) and (2).

7. Conclusion

In this paper, the HAM has successfully been applied to find-
ing the approximate solution of fractional SIR model. The
present scheme shows importance of choice of convergence

control parameter to guarantee the convergence of the solu-
tions. Moreover, higher accuracy can be achieved using
HAM by evaluating more components of the solution. In the

near future, we intend to make more researches as continua-
tion to this work. One of these researches is: application of
HAM to solve fractional SEIR model.
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